JPS6056374A - Fuel flow controlling device for fuel cell - Google Patents

Fuel flow controlling device for fuel cell

Info

Publication number
JPS6056374A
JPS6056374A JP58163316A JP16331683A JPS6056374A JP S6056374 A JPS6056374 A JP S6056374A JP 58163316 A JP58163316 A JP 58163316A JP 16331683 A JP16331683 A JP 16331683A JP S6056374 A JPS6056374 A JP S6056374A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
output
flow rate
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58163316A
Other languages
Japanese (ja)
Inventor
Hiroyuki Narita
成田 寛行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58163316A priority Critical patent/JPS6056374A/en
Publication of JPS6056374A publication Critical patent/JPS6056374A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • H01M8/04805Concentration; Density of fuel cell exhausts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To improve the response performance of a device for controlling the flow rate of fuel for a fuel cell by setting a utilization rate of the fuel with a margin, producing a fuel flow rate corresponding to the utilization rate from a finction generator by using an output current as a parameter and controlling a fuel-flow-rate-controlling valve according to the output. CONSTITUTION:The output current of the fuel cell of a fuel-cell power generation system is detected with a detector 22. The required fuel flow rate function for the normal operation condition is produced with a function generator 32 to obtain a command value. The thus obtained command value is added to the signal of a differential block 33 to produce an amended command value 35. The amended command value 35 is then added to a fuel flow rate correction amount 55 obtained from both the temperature detector of an improver catalyst layer and a fuel flow rate 23. After that, the resulting value is fed to the input of a limiter block 60 for giving an upper and a lower limit (UL) and (LL) through a PID computing element 59, thereby controlling a valve 9 for controlling the amount of fuel fed to the fuel cell. As a result, controlling can be performed while always securing the lower limit of the supplied amount of the fuel and the response efficiency of fuel supply can be improved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、原燃料を必要に応じて設けられる改質器(
二て改質燃料に変成した後との改質燃料を、或1・、す
虜タンクより得た水素を燃料として燃料電池の燃料極室
に燃料流量調節弁を介して供給し、更;二その排出ガス
を必要に応じて設けられる改質器の反応温度を保持する
ための加熱燃料として用いる燃料電池発電システムの健
料流量制御装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to a method for converting raw fuel into a reformer (
2. The reformed fuel after being converted into reformed fuel is supplied to the fuel electrode chamber of the fuel cell using hydrogen obtained from the tank as fuel through the fuel flow control valve; The present invention relates to a fuel flow rate control device for a fuel cell power generation system that uses the exhaust gas as heating fuel to maintain the reaction temperature of a reformer provided as necessary.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

/!i’! 1図は、本発明に関わる改質器と燃料電池
とをイ)する燃料電池発電システムの一例を示す系統構
成図であり、燃料電池は単電池としで示す。原イ6 燃8′i源1より供給される炭火水素系原燃料は、改)
R器2の中に格納された複数の改質反応管(1木のみ示
す)3内の触媒層4へ導びかれ、ここで改質反応が行な
われ水素に富む改質燃料に改質される。改質された改、
質(然江中に含まれる一酸化炭素は、−酸化炭素変成器
5にて水素と炭(、@、ガスに変成され、更l二冷却器
6を介して低温媒体8にて冷却された後水分分陥器7に
流入して水分が分熱される。このようにして改質された
改質健料1・主、燃料流侶・調節弁9を介して蚊ト料電
池10の燃料極室11に導びかれ、図示しない圧縮機(
二より加用されて空気な室12に導入された空気中の酸
素と?)で−気イヒ学的に反応し電気を発生する。尚1
1は俗料極、12目空気極である。燃料′上池10の燃
料極室11を通過した改質燃料は、電気化学反応上未反
応の残存改質燃料を含んでいるため、これを先きにやK
ベア辻改質器2(1導びき、改質反応に必要な熱を供給
するン゛こめの加熱燃料と[7て利用する。そのため、
未反応の残存燃料を燃料極室11の出口のアブソーバ1
3を経由して冷却器14に導びき、低(,11M媒体1
7(二で冷却し、残存改質燃料中の水分を水分分離器1
5に−C分離した後、改質器2のバーナ16(1導びさ
図示しない前記圧縮機を介して供給される空気と共に燃
焼させる。尚上記空気は燃料電池10の空気極室12の
tlf:空気を用いてもよい。一方燃料電池10(二で
発生した電気は、電解液を保持するマトリックス18の
両側に設けられた燃料極11及び空気極12より外部に
3)%びかれ、負荷21に゛C消費される。
/! i'! FIG. 1 is a system configuration diagram showing an example of a fuel cell power generation system that uses a reformer and a fuel cell according to the present invention, and the fuel cell is shown as a single cell. The hydrocarbon-based raw fuel supplied from source 1 is revised)
The fuel is guided to the catalyst layer 4 in a plurality of reforming reaction tubes (only one tree is shown) 3 stored in the R reactor 2, where a reforming reaction is carried out and the fuel is reformed into hydrogen-rich reformed fuel. Ru. Modified Kai,
The carbon monoxide contained in the water is converted into hydrogen and carbon gas in a carbon oxide converter 5, and then cooled in a low-temperature medium 8 via a second cooler 6. The water flows into the water separator 7 and is separated into heat.The thus reformed fuel 1, the main fuel, and the fuel electrode of the fuel cell 10 are passed through the fuel flow pipe and control valve 9. A compressor (not shown) is guided into the chamber 11.
What is the oxygen in the air introduced into the air chamber 12? ) - reacts mechanically and generates electricity. Sho 1
1 is the common pole, and the 12th is the air pole. The reformed fuel that has passed through the fuel electrode chamber 11 of the upper fuel reservoir 10 contains residual reformed fuel that has not reacted in the electrochemical reaction, so it must be removed first.
The Baertsuji reformer 2 (1 is led and used with integrated heating fuel [7] that supplies the heat necessary for the reforming reaction.
The unreacted residual fuel is removed from the absorber 1 at the outlet of the fuel electrode chamber 11.
3 to the cooler 14, low (, 11M medium 1
7 (cooled in step 2 and removed moisture in the remaining reformed fuel by water separator 1)
After separating -C into 5 and -C, the burner 16 (1 lead) of the reformer 2 is combusted together with the air supplied through the compressor (not shown). Air may also be used.On the other hand, electricity generated in the fuel cell 10 (2) is pumped out by 3% from the fuel electrode 11 and air electrode 12 provided on both sides of the matrix 18 holding the electrolyte, and゛C is consumed.

次に本発明に関わる燃料流量制御装置に使用する制御信
号の検出について第1図にて説明する。
Next, detection of control signals used in the fuel flow rate control device according to the present invention will be explained with reference to FIG.

燃料電池10の出力電流は、電流検出器22にて検出さ
れる。又(燃料電池10への供給改質燃料流堡はと景検
出器23(二で検出される。改質器2の内部温度は複数
の温度検出器24にて検出される。
The output current of the fuel cell 10 is detected by a current detector 22. In addition, the flow of reformed fuel supplied to the fuel cell 10 is detected by a landscape detector 23 (2).The internal temperature of the reformer 2 is detected by a plurality of temperature detectors 24.

kl−ヒ本発明に門わる改質器と燃料電池とを有すン、
燃料電池発電システムについてその概賛を述べたが、晩
年5システムの燃料流邦制御に関しては、F /4の解
決しなければならないLl M34が存在するので、以
下に重要な解決課題について述べる。但し彼達の解決課
題の内(1)〜(4)項は、燃料電池のみをイ1する(
即ち改質器を有しない)燃料電池発電シスラム(二おい
ても生ずる課題であり本発明により本 角r決されることから、発明は改質器を有しlよい燃△ 斜部;池発電システムにも適用されるものである。
kl-hi has a reformer and a fuel cell according to the present invention,
I have given an overview of the fuel cell power generation system, but regarding the fuel flow control of the late 5 system, there is Ll M34 of F/4 that must be solved, so I will discuss the important problems to be solved below. However, items (1) to (4) of their problems to be solved involve only fuel cells (
This problem also occurs in the fuel cell power generation system (which does not have a reformer) and is solved by the present invention. It also applies to systems.

解決課題: (1)燃料電池へ供給される憾料中に含−fitシる電
気化学的な反応物質の量と、り3!、科電704の出力
′、’i’l:汁との間には、曲り片壬毎蓄]榊(t−
の・?WA−」すキ出力電流を一定とすると、第2図に
水子−」−うなヂ、(石中の反応物質の利用率に対する
出力室r−(茹4<I力算で1められる。ここで反応物
価の利71−を率はとro)定r(二基づく 反応物質の利用電−<(チ)= 燃料?■池に供給された反応物流量 ところで燃料?i5:油出力電、流に電気化学i′+r
=に当jet O)反応物質n:は次式(−よりめるこ
とができ−Z−0電気化学的な当量−kII・kE・■
・ぺku一単位変換定数 kE二、ユ久イヒ学的定数 ■二電渡、(アンペーア) N=直直列性池 数って燃料電池出力電力を確保するため(二tよ、グー
2図に示すL?3.以下に反応物質の利用率を−F6〜
)“て運転する必要がある。言い替えれば、燃料電池に
供給される燃料中の反応物質量を利用率がL点以上にな
らないように出力電流のパラメータとして燃料供給量の
下限を確保する必要がある。
Problems to be solved: (1) The amount of electrochemical reactants contained in the feedstock supplied to the fuel cell, and , the output of the science electrician 704', 'i'l: Between the juice, there is a
of·? Assuming that the output current is constant, FIG. Here, the rate of reactant price profit 71- is and ro) constant r (2 based on the usage of the reactant - < (ch) = fuel? ■ the amount of reactant supplied to the pond. By the way, fuel? i5: oil output power, Electrochemistry i'+r
= jet O) Reactant n: can be calculated from the following formula (-Z-0 electrochemical equivalent -kII・kE・■
・Peku 1 unit conversion constant kE 2, Yukuihi scientific constant ■ 2 electric current, (ampere) Indicate L?3. Below is the utilization rate of the reactant -F6~
)" In other words, it is necessary to ensure a lower limit of the fuel supply amount as a parameter of the output current so that the utilization rate of the amount of reactant material in the fuel supplied to the fuel cell does not exceed the L point. be.

(2)燃料電池の′電気出力は、電気負荷側の要求によ
り増減される。これ≦1伴ない燃料電池出力電流が増減
されるが、この出力電流と少なくとも電気化学的に当量
の反応物質を含んだ燃料を燃料電池に供給する必要があ
る。実際には(1)項にて述べたように、反応物質の利
用率をある値以上に上げると燃料電池出力U:圧が低下
し従って/il気出力出イド下するから、(1)項に述
べた制限値上・点に余裕値を設け、第2図に示すN点に
て燃料供給量を硝・行する必要がある。
(2) The electrical output of the fuel cell is increased or decreased depending on the demands of the electrical load. As this ≦1, the fuel cell output current is increased or decreased, but it is necessary to supply the fuel cell with a fuel containing a reactant at least electrochemically equivalent to this output current. In fact, as stated in section (1), if the utilization rate of the reactant is increased above a certain value, the fuel cell output U:pressure decreases, and therefore the /il output decreases. It is necessary to set a margin above the limit value mentioned above and to reduce the fuel supply amount at point N shown in FIG.

(3)第2図において、燃料電池に供給される反応物質
の利用率を必要以上に低下させることは、燃枦1電池を
素通りして、未反応のま\排出される反応物質の流量を
増加させることを意味し、総合的な燃料電池発電システ
ム効率を低下させる結果となりQ策でない。従って第2
図に示すN点に余裕値αの巾を持ったM点以下に利用率
が低下しないよう出力電流のパラメータどして燃料供給
)1゛の上限を確保する必要がある。
(3) In Figure 2, lowering the utilization rate of the reactant supplied to the fuel cell more than necessary reduces the flow rate of the reactant that passes through the fuel cell 1 and is discharged unreacted. This means increasing the fuel cell power generation system, which results in a decrease in the efficiency of the overall fuel cell power generation system, which is not a Q measure. Therefore, the second
It is necessary to ensure an upper limit of 1゛ by adjusting the parameters of the output current so that the utilization rate does not fall below point M, which has a width of margin α at point N shown in the figure.

(4)燃料流−I調節弁を介1−で燃料γ3:池の42
r、(料極まで燃料を供給する過程(:目、制御的に見
て各オ・1・の遅れ要素が存在する。従ってl、、;′
p料7:5. /11.!の1−)(気圧力の急、変に
対する応答性を向上さ4−i−7,ための手段が必要と
なる。
(4) Fuel flow - Fuel γ3 through I control valve 1-: 42 in the pond
r, (Process of supplying fuel to the electrode (:) From a control point of view, there are delay elements for each O, 1, and 1. Therefore, l, , ;'
P charge 7:5. /11. ! 1-) (4-i-7) A means is needed to improve responsiveness to sudden changes in air pressure.

(5)?(1、気負荷側の裂求市、力が零の状、的、J
ellら燃料電池の電、気圧力が零の状態において、改
9f、、 4+n、を停止」二させることなく運転を継
続させた方が、酸1iダ器の停止起動C′−要する時j
7−Dが削iホLでき、次σ)電気負荷側の電力増要求
に急速に応答できる。この改質器を運転状態のま\・6
料電池出力を零とする運転形ヱ1ピを以後「スタンドバ
イ運転」と称する。このスタンドバイ運転時には、改質
器の改l了反応を保持する(二足りるガ′δ粕を燃料電
池を累通りして燃料調節弁C二て供給する必要がある。
(5)? (1, Rikikuichi on the Qi load side, state of zero force, target, J
When the electric and air pressures of the fuel cells are zero, it is better to continue operation without stopping the 9f, 4+n, and the time it takes to stop and start the acid generator.
7-D can be reduced, and σ) can rapidly respond to power increase requests from the electrical load side. Leave this reformer in operation\・6
The mode of operation in which the battery output is zero is hereinafter referred to as "standby operation." During this stand-by operation, it is necessary to maintain the reforming reaction of the reformer (2 enough lees must pass through the fuel cell and be supplied to the fuel control valve C2).

(6)改質器は醇媒層の温度を最適な1触媒反応温度に
保つ必要がある。
(6) In the reformer, it is necessary to maintain the temperature of the medium layer at the optimum catalytic reaction temperature.

(7)燃料調節弁により改質器のバーナ燃料を供給゛づ
−るに至るまでには、燃料電池本体、アブソーバ、水分
分離器及び配管系等の主とし2て体積列累に起因する遅
れ要素が存在する。燃料電池発電システムの電気出力変
化時に、改質器の触媒温度を一足に保持するためにはこ
れらの遅れ要素を考i:′、−。
(7) Until the fuel control valve starts supplying the burner fuel of the reformer, there is a delay caused mainly by the volume sequence of the fuel cell body, absorber, water separator, piping system, etc. element exists. In order to maintain the catalyst temperature of the reformer at a certain level when the electrical output of the fuel cell power generation system changes, these delay elements must be considered.

した制御系の設計が必要である。It is necessary to design a control system that

〔発明の目的〕[Purpose of the invention]

本発明は、上記の課題を解決丁べく fcされたもので
、上記課題を解決するようにした燃料電池発電システム
の燃料流量制御装置を得ることを目的どするものである
The present invention has been developed to solve the above-mentioned problems, and an object of the present invention is to provide a fuel flow rate control device for a fuel cell power generation system that solves the above-mentioned problems.

〔発明の概1′?〕 上記[j的を達成するため、本発明に於゛Cは、燃料1
1台也と、この燃料電池に?1q気を供給する装置と、
同じく前記燃料電池に供給され前記空気中の酸素と電気
化学反応を行なう水素を貯蔵するタンクとを(?iiえ
た燃料電池発電システムにおいで、前記悠料?χ池の燃
料利用率の上昇(1応じて低下する出力型[loが所定
値以下とならない利用率の」−限値より所定の余裕値を
見込んだ燃料利甲率を定め、この利用率に相当する(k
料流世を燃料電池の出力゛1Fテ流をパラメータとする
関数として発生する閏?、’に 4’l生2、)と、こ
の関数発生器の出力により;:r’l衛lさ身シる・L
゛料原流ター調節弁から構成するもので21しる。
[Summary of the invention 1'? ] In order to achieve the above [J objective, in the present invention, C is the fuel 1
One car and this fuel cell? A device that supplies 1qqi,
Similarly, in a fuel cell power generation system that stores hydrogen that is supplied to the fuel cell and undergoes an electrochemical reaction with the oxygen in the air, an increase in the fuel utilization rate of the free pond (1 Determine the fuel utilization rate that takes into account a predetermined margin value from the output type [the utilization rate at which lo does not fall below a predetermined value]-limit value, and calculate the fuel utilization rate corresponding to this utilization rate (k
Is the leap that occurs as a function of the fuel cell output (1F) as a parameter? , 'to 4'l raw 2,) and the output of this function generator;
It consists of a raw material flow control valve and is classified as 21.

〔発明の実施例〕[Embodiments of the invention]

以−ト上述の1果題を解決するための本発明の制御用1
装置の実施例を第2区1〜Bfs 91スiを参照して
1説明する。不発明(1於ては憾料v;゛量5丁“;節
デー9が最終り:1:0.111端であり、この11″
11モ・儂に必要な制御信号は図1fiiの左方より入
力される。尚第5図〜第8図に於”CItブ、6i制御
装置の構成要素の中、最終1:l fjl 、l、、:
M+である健オ、ト流量調節弁9以外で重複する部分シ
ま破線で示すと共に1点ti!i線で囲み重複しないj
’:ii分と1.、′(別しでいる。
The control method of the present invention for solving the above-mentioned problem 1
An embodiment of the device will be described with reference to Section 2-Bfs 91S. Non-invention (1 in 1 is a regret v; ゛Quantity 5 pieces''; Section day 9 is the last one: 1:0.111 end, this 11''
The control signals necessary for the 11th motor are inputted from the left side of FIG. 1fii. In FIGS. 5 to 8, among the components of the 6i control device, the final 1: l fjl, l, . . .
The overlapping spots other than the flow rate control valve 9, which is M+, are indicated by broken lines, and one point ti! Enclose with i line and do not overlap j
': ii minutes and 1. ,′(Separate.

第4図に於て、まず、娼こ科η工池出力′−Iに流検出
器22にて出力電流(Q号31を肖る。この信−シー1
″31を]−゛に、定常運転状態(−おける出力″4を
流に対す要求燃X′−;流量関数を発生する関数発生器
32にて世相電池プロセスに必要な要求燃料流量指令値
を得、この指令値な例えば電空変換器に与へ燃料流量献
j節弁9を駆動制御する。
In Fig. 4, first, the output current (Q 31 is shown) at the current detector 22 at the prostitute η factory output'-I.
``31]-'', the output ``4'' in the steady operating state (-) is set to the required fuel flow rate X'-; This command value is then applied to, for example, an electro-pneumatic converter to drive and control the fuel flow control valve 9.

1°力電流に対する要求燃料流量関数の決定方法を第3
図を用いて説明する。第3図に於て直線aけ8.カル流
に討する電気化学的消量の燃料流量を示−4関数である
。又、曲線すは改質器の触媒Iθン品度をフル、定温1
(Fに仰持する為(−必要な(チー沿、電池の入口付8
−1糾成(−あ・ける焔料流泣を示す閏芙Jである。
The third method for determining the required fuel flow rate function for 1° force current
This will be explained using figures. In Figure 3, draw a straight line 8. It is a -4 function that represents the fuel flow rate for electrochemical consumption due to the fuel flow. In addition, the curve shows the reformer catalyst Iθ quality at full, constant temperature 1
(To support F (- necessary (Qi side, with battery inlet 8
-1 绾成(-A・keru) It is a leapfrog J that indicates the flow of flames.

ここで注目すべきことは、燃料室2池出力電流か零の前
+7.於いても、改質器の触媒温度乞規定値C二保]寺
するためC二は由】紛すに示す複然和をイ;七給するヅ
妥があることである。即ちスタンドバイ運転時には曲線
すでノlくずす′読ネ:(υχ1;−をIL給すること
により改り器を停止)、することなく運転用′続が可能
である。以上のことより、出力(8,流に対する要求が
刺流語・関数を示す曲Pは、直線aと曲線すとを力pえ
た曲線Cにて示される関敬としてめることができる。
What should be noted here is that the output current from the two fuel chambers is +7. Also, if the catalyst temperature of the reformer is specified as C2, then C2 is different, then there is a complex sum as shown in A;7. That is, during standby operation, it is possible to resume operation without having to read the curve (by supplying υχ1;- to IL to stop the converter). From the above, the song P whose request for output (8, flow) is a flow word/function can be seen as a curve C, which is a combination of the straight line a and the curved line C.

ζつしてめられた出力部1流に対する要求溶料流量の関
数は、反応物質利用率を第2図に示すN点(例えば70
幅)として出力電流をノくラメークとする第3図に於け
る曲線dを下側に割り込まないよう設定する。第3図に
は糎1り込まない場合を示したが割り込X7だ場合は曲
線Cと曲Mdの冒値側を選択し出力電流に対する要求炉
料流セの律令(iとする。
The function of the required solvent flow rate for one output flow determined by
The width of the output current is set so as not to fall below the curve d in FIG. Fig. 3 shows the case in which no interruption occurs; however, in the case of interrupt

ニ一方燃料電池出力要求が急速に変化した(5合には、
怖;料電5池の出力電流も出力要求と同様に疫什すると
とを捉え、第5図に示すように、W1数発生器32に並
列に設けらλまた微分ブロック33に出力電流信号31
を入力して、出力電流の変化速度l二比例する景を得、
これを要求燃料流−世指令値(二加/yTプ)ロック3
4にて加算し修正要求燃料流量指令値35を得、・j外
料流丹鼎節弁9への制御指令とする。こうすることによ
り作粕電池出力及び燃料改質?場の外部m:気負負荷変
動対する応答性を向上させることができる。数分ブロッ
ク33は1^能的(二変化速IWを検知できろものであ
れば良く、従一つで−T” N: I−示す不完全微分
又はディジクル演勢等において行な但しに:不完全微分
ゲイン T:不完全微分時定数 Sニラプラス演算子 次に改質器触媒層4の温度制御について第6図を用いて
説明する。触媒層4の温度は渇IJ3′検出器24にて
検出される。第6図では3点の検出器を示しブ、−が、
必要に応じて検出器数を増減する。検出さ7uた触媒層
温度は平均化ブロック36にて平均温度が算出される。
On the other hand, the fuel cell output requirements changed rapidly (at the 5th stage,
Fear: Considering that the output current of the 5 batteries is also subject to fluctuations in the same way as the output demand, as shown in FIG.
Input the output current change rate l2 to obtain the proportional
Request this fuel flow command value (2+/yT block) 3
4 to obtain a corrected requested fuel flow rate command value 35, which is used as a control command to the external fuel flow valve 9. By doing this, will the cell output and fuel reform be improved? Outside the field m: Responsiveness to negative and negative load changes can be improved. The several minute block 33 is 1^functional (as long as it can detect the two changing speeds IW, it is sufficient if it can detect two changing speeds IW. Perfect differential gain T: Imperfect differential time constant S Nira plus operator Next, temperature control of the reformer catalyst layer 4 will be explained using FIG. 6. The temperature of the catalyst layer 4 is detected by the exhaustion IJ3' detector 24. In Fig. 6, the detectors at three points are shown.
Increase or decrease the number of detectors as necessary. The average temperature of the detected catalyst layer temperatures 7u is calculated in an averaging block 36.

又は触媒層のネぶ数の6.M度検出器のJ′lン高温j
反を制御したいときは、平均化ブロックの代りに最大値
選4尺ブロックと置き替えるか、若しぐは(〆11示は
しないが平均化ブロックと最大重[5選択一7゛ロツク
とを共に設け、平均化ブロック出力を通常時の制御に用
い、最大値選択ブロック出力が規5.7 ?j7a度を
越えた場合にのみ温度制御に抑制をかけ7!1m度最大
値が規定f晶度を越えないようにする制御方式としても
良い。このようにし7て処理された爽、温度信号は減n
−ブロック37に入力され、他方の入力温度設定値To
との差分がとられ、次段のPID演算器38に入力され
る。PID演算器出力39は改質器2の触媒層の温度を
規定温度に一定に保つために必要な改質器2への燃料流
量: 1irli御信号とみなすことができる。
Or the number of catalyst layers is 6. High temperature of M degree detector
If you want to control the reverse, you can replace the averaging block with a maximum value selection 4 block, or (although it is not shown in Section 11), you can replace the averaging block and the maximum weight [5 selection - 7 block]. The averaged block output is used for normal control, and temperature control is suppressed only when the maximum value selection block output exceeds the standard 5.7?j7a degrees. It is also possible to adopt a control method that prevents the temperature from exceeding the temperature.The temperature signal processed in this way is reduced.
- input to block 37 and the other input temperature setpoint To
The difference is taken and input to the PID calculator 38 at the next stage. The PID calculator output 39 can be regarded as a fuel flow rate to the reformer 2 necessary to keep the temperature of the catalyst layer of the reformer 2 constant at a specified temperature: 1irli control signal.

一方改質器2に至る惚S料流路系には岸f決課題の(7
)にて先きに述べた各種の遅れ要素が≧e、在する。
On the other hand, in the fuel flow path system leading to the reformer 2, there is a
), there are various delay elements ≧e as described above.

この遅れ要素を補償するための制御系の対策を?F7図
に述べる。・廓料電池入口側での燃料流量はかC景検出
器23にて検出される。他方燃料′重油にて消費される
燃料は係数ブロック40r二て出力゛巾、流の係数倍と
してめられる。これら2つの信号なn、↓)、基ブロッ
ク41(二て久二分をとり帰刺′爪)也出口(illに
おける残存燃料流量信号42を得る。この残存燃料流、
 :il、i’倍信号減算器45にてPID演算器38
の18力39と差分演算を行なった後、燃料電池から改
質器バーナ16に至るまでの流路内体積により決定され
る精分係数を有する積分ブロック43にて伊分さオする
。この積分ブロック43の出力44は煙刺電池から改質
器バーナC二至るまでの流路内体積C二対する炉別71
11充ているときに10の出力となるよう親、定する。
What measures should be taken in the control system to compensate for this delay element? It is described in Figure F7. - The fuel flow rate on the fuel cell inlet side is detected by the C view detector 23. On the other hand, the fuel consumed in heavy oil is calculated by multiplying the output width and the flow coefficient by the coefficient block 40r. These two signals n, ↓), the remaining fuel flow rate signal 42 at the base block 41 (returning point) and outlet (ill) is obtained.This remaining fuel flow,
:il, i' times signal subtracter 45 and PID calculator 38
After performing a differential calculation with the 18 force 39, an integral block 43 having a refinement coefficient determined by the internal volume of the flow path from the fuel cell to the reformer burner 16 performs an integral calculation. The output 44 of this integral block 43 is calculated by furnace 71 for the internal volume C2 of the flow path from the smoke sting battery to the reformer burner C2.
The parent is set so that the output is 10 when 11 is full.

即r、 6g料補充引が不足する場合には積分ブロック
43の出力44 +i 1.o以下の値となり、僻料補
充量が過多の場合には]、OJU上の値をとる。この積
分ブロック43への入力は先き(=述べた減算器45の
出力であるが、燃料室7:L総排出ガス中に占める残存
有効蚊1:料の体梧比が燃料電池の出力電流をパラメー
タとげ〜る儒刺利用率の焚化に伴なって変化するので関
数発生器46にてその積分ブロックでの精分時間なイ・
鳴止する係数を定め掛算器47(二て減算器45の出力
c 8j ktてイト正する。957図では関数発生器
46の基準変数として出力電流に起因する信号を用いた
が、本発明の変形例として英流量信号又は制御系のん終
出力である燃f1流量指令値を用いても良し)。先きに
述べた積分ブロック43の出力44はリセットワインド
アップ防止ロジック49にてその値を常に監視されその
出力がO以下、1.0+α以上になる場合は切替ブロッ
ク50にて按分器の入力を強制的に零とするいわゆる積
分器のリセットワインドアップ防止機能を司さどる。又
、燃料電池発電プラントの停市時は系内が不活性ガス等
により残存燃料の排出(パージ)が行なわれるため積分
ブロック43の積分値は強制的に零にリセットする。
Immediately r, if the 6g charge replenishment is insufficient, the output 44 of the integral block 43 +i 1. If the value is less than o and the amount of raw material replenishment is excessive, it takes the value above OJU. The input to this integral block 43 is the output of the subtractor 45 mentioned earlier (=the output of the subtractor 45 mentioned above), and the body weight ratio of the remaining effective mosquitoes 1:1 to the total exhaust gas of the fuel chamber 7:L is the output current of the fuel cell. Since the parameter changes as the usage rate of Confucianism increases, the function generator 46 calculates the integral time in the integral block.
Determine the coefficient for the ringing and correct it using the multiplier 47 (and the output c 8j kt of the subtracter 45). In FIG. As a modification, the fuel flow rate signal or the fuel f1 flow rate command value which is the final output of the control system may be used). The value of the output 44 of the integration block 43 mentioned earlier is constantly monitored by the reset windup prevention logic 49, and if the output is less than O or more than 1.0+α, the input of the proportional divider is switched to the switching block 50. Controls the so-called reset windup prevention function of the integrator that is forced to zero. Furthermore, when the fuel cell power generation plant is stopped, the residual fuel in the system is purged using an inert gas or the like, so the integral value of the integral block 43 is forcibly reset to zero.

以上述べた燃料補充量を示す信号44は残存燃料流量信
号42と用算器51にて掛算され改質器バーナ燃料流量
信号の予想値52を得る。この信号は減算器53にて先
きに述べたPID演算器38の出力伯°号39と差分演
mされカスケード演算器54を介して改質器の触媒層温
度を一定に保つための燃料流1片補正′tii−55を
得る。
The signal 44 indicating the fuel replenishment amount described above is multiplied by the remaining fuel flow rate signal 42 in a multiplier 51 to obtain an expected value 52 of the reformer burner fuel flow rate signal. This signal is subtracted by a subtracter 53 from the output frequency 39 of the PID calculator 38 mentioned earlier, and then sent to a cascade calculator 54 to determine the fuel flow to keep the temperature of the catalyst layer of the reformer constant. Obtain a one-piece correction 'tii-55.

第8図において燃料流量補正−叶55は、l1iT述の
修正要求燃料流量指令値35と加算器56にて加算され
総合燃料温片指令値57を作り、次段の減算器58(二
て実流量と差分演算を行なった後P1.D演Jl??!
59にて健料流量制御指令値を得る。この指令値は次段
の上下限制限器ブロック6()にて上限及び下限のリミ
タ) UL 、 LT、を付された後、燃料流量調節弁
9への制御指令となる。下限制限値LLは第3図の直線
eに示すように第2図のL点を燃料電池の出力電流をパ
ラメータとする関数にて表現され第8図の関数発生器6
1にて与える。又、上限制限値ULは第2図のM点を燃
料電池出力電流をパラメータとして表わした第3図の直
線fと出力電流に対する要求燃料流量関数を示1−曲線
Cの両関数の高値側(−設定する。第8図では出力電流
に対する請求燃料流量指令関数発生器32の出力に加算
器62により定数Cを加乏−て上限制限関数をめている
In FIG. 8, the fuel flow rate correction value 55 is added to the corrected requested fuel flow rate command value 35 described in l1iT in an adder 56 to create a comprehensive fuel temperature component command value 57, After performing flow rate and difference calculation, P1.D performance Jl???
At step 59, the health charge flow rate control command value is obtained. This command value is given upper and lower limiters (UL, LT) by the upper and lower limit limiter block 6 ( ) in the next stage, and then becomes a control command to the fuel flow rate control valve 9 . The lower limit value LL is expressed by a function that uses the output current of the fuel cell as a parameter at point L in FIG. 2, as shown by the straight line e in FIG. 3, and is expressed by the function generator 6 in FIG.
1 will be given. In addition, the upper limit value UL is determined by the line f in Figure 3, which represents point M in Figure 2 with the fuel cell output current as a parameter, and the higher value side of both functions of curve C (1), which represents the required fuel flow rate function with respect to the output current. In FIG. 8, an adder 62 adds or subtracts a constant C to the output of the billing fuel flow rate command function generator 32 for the output current to determine the upper limit function.

その関数は第3図に曲線gとして示される。The function is shown in FIG. 3 as curve g.

以上述べた発明をまとめて表記すると239図どなる。If the above-mentioned inventions are collectively described, it will be shown in Figure 239.

不発明の変形例として第9図中に1点鎖紳にて囲X、だ
内側の制御ブロックを全て除き、代りに加算器56への
入力信号としてPID演算器38の出力39を直接入力
する方式も可能である。この場合I’ID演算器38の
出力39は改質器の触lI′J′層温度を規定湿度に保
つための燃料流量補正量を意味する。
As an uninvented modification, all the control blocks inside the box X in FIG. method is also possible. In this case, the output 39 of the I'ID calculator 38 means a fuel flow rate correction amount for maintaining the temperature of the I'J' layer of the reformer at the specified humidity.

〔発明の効果〕〔Effect of the invention〕

す、上水発明について詳細に説明したが、本発明に依れ
ば、燃料利用率を余裕を見込んで設定し、この利用率に
より燃料流量を制御するようにしたから當に燃料供給量
の下限を確保できる惚旧流量制御が可能となる。又燃料
流量の制御fにとして燃料電池の出力電流の変化速度に
応する惜を得、こ才tを流量制御のための補正量として
用いるようにしたから、1゛4j気出力の急変に対する
燃料(Jl、給の応4性を向上さぜることかできる。
The water supply invention has been explained in detail, but according to the present invention, the fuel utilization rate is set with a margin in mind, and the fuel flow rate is controlled based on this utilization rate, so the lower limit of the fuel supply amount can be set. It is possible to control the flow rate to ensure the same flow rate. In addition, since the control f of the fuel flow rate corresponds to the rate of change of the output current of the fuel cell, and the value t is used as a correction amount for flow rate control, the fuel flow rate can be adjusted to a value corresponding to the rate of change of the output current of the fuel cell. (Jl, it is possible to improve the responsiveness of salary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用される燃料電池発電システムの一
1]11を示T概1i裟統槽成図、第2図はi熱料′電
池の反応物質利用率と出力電圧との関係を示す曲線口、
第3図は俊2料電池出力電流と男−求弥料7Iif。 A1゛との関係を示す曲線口、第4図、第5図は友ν本
発明の異なる実施例を示すブロック図、第61x1、第
7図は本発明に使用する制御装置を肋間するためのブロ
ック図、第8区1.第9図は夫々本発明の異なる実施例
を示すブロック図1である。 1 原燃料源、2・改質器、9・・燃料流量調節弁10
・燃料電池、22・・・電流検出器、32・・・関数発
生器、33・・微分ブロック34・加算ブロック 第2図 第3図 ズ;5H1q@ニゼ乙工n唱を5A−((I )第4図 第5図 第6図
Figure 1 shows a schematic diagram of a fuel cell power generation system to which the present invention is applied, and Figure 2 shows the relationship between reactant utilization rate and output voltage of a heating cell. showing curved mouth,
Figure 3 shows the output current of the Shun 2 battery and the battery output current. Figures 4 and 5 are block diagrams showing different embodiments of the present invention, and Figures 61x1 and 7 are diagrams showing the relationship between the control device and A1. Block diagram, District 8 1. FIG. 9 is a block diagram 1 showing different embodiments of the present invention. 1 Raw fuel source, 2. Reformer, 9. Fuel flow rate control valve 10
・Fuel cell, 22...Current detector, 32...Function generator, 33...Differential block 34・Addition block I) Figure 4 Figure 5 Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)燃料電池と、この燃料電池に空気を供給する装置
ど、同じく前記燃料電池に供給され前記空気中の酸素と
電気化学反応を行なう水素を貯蔵するタンクとを備えた
燃料電池発電システムにおいて、前記燃料電池の燃料利
用率の上昇に応じて低下する出力′電圧が所定値以下と
ならない利用率の上限値より所定の余裕イ「1を見込ん
だ燃料利用率を定め、2二の利用率(二相当する燃料流
購を燃料電池の出力′1□に流をパラメータとする関数
として発生する関数発生器と、この関数発生器の出力に
より制御される伝浩流量調節弁とから成る燃料電池の建
材流量制御装置。
(1) In a fuel cell power generation system comprising a fuel cell, a device for supplying air to the fuel cell, and a tank for storing hydrogen that is also supplied to the fuel cell and undergoes an electrochemical reaction with oxygen in the air. , a fuel utilization rate is determined that takes into account a predetermined margin of 1 from the upper limit of the utilization rate at which the output 'voltage, which decreases as the fuel utilization rate of the fuel cell increases, does not fall below a predetermined value, and a fuel utilization rate of 22 is determined. (2) A fuel cell consisting of a function generator that generates the corresponding fuel flow as a function of the flow as a parameter to the output '1□ of the fuel cell, and a transmission flow rate control valve that is controlled by the output of this function generator. Building material flow control device.
(2)燃料電池と、この燃料電池に空気を供給する装置
と、同じく前記燃料電池に供給され前記空気中の酸素と
電気化学反応を行なう水素を原燃料より得る燃料改質器
とを備え、燃料電池の排出残存燃料を前記原弥料より水
素を禮るための燃料改質器の加熱燃料として使用する燃
料電池発電システムに於て、建材電池出力WE流から沈
まる電体化学的当量の燃料電池出力電流鄭と前記4.−
ジオ・1改ゲf器の温度を所定値(1保つのに・ン要な
燃料流F:を4S料年1池出力電簾、゛・?パラメータ
とする閏fj、rと1−1て名各別個に発生する第1、
第2の関数今生2゛:と、これらの閂!2発生器の出力
を加算する加算器と、■)if記燃料電池の燃料利用率
の上Hに応じて低下する出力電圧が所定イlへ以下とな
らない利用”t’の上限値より所定の余裕値を見込んだ
4(、>料利用>1.’<を穴め、このオl」用量に相
当する燃料流冷゛を?g il、 7’、% ?l!t
の出力電流をパラメークとする関数として発生ずる閏W
発生器と、この関数発生器の出力と前記加算器の出力と
の高値側を選択する選択装置と、この選択装置の出力に
より制御される燃料流量調節弁とから成る燃料電池の燃
料流量制御装置。
(2) comprising a fuel cell, a device for supplying air to the fuel cell, and a fuel reformer for obtaining hydrogen from raw fuel that is also supplied to the fuel cell and undergoes an electrochemical reaction with oxygen in the air; In a fuel cell power generation system in which the residual fuel discharged from the fuel cell is used as a heating fuel for a fuel reformer to extract hydrogen from the aqueous fuel, the amount of electrochemical equivalent that sinks from the output WE flow of the building material battery is Fuel cell output current and the above 4. −
The fuel flow F: required to maintain the temperature of the Geo-1 reformer at a predetermined value (1) is the 4S charge year 1 cell output electric curtain, ゛・? Parameters are the leap fj, r and 1-1. the first, each occurring separately;
Second function Imao 2゛: And these bolts! 2) an adder that adds the outputs of the two generators; Taking into account the margin value, calculate the fuel flow cooling equivalent to the amount of 4(,>Fee usage>1.'<, ?g il, 7', %?l!t
The leap W generated as a function of the output current of
A fuel flow control device for a fuel cell, comprising a generator, a selection device for selecting the higher value side of the output of the function generator and the output of the adder, and a fuel flow rate control valve controlled by the output of the selection device. .
(3) 燃料電池出力電流の微分、不完全微分又は差分
演算により出力電流の変化速度に応する号を得、これを
前記関数発生器の出力に加算するようにした特許請求の
範囲第1項又は第2項記載の燃料電池の燃料流量制御装
置。
(3) Claim 1, wherein a number corresponding to the rate of change of the output current is obtained by differentiation, incomplete differentiation, or difference calculation of the fuel cell output current, and this is added to the output of the function generator. Or the fuel flow control device for a fuel cell according to item 2.
JP58163316A 1983-09-07 1983-09-07 Fuel flow controlling device for fuel cell Pending JPS6056374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58163316A JPS6056374A (en) 1983-09-07 1983-09-07 Fuel flow controlling device for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58163316A JPS6056374A (en) 1983-09-07 1983-09-07 Fuel flow controlling device for fuel cell

Publications (1)

Publication Number Publication Date
JPS6056374A true JPS6056374A (en) 1985-04-01

Family

ID=15771514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58163316A Pending JPS6056374A (en) 1983-09-07 1983-09-07 Fuel flow controlling device for fuel cell

Country Status (1)

Country Link
JP (1) JPS6056374A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417269A (en) * 1990-05-10 1992-01-22 Fuji Electric Co Ltd Fuel cell power generation system
JPH08507025A (en) * 1992-12-22 1996-07-30 ランパック コーポレイション Fan-shaped stock material for use with cushion converters
NL1003042C2 (en) * 1996-05-06 1997-11-07 Stichting Energie Method for determining the flow rate of reactants in each cell of an electrochemical cell stack.
JP2004342617A (en) * 2004-06-16 2004-12-02 Equos Research Co Ltd Display device of fuel cell vehicle
JP2009238591A (en) * 2008-03-27 2009-10-15 Nippon Oil Corp Load following operation method of fuel cell system
JP2009238599A (en) * 2008-03-27 2009-10-15 Nippon Oil Corp Method of load following operation of fuel cell system
JP2009238598A (en) * 2008-03-27 2009-10-15 Nippon Oil Corp Method of load following operation of fuel cell system
EP2267827A1 (en) * 2008-03-27 2010-12-29 JX Nippon Oil & Energy Corporation Fuel cell system and method of load following operation of the same
JP2011076933A (en) * 2009-09-30 2011-04-14 Toto Ltd Solid oxide fuel cell system
US8865358B2 (en) 2009-07-02 2014-10-21 Jx Nippon Oil & Energy Corporation Method for load following operation of fuel cell system
CN106773650A (en) * 2016-12-23 2017-05-31 天津力神特种电源科技股份公司 Lithium-ions battery group quick method for heating and keeping constant temperature under extreme low temperature

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015058A (en) * 1973-06-15 1975-02-17
JPS5553876A (en) * 1978-10-13 1980-04-19 United Technologies Corp Method of lowering output power of fuel battery
JPS57212776A (en) * 1981-06-23 1982-12-27 Kansai Electric Power Co Inc:The Fuel control in fuel cell power generating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015058A (en) * 1973-06-15 1975-02-17
JPS5553876A (en) * 1978-10-13 1980-04-19 United Technologies Corp Method of lowering output power of fuel battery
JPS57212776A (en) * 1981-06-23 1982-12-27 Kansai Electric Power Co Inc:The Fuel control in fuel cell power generating system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417269A (en) * 1990-05-10 1992-01-22 Fuji Electric Co Ltd Fuel cell power generation system
JPH08507025A (en) * 1992-12-22 1996-07-30 ランパック コーポレイション Fan-shaped stock material for use with cushion converters
NL1003042C2 (en) * 1996-05-06 1997-11-07 Stichting Energie Method for determining the flow rate of reactants in each cell of an electrochemical cell stack.
WO1997042674A1 (en) * 1996-05-06 1997-11-13 Stichting Energieonderzoek Centrum Nederland Method for determining the flow rate of reactants in each cell of an electrochemical cell stack
US6162557A (en) * 1996-05-06 2000-12-19 Stichting Energieonderzoek Centrum Nederland Method for determining the flow rate of reactants in each cell of an electrochemical cell stack
JP2004342617A (en) * 2004-06-16 2004-12-02 Equos Research Co Ltd Display device of fuel cell vehicle
EP2267827A1 (en) * 2008-03-27 2010-12-29 JX Nippon Oil & Energy Corporation Fuel cell system and method of load following operation of the same
EP2267828A4 (en) * 2008-03-27 2012-04-18 Jx Nippon Oil & Energy Corp Fuel cell system and method of load following operation of the same
JP2009238598A (en) * 2008-03-27 2009-10-15 Nippon Oil Corp Method of load following operation of fuel cell system
EP2267828A1 (en) * 2008-03-27 2010-12-29 JX Nippon Oil & Energy Corporation Fuel cell system and method of load following operation of the same
JP2009238591A (en) * 2008-03-27 2009-10-15 Nippon Oil Corp Load following operation method of fuel cell system
KR101508803B1 (en) * 2008-03-27 2015-04-06 제이엑스 닛코닛세키에너지주식회사 Fuel cell system and method of load following operation of the same
EP2267827A4 (en) * 2008-03-27 2012-04-18 Jx Nippon Oil & Energy Corp Fuel cell system and method of load following operation of the same
JP2009238599A (en) * 2008-03-27 2009-10-15 Nippon Oil Corp Method of load following operation of fuel cell system
US8557463B2 (en) 2008-03-27 2013-10-15 JX Nippon Oil Energy Corporation Fuel cell system and method for load following operation of the same
US8771888B2 (en) 2008-03-27 2014-07-08 Jx Nippon Oil & Energy Corporation Fuel cell system and method of load following operation of the same
US8865358B2 (en) 2009-07-02 2014-10-21 Jx Nippon Oil & Energy Corporation Method for load following operation of fuel cell system
JP2011076933A (en) * 2009-09-30 2011-04-14 Toto Ltd Solid oxide fuel cell system
CN106773650A (en) * 2016-12-23 2017-05-31 天津力神特种电源科技股份公司 Lithium-ions battery group quick method for heating and keeping constant temperature under extreme low temperature
CN106773650B (en) * 2016-12-23 2020-10-30 天津力神特种电源科技股份公司 Method for rapidly heating and keeping constant temperature of lithium ion storage battery pack at extremely low temperature

Similar Documents

Publication Publication Date Title
US20030180584A1 (en) Fuel cell system and method of operating fuel cell system
JP2001210346A (en) Establishing method of fuel flow through fuel cell laminated material and fuel cell system
CN103339773B (en) Control the method and apparatus of the running status in fuel cell device
JP2006191748A (en) Collective power network system
JPS6056374A (en) Fuel flow controlling device for fuel cell
US6504339B2 (en) Technique and apparatus to control the charging of a battery using a fuel cell
JP2003229154A (en) Surplus power control system and control method, and power supply system
JP4325270B2 (en) Operation control method of fuel cell power generator
US8808936B2 (en) Fuel cell system and method for controlling electric current of same
JP2002241106A (en) Method for controlling injection of oxidizing agent
US20230231164A1 (en) Air tank and variable geometry air handling in hydrogen fuel cells
JPS60177565A (en) Operation method of fuel cell power generating system
JP2000323157A (en) Fuel cell power generation system and control method thereof
JPS6356672B2 (en)
JPH0461464B2 (en)
CN111933978B (en) Fuel cell cogeneration system
JPS6139369A (en) Fuel cell power generation plant
JP5378252B2 (en) FUEL CELL SYSTEM AND METHOD FOR SETTING GENERATED POWER TARGET VALUE
JPS6345763A (en) Operation controller of fuel cell power generating plant
JPH079813B2 (en) Fuel cell power plant
CN112038667B (en) Gas circulation humidifying method and device for hydrogen-oxygen fuel cell test
JPS58133775A (en) Cooling method of fuel cell power generating system
JPS62119869A (en) Control system for fuel cell power generation plant
JPS6180767A (en) Fuel supply system for fuel cell electric power generating plant
JP2575529B2 (en) Fuel cell