JPS6139369A - Fuel cell power generation plant - Google Patents

Fuel cell power generation plant

Info

Publication number
JPS6139369A
JPS6139369A JP15860284A JP15860284A JPS6139369A JP S6139369 A JPS6139369 A JP S6139369A JP 15860284 A JP15860284 A JP 15860284A JP 15860284 A JP15860284 A JP 15860284A JP S6139369 A JPS6139369 A JP S6139369A
Authority
JP
Japan
Prior art keywords
fuel cell
steam
cooling
fuel
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15860284A
Other languages
Japanese (ja)
Inventor
Mitsuo Sato
光雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15860284A priority Critical patent/JPS6139369A/en
Publication of JPS6139369A publication Critical patent/JPS6139369A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04768Pressure; Flow of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To facilitate controlling of the temperature of a fuel cell by installing a heat exchanger for cooling and condensing surplus steam in a cooling water loop for cooling the fuel cell and controlling the amount of steam fed into the heat exchanger according to the load variation of the fuel cell. CONSTITUTION:A fuel cell 1 is constituted by stacking unit cells and installing several cooling pipes 8. A cooling system is constituted by supplying cooling water from a circulation pump 16 into the cooling pipes 8 and separating the steam flowing out from the cell 1 by means of a steam separator 17 before the separated steam is condensed by a heat exchanger 22 to produce water which is then returned back to the pump 16. The flow rate of steam is controlled by drawing a control valve 21 installed in a surplus steam conduit 20 during a load decrease and opening the valve 21 during a load increase according to the output of a detector 19 installed in a load 7. Accordingly, it is possible to improve the efficiency of the fuel cell power generation plant by accurately and easily controlling the temperature of the fuel cell during the time when the plant is being partially loaded or before its operation.

Description

【発明の詳細な説明】 本発明は燃料電池の負荷変動に応じて冷却水ループの圧
力を調整することにより燃料電池セルの温度を調整する
ようにした燃料電池発電プラントに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel cell power generation plant in which the temperature of a fuel cell is adjusted by adjusting the pressure of a cooling water loop in accordance with load fluctuations of the fuel cell.

第1図は燃料電池発電プラントの一例を示す系統図であ
る。ここでは発電プラントのフロースキームの中より主
要な構成機器のみを示し、熱回収のための多数の熱交換
器は省略しである。
FIG. 1 is a system diagram showing an example of a fuel cell power generation plant. Here, only the main components of the power plant flow scheme are shown, and the numerous heat exchangers for heat recovery are omitted.

燃料電池本体1は多数の燃料電池セルを積み重4、燃料
極ガススペース5、空気極ガススペース6よ多構成され
る単セルの燃料電池を示しである。
The fuel cell main body 1 is a single-cell fuel cell composed of a large number of stacked fuel cells 4, a fuel electrode gas space 5, and an air electrode gas space 6.

燃料電池から得られる電流は直流であるので、通常この
直流はインバータを介して交流に変換された後、変圧器
によシ所定の電圧に変成されて既設の電力系統に接続さ
れる。以下の説明ではインバータ以降の回路を単に負荷
7として述べる。燃料電池から生ずる電流は空気極3よ
シ外部回路負荷7を経て再び燃料極2へ戻り、閉回路を
形成している。また燃料電池本体1の冷却のため冷却ル
ープが構成されており、燃料電池本体1の中では多数本
(図では1本のみ示す。)の冷却管8に分流されて、電
池本体各部を冷却している。この冷却管8は燃料電池セ
ルの発熱を吸収して冷却するために多数の細管として埋
設され、水を流して冷却可能ならしめるように冷却板を
構成し燃料電池セルの複数個毎に配備される。
Since the current obtained from the fuel cell is direct current, this direct current is normally converted to alternating current via an inverter, then converted to a predetermined voltage by a transformer, and then connected to the existing power system. In the following description, the circuit after the inverter will be simply referred to as the load 7. The current generated from the fuel cell passes through the air electrode 3, an external circuit load 7, and returns to the fuel electrode 2, forming a closed circuit. In addition, a cooling loop is configured to cool the fuel cell main body 1, and inside the fuel cell main body 1, the flow is divided into many cooling pipes 8 (only one is shown in the figure) to cool each part of the fuel cell main body. ing. This cooling pipe 8 is buried as a large number of thin tubes in order to absorb and cool the heat generated by the fuel cells, and constitutes a cooling plate to enable cooling by flowing water, and is arranged for each of a plurality of fuel cells. Ru.

このような燃料電池本体1の中では外部より供給される
水素リッチの燃料ガスと酸化剤である空気中の酸素とC
二より公知の次の反応により、電気を外部回路負荷7へ
送るとともに、水を生成する。
In such a fuel cell main body 1, hydrogen-rich fuel gas supplied from the outside, oxygen and carbon in the air as oxidants
The following reaction, which is well known in the art, delivers electricity to the external circuit load 7 and produces water.

燃料極反応 H2→2H+ 2e 空気極反応 2 H++ 1/202+ 2e−−H2
0総合反応 H2+ l/202−H20燃料電池発電
プラントにおいては上記反応に必要な水素リッチの燃料
ガスを供給するように、各種の反応器を配備している。
Fuel electrode reaction H2→2H+ 2e Air electrode reaction 2 H++ 1/202+ 2e--H2
0 Comprehensive Reaction H2+ l/202-H20 In a fuel cell power generation plant, various reactors are provided to supply the hydrogen-rich fuel gas necessary for the above reaction.

図示しない燃料タンク又は供給装置より燃料供給管9を
介して供給される燃料(炭化水素または水素リッチのガ
スなど)は図に示していない燃料前処理系により有害な
不純物を除去されて、燃料改質装置10に供給される。
Fuel (hydrocarbon or hydrogen-rich gas, etc.) supplied from a fuel tank or supply device (not shown) through the fuel supply pipe 9 is removed from harmful impurities by a fuel pretreatment system (not shown), and then reformed into a fuel. quality equipment 10.

燃料改質装置10においては、炭化水素燃料と蒸気とに
より改質反応をおこして水素リッチのガスを製造する。
In the fuel reformer 10, a reforming reaction is caused between hydrocarbon fuel and steam to produce hydrogen-rich gas.

燃料の代表例としてメタン(CH4)をと9示すと、以
下の例となる。
The following example shows methane (CH4) as a representative example of fuel.

CH,+ H20→Co + 3H2 この公知の反応により水素リッチガスが製造される。改
質反応(二必要な蒸気は蒸気供給管11により供給され
る。
CH, + H20→Co + 3H2 A hydrogen-rich gas is produced by this known reaction. The necessary steam for the reforming reaction (2) is supplied by a steam supply pipe 11.

燃料改質装置lOを通過した改質ガス中には、まだ多量
のCOガスを含むので、一般には高温シフト反応器12
と低温シフト反応器13とを通過して以下のシフト反応
によりCOガスが002ガスに変成される。
Since the reformed gas that has passed through the fuel reformer lO still contains a large amount of CO gas, the high temperature shift reactor 12 is generally used.
and a low-temperature shift reactor 13, and the CO gas is converted into 002 gas by the following shift reaction.

CO+H20→C02+I(2 両シフト反応器12.13を出た水素リッチガスは多量
の水蒸気を含むので、図には示していない除湿器により
除湿され、た後、燃料極ガススペース5へ供給される。
CO+H20→C02+I (2) Since the hydrogen-rich gas leaving both shift reactors 12 and 13 contains a large amount of water vapor, it is dehumidified by a dehumidifier (not shown) and then supplied to the fuel electrode gas space 5.

ここで前述の電気化学的反応により水を生成する。Here, water is produced by the electrochemical reaction described above.

燃料極ガススペース5よシ流出しだガス流中には未反応
の可燃性ガスを含むので、燃料改質装置10の燃焼室へ
送り燃焼させる。これにより前述の改質反応に必要な加
熱源とする。
Since the gas flow flowing out from the fuel electrode gas space 5 contains unreacted combustible gas, it is sent to the combustion chamber of the fuel reformer 10 and burned. This serves as a heating source necessary for the above-mentioned reforming reaction.

燃料改質装置10よりの燃焼排ガスはタービン14へ送
られ仕事をする。タービン14の仕事は空気圧縮機15
へ伝へられて、空気を加圧し燃料電池本体1の空気極ガ
ススペース6と燃料改質装置10の燃焼室とへ送る。
The combustion exhaust gas from the fuel reformer 10 is sent to the turbine 14 to do work. The work of the turbine 14 is the air compressor 15
The air is then pressurized and sent to the air electrode gas space 6 of the fuel cell main body 1 and the combustion chamber of the fuel reformer 10.

燃料電池本体1の空気極ガススペース6へ供給された空
気は前述の電気化学的反応によシミ流を外部回路負荷7
へ流すとともに、その酸素の一部は水となる。未反応の
空気(多量の窒素と未反応の酸素)と反応生成水は空気
極ガススペース6を流出して、燃料改質装置10の燃焼
排ガスと合流してタービン14へ送られ仕事をする。空
気圧縮機15より供給された空気の一部は分岐されて、
燃料改質装置10の燃焼室へ送られ、燃料電池本体1の
燃料極ガススペース5より排出された未反応燃料と燃焼
反応を行い前述の改質反応を進める加熱源となる。
The air supplied to the air electrode gas space 6 of the fuel cell main body 1 causes a stain flow to be caused by the above-mentioned electrochemical reaction to the external circuit load 7.
As it flows into the atmosphere, some of that oxygen becomes water. Unreacted air (a large amount of nitrogen and unreacted oxygen) and reaction product water flow out of the air electrode gas space 6, join with the combustion exhaust gas of the fuel reformer 10, and are sent to the turbine 14 to do work. A part of the air supplied from the air compressor 15 is branched,
The fuel is sent to the combustion chamber of the fuel reformer 10 and undergoes a combustion reaction with the unreacted fuel discharged from the fuel electrode gas space 5 of the fuel cell main body 1, thereby serving as a heat source for advancing the aforementioned reforming reaction.

燃料電池本体1の冷却系は下記の通りである。The cooling system of the fuel cell body 1 is as follows.

燃料電池冷却水循環ポンプ16より供給された冷却水は
、燃料電池本体1の多数の冷却管8へ分岐供給され、燃
料電池本体1の各部を冷却し、冷却水の一部は蒸発して
蒸気となり、燃料電池本体1を流出する。
The cooling water supplied from the fuel cell cooling water circulation pump 16 is branched and supplied to a large number of cooling pipes 8 of the fuel cell main body 1 to cool each part of the fuel cell main body 1, and a part of the cooling water evaporates and becomes steam. , flows out of the fuel cell main body 1.

この蒸気は気水分離器17で分離され、前記の蒸気供給
管11を経て燃料改質装置10へ送られ、改質反応にお
ける蒸気として用いられる。
This steam is separated by a steam separator 17, sent to the fuel reformer 10 via the steam supply pipe 11, and used as steam in the reforming reaction.

また気水分離器17で分離された水はポンプ16へ送ら
れ、再び循環する。ポンプ16の上流(−は、図Cは示
されていない水処理装置を経た水が補給管18により補
給される。
Moreover, the water separated by the steam-water separator 17 is sent to the pump 16 and circulated again. Water that has passed through a water treatment device upstream of the pump 16 (- is not shown in Figure C) is replenished by a replenishment pipe 18.

このように燃料電池発電プラントにおいては、燃料電池
セル温度を一定に保つよう(二冷却水を循環させるとと
もに、燃料電池本体1を通過する間に、冷却水の一部を
蒸発させて蒸気を作り、この蒸気を改質反応に必要な蒸
気として用いるように構成している。
In this way, in a fuel cell power generation plant, in order to keep the fuel cell temperature constant (2) cooling water is circulated, a part of the cooling water is evaporated to create steam while passing through the fuel cell main body 1. This steam is used as the steam necessary for the reforming reaction.

以上が燃料電池発電プラントの概要であるが、燃料電池
本体1からの発電量が定格値以下の部分負荷で変化した
り、また外部系統には電力を供給しないが、プラント全
体としては電気出力をいつでも送出することかできるよ
うな待機状態にプラントを保つ場合には、燃料電池本体
1の燃料電池セル温度をできるだけ一定(二保つ必要が
ある。然しなから電池セル温度を一定に保持することに
難点かあシ、この調整法が望まれていた。
The above is an overview of a fuel cell power generation plant.The amount of power generated from the fuel cell main body 1 changes at partial loads below the rated value, and although power is not supplied to the external system, the electrical output of the plant as a whole is If the plant is to be kept in a standby state where it can be pumped out at any time, it is necessary to keep the temperature of the fuel cell in the fuel cell body 1 as constant as possible. Despite the difficulty, this adjustment method was desired.

燃料電池セル温度の調整には、燃料電池本体1 。The fuel cell body 1 is used to adjust the fuel cell temperature.

への冷却水の供給の一部を分岐して流量調整する方法が
考えられる。しかしながら、この方法では、燃料電池本
体1への冷却水量が少い場合に、多数本の冷却管8への
流量分布が変化してきて、流量の多い冷却管と少い冷却
管とができて、燃料電池セルの冷却を一様に行なうこと
は困難で、従って燃料電池セル温度を一定に保つことが
難しいことであった。
One possible method is to branch off a portion of the supply of cooling water to adjust the flow rate. However, in this method, when the amount of cooling water to the fuel cell main body 1 is small, the flow rate distribution to the multiple cooling pipes 8 changes, and some cooling pipes have a high flow rate and others have a low flow rate. It has been difficult to uniformly cool the fuel cells, and therefore it has been difficult to maintain the fuel cell temperature constant.

本発明の目的は、燃料電池発電プラントの部分負荷や待
機状態において、燃料電池セル温度の調整が容易にでき
る燃料電池発電プラントを提供することにある。
An object of the present invention is to provide a fuel cell power generation plant in which the fuel cell temperature can be easily adjusted when the fuel cell power generation plant is under partial load or in a standby state.

□ 以下図面を用いて本発明を説明する。第2図は、本
発明の一実施例の要部を示す図で、第1図と同一の機器
には同じ番号を付し、説明は第1図と異るところのみに
限ることとする。
□ The present invention will be explained below using the drawings. FIG. 2 is a diagram showing essential parts of an embodiment of the present invention. The same equipment as in FIG. 1 is given the same number, and the explanation will be limited to only the differences from FIG. 1.

図において、気水分離器17で分離された蒸気は、改質
反応に供給するため蒸気供給管11で分岐され、余剰の
蒸気は導管2oを通シ、制御弁21C二より調整されて
蒸気の凝縮熱交換器22により凝縮して水となシ、ポン
プ16へ供給される。
In the figure, the steam separated by the steam separator 17 is branched by the steam supply pipe 11 to be supplied to the reforming reaction, and the excess steam is passed through the conduit 2o and regulated by the control valve 21C2 to produce steam. The water is condensed by the condensing heat exchanger 22 and supplied to the pump 16.

蒸気凝縮熱交換器22の冷却側は、冷却装置23を通過
し、ポンプ24で供給された冷媒によシ冷却を行う。冷
却装置23は周知の冷却塔であり、空冷方式であっても
水冷方式であってもよい。燃料電池発電プラントが、プ
ラント外からの補給水を要求しないことを特徴とする場
合には空冷方式が望ましい冷却装置となる。
The cooling side of the steam condensing heat exchanger 22 passes through a cooling device 23 and is cooled by a refrigerant supplied by a pump 24. The cooling device 23 is a well-known cooling tower, and may be air-cooled or water-cooled. If a fuel cell power plant is characterized by not requiring make-up water from outside the plant, an air-cooled system is a desirable cooling system.

制御弁21は、図示していない方法により燃料電池セル
の温度を測定するか、或はセルの温度を代表する他の物
理量例えば空気極出口ガス温度または燃料極出口ガス温
度などを測定した信号を修正した信号によりその開度が
制御される。また後述するように、燃料電池本体1から
、排出すべき熱量は、燃料電池本体1の電気出力の函数
となるので、制御弁21は第2図にその一実施例を示す
ように、燃料電池本体1の電流または電気出力などを検
出器19で検出した信号を修正した信号(二よシ制御さ
れる。
The control valve 21 measures the temperature of the fuel cell by a method not shown, or receives a signal obtained by measuring other physical quantities representing the temperature of the cell, such as air electrode outlet gas temperature or fuel electrode outlet gas temperature. The opening degree is controlled by the modified signal. Further, as will be described later, the amount of heat to be discharged from the fuel cell main body 1 is a function of the electrical output of the fuel cell main body 1. Therefore, the control valve 21 is operated as shown in FIG. A signal obtained by modifying the signal detected by the detector 19 of the current or electrical output of the main body 1 (secondary control is performed).

上記の如き配管系統を有する本発明C二おいて、燃料電
池セル温度を一定温度に保つには、燃料電池本体lよシ
の各部分負荷における発熱量を、冷却水によシ冷却して
燃料電池本体1よシ外部へ放出すればよいわけである。
In the present invention C2 having the piping system as described above, in order to maintain the fuel cell temperature at a constant temperature, the amount of heat generated at each partial load of the fuel cell main body l is cooled by cooling water to fuel the fuel. All it has to do is release it outside the battery body 1.

燃料電池セルの代表温度をT1、冷却水温度をT2、燃
料電池セルと冷却水との間の代表伝熱面積を8、まだ総
括熱伝達係数をKとし、燃料電池セルからの発熱量をQ
Hとし、冷却水が吸収する熱量をQoとすると Qo = KS (TI −T2 )     ”’ 
(1)=に3△T ここで△T三(Ts−Tz)であシ、燃料電池セルの代
表温度T1と冷却水温度T2との温度差である。
The representative temperature of the fuel cell is T1, the cooling water temperature is T2, the representative heat transfer area between the fuel cell and the cooling water is 8, the overall heat transfer coefficient is K, and the amount of heat generated from the fuel cell is Q.
If H and the amount of heat absorbed by the cooling water are Qo, then Qo = KS (TI - T2) '''
(1)=3ΔT Here, ΔT3(Ts-Tz) is the temperature difference between the representative temperature T1 of the fuel cell and the cooling water temperature T2.

ここでQnとQoとの大小関係により、次の3種のセル
温度の変化がおこることとなる。QHは燃料電池本体の
出力により変化し、即ち出力が増大すると勉は大きくな
シ、出力が小さくなるとq(は小さくなる。
Here, depending on the magnitude relationship between Qn and Qo, the following three types of changes in cell temperature occur. QH changes depending on the output of the fuel cell main body, that is, as the output increases, q becomes larger, and as the output decreases, q becomes smaller.

(i)  QH= Qoの場合 この場合には、発熱量は冷却水の吸熱量であシ、燃料電
池セル温度の変化はおこらず、温度は一定に保たれる。
(i) When QH=Qo In this case, the amount of heat generated is the amount of heat absorbed by the cooling water, and the fuel cell temperature does not change, and the temperature is kept constant.

(II)  QH> Qoの場合 この場合(二は、発熱量が多いので、除々に燃料電池セ
ル温度は上昇することになる。
(II) Case of QH>Qo In this case (2), since the amount of heat generated is large, the fuel cell temperature will gradually rise.

(Iff)  Q+(< QOの場合 この場合には、発熱量が小さいので、除々に燃料電池セ
ル温度は低下することになる。
(Iff) Q+(< QO In this case, since the amount of heat generated is small, the fuel cell temperature gradually decreases.

燃料電池セル温度は燃料電池発電プラントの効率を決め
る重要な因子の一つであシ、一般には温度の高い方がプ
ラント効率は高くなる傾向にあるが、高すぎると種々の
悪影響のためC二寿命低下やセル特性の劣化をもたらす
原因にもなる。
Fuel cell temperature is one of the important factors that determines the efficiency of a fuel cell power generation plant.In general, the higher the temperature, the higher the plant efficiency. It also causes shortening of life span and deterioration of cell characteristics.

従って、上記(II) 、 (iil)の場合のように
、Qo ”e QHの場合にいかC二してQo−QHと
するかということが問題の解決法となる。即ち、(1)
式のK 、 S 、 T、 、 T2のどれかまたは全
てを変化させてもを変化させることにより、Qo=QH
とすればよいわけである。
Therefore, as in the cases (II) and (iii) above, the solution to the problem is how to multiply C2 to make Qo-QH in the case of Qo ``e QH. That is, (1)
By changing any or all of K, S, T, and T2 in the equation, Qo=QH
It is sufficient to do this.

ここで(1)式の意味を考える。T、は燃料電池セル温
度であシ、これをできるだけ一定に保持しだいのである
からT、は不変とする。T2は冷却水の温度であシ、こ
れは何らかの手段によシ変化できる。
Let us now consider the meaning of equation (1). T is the fuel cell temperature, which must be kept as constant as possible, so T is assumed to remain unchanged. T2 is the temperature of the cooling water, which can be changed by some means.

ただし、冷却水は燃料電池本体1を通過する間にその一
部が蒸発して蒸気を発生するように考えているので、T
2は冷却水の圧力poで定まる飽和蒸気温度Toに等し
くなっておシ、蒸発量が変化しても、Toは変化しない
ことになる。Toを変化させるには圧力Poを変化させ
る必要がある。Sは代表伝熱面積であり、同一の燃料電
池発電プラントの負荷変化の状態を考える場合には、燃
料電池本体は同じものであるからSは一定である。
However, since it is assumed that part of the cooling water evaporates while passing through the fuel cell main body 1 and generates steam, T
2 becomes equal to the saturated steam temperature To determined by the pressure po of the cooling water. Therefore, even if the amount of evaporation changes, To does not change. To change To, it is necessary to change pressure Po. S is a representative heat transfer area, and when considering the state of load change in the same fuel cell power generation plant, S is constant because the fuel cell main body is the same.

Kは総括熱伝達率であり、その内容を考えると、(イ)
燃料電池セル内の伝導によるもの、(ロ)冷却水の流れ
によるもの、 (ノウ  冷却管表面の絶縁層の伝導によるもの、の3
種の寄与が考えられる。
K is the overall heat transfer coefficient, and considering its contents, (a)
(2) Due to conduction within the fuel cell, (2) Due to the flow of cooling water, (2) Due to conduction in the insulating layer on the surface of the cooling pipe.
The contribution of species is considered.

ところが、冷却水の流れによるものの寄与は小さく、(
イ)と(ハ)の寄与が大きい。(イ)と(ハ)は負荷の
変動によシ変化せず、結局には負荷変動によりあまり変
化せず一定と考えてよいことになる。
However, the contribution of the cooling water flow is small, and (
A) and (c) have a large contribution. (A) and (C) do not change due to load fluctuations, and in the end, they do not change much due to load fluctuations and can be considered constant.

従って、Qcを変化できるものは温度差△Tだけであシ
、T1は、一定であるのでT2即ち燃料電池冷却水温度
だけであシ、またこの温度は蒸気の飽和温度であるから
、変化できるものは圧力のみであることになる。
Therefore, the only thing that can change Qc is the temperature difference △T, and since T1 is constant, only T2, that is, the fuel cell cooling water temperature, can change. Also, since this temperature is the saturation temperature of steam, it can be changed. The only thing that exists is pressure.

別の見方をすれば燃料電池の負荷が大きく、燃料電池本
体からの発熱量が大きいときにはT2を小さくする。即
ち圧力を低下するように制御する。
From another perspective, when the load on the fuel cell is large and the amount of heat generated from the fuel cell body is large, T2 is made small. That is, the pressure is controlled to decrease.

負荷が小さくて、燃料電池本体からの発熱量が小さいと
きには、T2を大きくする。即ち圧力を大きくするよう
に制御すればよいことになる。
When the load is small and the amount of heat generated from the fuel cell body is small, T2 is increased. In other words, it is sufficient to control the pressure so as to increase it.

第2図において、一定の負荷において制御弁21はある
弁開度で、冷却系のシステムバランスがとれているもの
とする。
In FIG. 2, it is assumed that under a constant load, the control valve 21 has a certain valve opening degree, and the cooling system is balanced.

負荷の減少がおこったときには、燃料電池冷却水系の圧
力を上昇して冷却水温度を上昇させる必要がある。これ
を実現するためには、検出器19によ多負荷の減少を検
出し、検出信号によシ制御弁21をよシ絞9、蒸気の流
量を減少させて、蒸気の凝縮熱交換器22よりの熱交換
量を少くする。
When a load decrease occurs, it is necessary to increase the pressure of the fuel cell cooling water system to raise the temperature of the cooling water. In order to achieve this, the detector 19 detects a decrease in the load, and the detection signal is used to throttle the control valve 21 to reduce the flow rate of steam to the steam condensing heat exchanger 22. Reduce the amount of heat exchange.

すると余剰の蒸気量は増大して圧力が上昇していくので
、燃料電池セル温度がバランスするように制御弁21を
調整すればよい。
Then, the amount of surplus steam increases and the pressure rises, so the control valve 21 may be adjusted so that the fuel cell temperature is balanced.

また、負荷の増大がおこったときには、検出器19によ
シこれを検出し、燃料電池冷却水系の圧力を減少して、
冷却水温度を低下させる必要がある。これを実現するに
は、検出器19の検出信号によシ制御弁21をよシ開き
、蒸気の流量を増加させて、蒸気の凝縮熱交換器22よ
りの熱交換量を大きくする。すると、余剰の蒸気量は減
少して圧力が低下していくので、燃料電池セル温度がバ
ランスするように制御弁21を調整すればよい。
Furthermore, when an increase in load occurs, the detector 19 detects this and reduces the pressure of the fuel cell cooling water system.
It is necessary to lower the cooling water temperature. To achieve this, the control valve 21 is opened in response to a detection signal from the detector 19, the flow rate of steam is increased, and the amount of heat exchanged by the steam condensing heat exchanger 22 is increased. Then, the amount of surplus steam decreases and the pressure decreases, so the control valve 21 may be adjusted so that the fuel cell temperature is balanced.

負荷の増大、減少のいづれの場合(二も、燃料電池本体
lを通過する冷却水流量は略一定で変化がなく、従って
、多数本の冷却細管8を流れる冷却水の分布に殆んど変
化がなく、電池セル温度を一様に一定範囲に制御するこ
とが可能となる。
In the case of an increase or a decrease in load (in both cases, the flow rate of cooling water passing through the fuel cell main body 1 is approximately constant and does not change, so there is almost no change in the distribution of cooling water flowing through the many cooling thin tubes 8) This makes it possible to uniformly control the battery cell temperature within a certain range.

第3図は、本発明の他の実施例の要部の配管系統を示す
図で、第2図と同一部分には同一符号を付している。こ
の実施例は余剰蒸気の調節を行う蒸気凝縮熱交換器22
の加熱側出口、即ち凝縮水の出口下流側に制御弁21を
配備した例である。
FIG. 3 is a diagram showing a main piping system of another embodiment of the present invention, in which the same parts as in FIG. 2 are given the same reference numerals. This embodiment uses a steam condensing heat exchanger 22 for regulating surplus steam.
This is an example in which a control valve 21 is provided at the heating side outlet, that is, on the downstream side of the condensed water outlet.

第4図は本発明の更に他の実施例の要部の系統図であシ
、蒸気凝縮熱交換器22の冷却側ループにバイパスルー
プ27を設け、かつ蒸気凝縮熱交換器22の冷却水入口
側に制御弁25を配備した例である。
FIG. 4 is a system diagram of a main part of still another embodiment of the present invention, in which a bypass loop 27 is provided in the cooling side loop of the steam condensing heat exchanger 22, and a cooling water inlet of the steam condensing heat exchanger 22 is provided. This is an example in which a control valve 25 is provided on the side.

更に図示はしないが、第4図の場合と同様に蒸気凝縮熱
交換器22の冷却側ループにバイパスループを設け、か
つ蒸気凝縮熱交換器22の冷却水出口側に制御弁を配備
してもよい。
Furthermore, although not shown, a bypass loop may be provided in the cooling side loop of the steam condensing heat exchanger 22 and a control valve may be provided on the cooling water outlet side of the steam condensing heat exchanger 22, as in the case of FIG. good.

又同様に蒸気凝縮熱交換器22の冷却側ループにバイパ
スルーズヲ設ケ、かつ、このバイパスループに制御弁を
配備してもよい。
Similarly, a bypass loop may be provided in the cooling side loop of the steam condensing heat exchanger 22, and a control valve may be provided in this bypass loop.

又同様(二蒸気凝縮熱交換器22の冷却側ループにバイ
パスループを設ケ、かつこのバイパスループに制御弁を
配備し、第4図(二示す如く蒸気凝縮熱交換器22の冷
却水入口側にも制御弁を配備し、これら2個の制御弁を
連動するように制御してもよい。
Similarly, a bypass loop is provided on the cooling side loop of the two-steam condensing heat exchanger 22, and a control valve is provided in this bypass loop, so that the cooling water inlet side of the steam condensing heat exchanger 22 is A control valve may also be provided in the control valve, and these two control valves may be controlled in conjunction with each other.

更に又上記と同様にバイパスループに制御弁を配備する
と共に蒸気凝縮熱交換器22の冷却水出口側に制御弁を
配備し、これら2個の制御弁を連動するように制御して
もよい。
Furthermore, similarly to the above, a control valve may be provided in the bypass loop, and a control valve may also be provided on the cooling water outlet side of the steam condensing heat exchanger 22, and these two control valves may be controlled in conjunction with each other.

第5図は、本発明の更に他の実施例の要部の系統図で、
蒸気凝縮熱交換器22の冷却ループにバイパスループ2
7を設は熱交換器22の冷却水入口側に制御弁25を配
備し、また燃料電池本体1の冷却水の循環ループの余剰
蒸気導管20に制御弁21を配備し、制御弁21と、制
御弁26とを連動するように制御するものである。
FIG. 5 is a system diagram of main parts of still another embodiment of the present invention,
A bypass loop 2 is provided in the cooling loop of the steam condensing heat exchanger 22.
A control valve 25 is installed on the cooling water inlet side of the heat exchanger 22, and a control valve 21 is installed in the excess steam conduit 20 of the cooling water circulation loop of the fuel cell main body 1. The control valve 26 is controlled in conjunction with the control valve 26.

なお余剰蒸気ループの制御弁は蒸気凝縮熱交換器22め
入口側に配備する例を示したが、この制御弁は凝縮水出
口側の制御弁であってもよく、また蒸気凝縮熱交換器2
2の冷却ループの制御弁は冷却水入口側の制御弁25で
示したが、これは冷却水出口側の制御弁またはバイパス
ループ27に配備された制御弁であってもよい。
Although the example in which the control valve for the surplus steam loop is provided on the inlet side of the steam condensing heat exchanger 22 is shown, this control valve may also be a control valve on the condensed water outlet side.
Although the control valve of the second cooling loop is shown as the control valve 25 on the cooling water inlet side, this may be a control valve on the cooling water outlet side or a control valve provided in the bypass loop 27.

以上本発明について詳細に説明したが、本発明によれば
燃料電池発電プラントの効率を支配する重要な因子であ
る燃料電池セル温度の部分負荷時や待機状態での制御が
容易C二かつ安価C二可能となし得る燃料電池発電プラ
ントを得ることができる。
The present invention has been described in detail above. According to the present invention, the fuel cell temperature, which is an important factor governing the efficiency of a fuel cell power generation plant, can be easily controlled during partial load or standby. It is possible to obtain a fuel cell power generation plant that is capable of producing two types of power.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃料電池発電プラントの一例を示すブロック図
、第2図は本発明の一実施例の要部を示す系統図、第3
図乃至第5図は夫々本発明の異なる実施例の要部を示す
系統図である。 1・・・燃料電池本体  289.燃料極3・・・空気
極     7−・・外部回路負荷8・・・燃料電池セ
ルの冷却管 10・・・改質装置16・・・ポンプ  
   17・・・気水分離器22・・・蒸気凝縮熱交換
器   2311.冷却装置24・・・ポンプ (7317)  代理人 弁理士 則 近 憲 佑 (
ほか1名)第2図
Fig. 1 is a block diagram showing an example of a fuel cell power generation plant, Fig. 2 is a system diagram showing main parts of an embodiment of the present invention, and Fig. 3 is a block diagram showing an example of a fuel cell power generation plant.
5 to 5 are system diagrams showing main parts of different embodiments of the present invention. 1...Fuel cell main body 289. Fuel electrode 3...Air electrode 7-...External circuit load 8...Fuel cell cooling pipe 10...Reformer 16...Pump
17... Steam water separator 22... Steam condensing heat exchanger 2311. Cooling device 24...pump (7317) Agent: Patent attorney Noriyuki Chika (
1 other person) Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)燃料極、空気極及びこれら両極間に配置される電
解質とを有し負荷と電気的に直列に接続される複数の燃
料電池セル、複数の管が埋設され前記複数の燃料電池セ
ルの間に配置され前記管に通水して前記燃料電池セルの
発熱を吸収する複数の冷却板とから構成される燃料電池
本体と、前記冷却板に冷却水を通水するための冷却水ル
ープと、前記燃料電池本体に供給される燃料を処理する
燃料処理装置と、未処理燃料及び蒸気を前記燃料処理装
置へ供給する装置とから成り、前記燃料電池本体の負荷
の変動に応じて前記冷却水ループの圧力を制御し前記燃
料電池セルの温度を制御することを特徴とする燃料電池
発電プラント。
(1) A plurality of fuel cells each having a fuel electrode, an air electrode, and an electrolyte disposed between these two electrodes and electrically connected in series with a load, with a plurality of tubes buried in the plurality of fuel cells. a fuel cell main body composed of a plurality of cooling plates disposed between the pipes and absorbing heat generated by the fuel cell by passing water through the pipes; and a cooling water loop for passing cooling water through the cooling plates. , a fuel processing device that processes fuel supplied to the fuel cell main body, and a device that supplies unprocessed fuel and steam to the fuel processing device, and the cooling water A fuel cell power generation plant characterized in that the pressure of the loop is controlled and the temperature of the fuel cell is controlled.
(2)冷却水ループの余剰蒸気を冷却凝縮するための熱
交換器を設け、燃料電池本体の負荷の変動に応じて前記
熱交換器への蒸気の流入量を制御するようにした特許請
求の範囲第1項記載の燃料電池発電プラント。
(2) A heat exchanger for cooling and condensing excess steam in the cooling water loop is provided, and the amount of steam flowing into the heat exchanger is controlled according to fluctuations in the load of the fuel cell main body. A fuel cell power generation plant according to scope 1.
(3)冷却水ループの余剰蒸気を冷却凝縮するための熱
交換器を設け、燃料電池本体の負荷の変動に応じて前記
熱交換器の冷却媒体の流量を制御するようにした特許請
求の範囲第1項又は第2項記載の燃料電池発電プラント
(3) A heat exchanger for cooling and condensing excess steam in the cooling water loop is provided, and the flow rate of the cooling medium of the heat exchanger is controlled according to fluctuations in the load of the fuel cell main body. The fuel cell power generation plant according to item 1 or 2.
JP15860284A 1984-07-31 1984-07-31 Fuel cell power generation plant Pending JPS6139369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15860284A JPS6139369A (en) 1984-07-31 1984-07-31 Fuel cell power generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15860284A JPS6139369A (en) 1984-07-31 1984-07-31 Fuel cell power generation plant

Publications (1)

Publication Number Publication Date
JPS6139369A true JPS6139369A (en) 1986-02-25

Family

ID=15675281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15860284A Pending JPS6139369A (en) 1984-07-31 1984-07-31 Fuel cell power generation plant

Country Status (1)

Country Link
JP (1) JPS6139369A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174281A (en) * 1987-01-12 1988-07-18 Hitachi Ltd Fuel cell generator
JPS6452386A (en) * 1987-08-24 1989-02-28 Hitachi Ltd Fuel cell power generating system
JPH01217864A (en) * 1988-02-25 1989-08-31 Mitsubishi Electric Corp Steam separator system for fuel cell
JPH03104806A (en) * 1989-09-16 1991-05-01 Toyohisa Fujita Method for manufacturing magnetic fluid
JPH04296460A (en) * 1991-03-27 1992-10-20 Tokyo Gas Co Ltd Fuel cell
WO2000059059A1 (en) * 1999-03-26 2000-10-05 Siemens Aktiengesellschaft Method for operating a fuel cell installation and a fuel cell installation
JP2005268065A (en) * 2004-03-19 2005-09-29 Honda Motor Co Ltd Fuel cell system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840369A (en) * 1971-09-25 1973-06-13
JPS51104541A (en) * 1975-02-12 1976-09-16 United Technologies Corp

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840369A (en) * 1971-09-25 1973-06-13
JPS51104541A (en) * 1975-02-12 1976-09-16 United Technologies Corp

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174281A (en) * 1987-01-12 1988-07-18 Hitachi Ltd Fuel cell generator
JPS6452386A (en) * 1987-08-24 1989-02-28 Hitachi Ltd Fuel cell power generating system
JPH01217864A (en) * 1988-02-25 1989-08-31 Mitsubishi Electric Corp Steam separator system for fuel cell
JPH03104806A (en) * 1989-09-16 1991-05-01 Toyohisa Fujita Method for manufacturing magnetic fluid
JPH04296460A (en) * 1991-03-27 1992-10-20 Tokyo Gas Co Ltd Fuel cell
WO2000059059A1 (en) * 1999-03-26 2000-10-05 Siemens Aktiengesellschaft Method for operating a fuel cell installation and a fuel cell installation
JP2005268065A (en) * 2004-03-19 2005-09-29 Honda Motor Co Ltd Fuel cell system
JP4694135B2 (en) * 2004-03-19 2011-06-08 本田技研工業株式会社 Fuel cell system

Similar Documents

Publication Publication Date Title
KR102496027B1 (en) Methods and systems for providing hydrogen, electricity, and co-production
CN111211338B (en) High-pressure proton exchange membrane fuel cell power system
EP1276163B1 (en) Solid polymer fuel cell
EP2221907B1 (en) Back-up fuel cell electric generator comprising a compact manifold body
US4686157A (en) Fuel cell power system
WO2010123146A1 (en) Method of controlling a fuel cell system
JP2005100873A (en) Fuel cell system
CN114583222A (en) Combined power generation system based on solid oxide fuel cell and internal combustion engine
JPS6139369A (en) Fuel cell power generation plant
JPH0845526A (en) Multistage reaction type fuel cell
JPS6056374A (en) Fuel flow controlling device for fuel cell
JP3263129B2 (en) Fuel cell system
JP3846180B2 (en) Cogeneration system
Lavernia et al. Design Optimization of a Thermally Integrated Solid Oxide Fuel Cell with Triple Effect Absorption Chiller
CN117638139B (en) Integrated water control loop and method for improving output power of fuel cell system
CN112038667B (en) Gas circulation humidifying method and device for hydrogen-oxygen fuel cell test
JP3358227B2 (en) Fuel cell power generation system
JPS6340269A (en) Cooling line control device of fuel cell power generating plant
KR100317347B1 (en) Method and apparatus for controlling a feul cell power generation system
JPH0817455A (en) Exhaust heat recovery device for fuel cell generating unit
JPH08339815A (en) Fuel cell power generation device
JPH08250142A (en) Steam-separator pressure controller for fuel-cell generating system
JPH02213056A (en) Fuel cell power generating plant
JP2807635B2 (en) Temperature control method for fuel cell power generation equipment
JP3509948B2 (en) Fuel cell power generator