JPS62119869A - Control system for fuel cell power generation plant - Google Patents

Control system for fuel cell power generation plant

Info

Publication number
JPS62119869A
JPS62119869A JP60258694A JP25869485A JPS62119869A JP S62119869 A JPS62119869 A JP S62119869A JP 60258694 A JP60258694 A JP 60258694A JP 25869485 A JP25869485 A JP 25869485A JP S62119869 A JPS62119869 A JP S62119869A
Authority
JP
Japan
Prior art keywords
flow rate
fuel
gas
fuel cell
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60258694A
Other languages
Japanese (ja)
Inventor
Yoshikiyo Iwasaki
岩崎 芳摩
Takashi Nakayama
隆 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60258694A priority Critical patent/JPS62119869A/en
Publication of JPS62119869A publication Critical patent/JPS62119869A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04447Concentration; Density of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To stabilize the state of electricity generation over the entire range of load and increase the efficiency of the generation, by keeping the flow rate of hydrogen gas and the coefficient of utilization of fuel or the flow rate of oxygen gas within prescribed ranges to provide a function of controlling the flow rate of recycling. CONSTITUTION:When a load command 100 is entered, a setting calculator 42 computes the flow rate of hydrogen gas needed by a fuel cell 11 and determines a set flow rate signal 52. The flow rate of hydrogen gas currently supplied to a fuel electrode 11A is computed by a calculator 40 in terms of a fuel gas flow rate signal 50 from a fuel gas flow meter 30 and a hydrogen gas concentration signal 51 from a hydrogen gas concentration meter 31, and a measured flow rate signal 53 is determined by the calculator. A comparator 43 compares the signals 52, 53 with each other and determines a flow rate deviation signal 54. An appropriate calculating function is previously set in a second calculator 41 which receives the deviation signal 54 from the comparator 43 and sends out a valve opening degree target signal 55 to make the degree of opening of a recycled fuel flow rate control valve 32 appropriate. The signal 55 is converted into a valve opening degree control signal 56 through a controller 44 to regulate the degree of opening of the control valve 32. The flow rate of recycled fuel is thus altered so that the flow rate of the fuel gas to the fuel electrode 11A is changed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は燃料電池発電システムに係り、特に燃料電池の
反応ガス流量の制御を水素を含む燃料排ガスまたは酸素
を含む・空気排ガスの再循環流蓋の調節1二より行う燃
料″電池発電プラントの制御システムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell power generation system, and more particularly, to a fuel cell power generation system that controls the flow rate of reactant gas in a fuel cell using a recirculation flow lid for fuel exhaust gas containing hydrogen or air exhaust gas containing oxygen. This invention relates to a control system for a fuel cell power generation plant that performs the following adjustments.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、燃料の有しているエネルギーを直接′電気的エネ
ルギーに変換するものとして燃料磁電発電システムが知
られている。この燃料電池発電システムは通常、電解質
を挾んで一対の多孔質゛題憾を配置して燃料′磁電を構
成すると共に、一方の゛鴫憾の背面艦−水素などの燃料
を接触させ、゛また他方のIIE惚の背面(:酸素など
の酸化剤を接触させ、このとき起こる電気化学的反応を
利用して、上記゛越憔間から電気エネルギーを取出すよ
う(ニしたものであり、上記燃料と酸化剤が供給されて
いる限DAい変換効率で電気エネルギーを取出すことが
できるものである。
In recent years, fuel magnetoelectric power generation systems have become known as systems that directly convert the energy contained in fuel into electrical energy. This fuel cell power generation system usually configures a fuel (magnetic) by arranging a pair of porous membranes sandwiching an electrolyte, and also brings a fuel such as hydrogen into contact with the rear surface of one of the membranes. On the other hand, the back side of IIE (2) is to bring an oxidizing agent such as oxygen into contact with each other and use the electrochemical reaction that occurs to extract electrical energy from the above-mentioned Electrical energy can be extracted with a low conversion efficiency as long as the oxidizing agent is supplied.

第7図は、この種の代弐的な燃料電池発電システムの基
本的構成を示したものである。図において、天然ガス、
または石炭ガス等の化石燃料よりなる燃料1とスチーム
供給器2からのスチームが、夫々燃料流量調節弁3とス
チーム流:を調節弁4とにより、スチームとカーボンの
混合モル比が3〜5根度となるように制御されて燃料改
質装置iLS内ノ内質改質接触チューブ;導入される。
FIG. 7 shows the basic configuration of this type of alternative fuel cell power generation system. In the figure, natural gas,
Alternatively, the fuel 1 made of fossil fuel such as coal gas and the steam from the steam supply device 2 are controlled by the fuel flow control valve 3 and the steam flow control valve 4, respectively, so that the mixing molar ratio of steam and carbon is 3 to 5. The internal reforming contact tube is introduced into the fuel reformer iLS under controlled conditions.

ここで、スチームと燃料1は500〜600℃程itで
加熱されて改質反応を行ない、次(−変成器7を独て水
素含有率の高い燃料ガスとなる。この水素含有率が高く
なった燃料ガスは、燃料ガス気水分離器8(:送られて
改質で余剰であったスチームを除却した後、補助バーナ
9へは補助バーナ燃料流量l54W!J弁10により、
また燃料電池11の燃料極11Aへは燃料ガス流量tA
節介12により、夫々biL童が制御されて送られる。
Here, the steam and the fuel 1 are heated at about 500 to 600°C to perform a reforming reaction, and then (-) the shift converter 7 becomes a fuel gas with a high hydrogen content. The fuel gas is sent to the fuel gas steam water separator 8 (:) and after removing excess steam from reforming, it is sent to the auxiliary burner 9 via the auxiliary burner fuel flow rate l54W!J valve 10.
Further, the fuel gas flow rate tA to the fuel electrode 11A of the fuel cell 11 is
Each biL child is controlled and sent by the intermediary 12.

燃料電池11の燃料極11Aへ流入した燃料ガス中の水
素は、酸化剤憔11B l電流入している空気中の酸素
と媒媒反応を行ない、その結果燃料の一部が消費され七
電気エネルギーと反応生成水とが得られる。
Hydrogen in the fuel gas that has flowed into the fuel electrode 11A of the fuel cell 11 undergoes a medium reaction with oxygen in the air into which the oxidizer 11B current is flowing, and as a result, a portion of the fuel is consumed and 7 electrical energy is generated. and reaction product water are obtained.

この燃料電池ll内で生成した反応生成水の一部を含ん
で燃料i 11Aを出た燃料排ガスは、前述の燃料改質
装置5のメインバーナ13の燃料として送られ″るが、
この途中においてガス中水分の回収を行なうため燃料排
ガス気水分離器16を通過する。
The fuel exhaust gas that exits the fuel i 11A and contains a portion of the reaction product water produced in the fuel cell 11 is sent as fuel to the main burner 13 of the fuel reformer 5 described above.
During this process, the fuel exhaust gas passes through a steam/water separator 16 in order to recover moisture in the gas.

そして、メインバーナ13へ送られた燃料排ガスは燃料
改IJt装置5内で燃焼し、改質触媒チューブ6を加熱
した後に高温排ガス17として排出される。
Then, the fuel exhaust gas sent to the main burner 13 is burned in the fuel reformer IJt device 5, heats the reforming catalyst tube 6, and then is discharged as high-temperature exhaust gas 17.

さらに、燃料電池11の酸化剤憔11Bから送られる空
気排ガスと合流した後、混合器18へ送られてターボコ
ンプレッサ19の駆動用のエネルギーの一部として使わ
れる。一方、補助バーナ9へ送られた燃料ガスは補助バ
ーナ9内で燃焼し、その燃焼ガスが混合器18を通過し
てターボコンプレツ?19のタービン19Aを駆動する
Furthermore, after combining with the air exhaust gas sent from the oxidizer 11B of the fuel cell 11, it is sent to the mixer 18 and used as part of the energy for driving the turbo compressor 19. On the other hand, the fuel gas sent to the auxiliary burner 9 is combusted within the auxiliary burner 9, and the combustion gas passes through the mixer 18 and enters the turbo compressor. 19 turbines 19A are driven.

一方、上記タービン19A l二連績して小鯛さnるコ
ンプレツナ19Bの吐出空気は、補助バーナ9、メイン
バーナ13へ夫々補助バーナ空気流を調節介助、メイン
バーナ空気流mA殉弁21(−よル空撚比をル喝節して
送゛られると共(;、空気流量−節介22により燃料電
池11の酸化剤極11Bへ送られ、余剰分はターボコン
プレッサ19の駆動用エネルギーの一部として&分器1
8へ送られる。酸化剤4fAIIBI=送られ7’C空
気の一部は、上記燃料値11Aの水素と反ろして消費さ
nた後、酸化剤憔lIB内で生成した水分を含んで排出
される。この排出された空気排ガスは燃料排ガスと同様
(:空気排ガス気水分離器25により空気排ガス中のス
チーム分を一部復水した後に上記燃料改質装置5から高
温排ガス17と合流する。
On the other hand, the air discharged from the compressor 19B that connects the two turbines 19A and 19B to the auxiliary burner 9 and the main burner 13 is adjusted to adjust the auxiliary burner air flow to the main burner air flow mA and the main burner air flow mA to the auxiliary burner valve 21 (- The air is sent to the oxidizer electrode 11B of the fuel cell 11 by the air flow rate regulator 22, and the surplus is used as part of the energy for driving the turbo compressor 19. As & divider 1
Sent to 8. A part of the oxidizer 4fAIIBI=7'C air is consumed in contrast to the hydrogen of the fuel value 11A, and then is discharged containing the moisture generated in the oxidizer IIB. This discharged air exhaust gas is similar to the fuel exhaust gas (i.e., after a part of the steam in the air exhaust gas is condensed by the air exhaust gas steam/water separator 25, it joins with the high-temperature exhaust gas 17 from the fuel reformer 5).

燃料電池11は上述したように、燃料極11A内の水素
と酸化剤極UB内の酸素との触媒反応によって酸化剤極
IIBが正極、燃料極1植が負憾となるように、4気エ
ネルギーを発生し、七〇両電憔11A 。
As described above, the fuel cell 11 generates 4-ki energy so that the oxidizer electrode IIB becomes the positive electrode and the fuel electrode 1 becomes the negative electrode due to the catalytic reaction between the hydrogen in the fuel electrode 11A and the oxygen in the oxidizer electrode UB. A 70-ryo electric shock occurred and 11A was fired.

11B間に接続された電気負荷加C二当該−気エネルギ
ーを供給する。この際、゛4気負荷26によシ吸収され
た電流値(2略比例して、両電極11A 、 IIB入
口(;供給された水素と酸素が反応して反応生成水が得
られ、このスチーム分を含んだ未反応ガス分が両1!慣
11A 、 IIB出口よ多排出されること(:なる。
The electrical load C2 connected between 11B and 11B supplies the energy. At this time, the current value absorbed by the 4-air load 26 (2) is approximately proportional to both the electrodes 11A, IIB inlet (; the supplied hydrogen and oxygen react to obtain reaction product water, and this steam A large amount of unreacted gas containing gas is discharged from the exits of both 1! 11A and IIB.

一方燃料極11A出口からは燃料再循環装置に連なるリ
サイクル配管14が分岐され燃料排ガスの一部は燃料再
循環ファン15を経て燃料憾11Aの入口に次される。
On the other hand, a recycle pipe 14 connected to a fuel recirculation device is branched from the outlet of the fuel electrode 11A, and a portion of the fuel exhaust gas is passed through a fuel recirculation fan 15 to the inlet of the fuel waste 11A.

あるいは酸化剤極11Bの出口からは空気再循環装置に
連なる空気リサイクル配管るが分岐され空気排ガスの一
部は空気再循環ファン夙を経て酸化剤極11Bの入口に
次きれる。
Alternatively, an air recycle pipe connected to an air recirculation device is branched from the outlet of the oxidizer electrode 11B, and a part of the air exhaust gas passes through an air recirculation fan and is then discharged to the inlet of the oxidizer electrode 11B.

これら両極の再循環装置は燃料排ガスの水素濃度および
空気排ガスの酸素濃度を調節し燃料電池の濃度分像作用
により電池発生電圧を調節するとともζ二、電池反応後
の未反応ガスを書利用することシーより電池≦二対して
より多くの反応ガスが供給できることから、よ)高い負
荷で運転でき燃料電池プラントの効率増大の効果が得ら
れる。
These bipolar recirculation devices adjust the hydrogen concentration of the fuel exhaust gas and the oxygen concentration of the air exhaust gas, and adjust the cell generated voltage by the concentration distribution effect of the fuel cell. Also, they utilize the unreacted gas after the cell reaction. Since a larger amount of reactant gas can be supplied to the cells than batteries, the fuel cell plant can be operated at a higher load and has the effect of increasing the efficiency of the fuel cell plant.

このような燃料′4電池′屯システムの退転状態におい
て、燃料電池が安定な出力電圧を保ちながら負荷指令に
応じた負荷゛磁力を出力しつづけるため4二は、燃料極
入口に供給される燃料ガス中に含まれる水素ガス量と、
酸化剤也入口に供給される空気中に含まれる酸素ガス量
が、適正な量に調節されている必要がおる。ここで適正
な量とは、電池反応で消費される反応ガス量にある程度
の余剰の未反応ガス量を加えた値でちゃ、一般的にこの
余剰分は水素ガスの場合反応ガスill二対し2O4程
度以上、酸素ガスの場合反応ガス址に対し40価程度以
上めることが望ましい。ここで、反応消費される水素ガ
ス量を燃料極燃料ガス中に含まれる全水素ガス量で除し
た値を燃料利用率、反応消費される酸系ガス量を酸化剤
極空気中に含まれる全酸素ガス量で除した値を空気利用
率と称する。燃料電池の負荷′電流レベルのいかんにか
かわらず、このような反応ガス流量の適正な値が保たれ
なければ、 すなわち適正な燃料利用率あるいは空気利用率が保たれ
なければ磁電電圧の異常低下をきたして安定な発電運転
の継続が内扇である。
In such a retraction state of the fuel cell system, in order for the fuel cell to maintain a stable output voltage and continue outputting the load/magnetic force according to the load command, the fuel supplied to the fuel pole inlet is The amount of hydrogen gas contained in the gas,
It is necessary that the amount of oxygen gas contained in the air supplied to the oxidizing agent inlet is adjusted to an appropriate amount. The appropriate amount here is the amount of reactant gas consumed in the cell reaction plus a certain amount of surplus unreacted gas.In general, in the case of hydrogen gas, this surplus is 2O4 for 2 reactants gas. In the case of oxygen gas, it is desirable to add a valence of about 40 or more to the reactive gas mass. Here, the fuel utilization rate is calculated by dividing the amount of hydrogen gas consumed by the reaction by the total amount of hydrogen gas contained in the fuel gas at the anode, and the amount of acid gas consumed by the reaction is calculated by dividing the amount of hydrogen gas contained in the oxidizer electrode fuel gas. The value divided by the amount of oxygen gas is called the air utilization rate. Regardless of the load current level of the fuel cell, if the reactant gas flow rate is not maintained at an appropriate value, that is, if the fuel utilization rate or air utilization rate is not maintained, an abnormal drop in the magnetoelectric voltage will occur. The inner fan is now required to continue stable power generation operation.

ところで以上述べたような再伽環裟直を有する燃料電池
発電プラントで問題になるのは、燃料電池入口の反応ガ
ス流量の調節方法である、すなわち燃料幅入口の燃料ガ
ス中に含まれる水素ガス流量は燃料改質装置5や変成器
7の反応特性によ9時間的(2変化しまた排ガスの一部
を再循環する場合燃料電池の負荷電流により排ガス中の
未反応水垢ガスがL量が変わるとともに改質装置5で改
質された燃料ガスとの混合比率によっても袈わる。すな
わちこれらの変動要因により燃料利用率が変動し、場@
−によっては許容範囲を超える可能性が生じる。同様に
酸化剤像入口の空気中ζ電食まれる酸素ガス流量も排ガ
スの一部を再循環する場合4二は負荷′磁流やコンプレ
ッサ19の圧縮空気との混合比率ベニよって変わる。す
なわち空気利用率が変動し、 場合によっては許容範囲を超える可能性が生じる。
By the way, the problem with the fuel cell power generation plant having the above-mentioned recirculation system is how to adjust the flow rate of the reactant gas at the fuel cell inlet. The flow rate varies hourly (2) depending on the reaction characteristics of the fuel reformer 5 and shift converter 7, and when part of the exhaust gas is recirculated, the amount of unreacted limescale gas in the exhaust gas decreases depending on the load current of the fuel cell. As well as changing, it also depends on the mixing ratio with the fuel gas reformed in the reformer 5. In other words, the fuel utilization rate fluctuates due to these fluctuation factors, and the
- There is a possibility that the permissible range will be exceeded depending on the situation. Similarly, the flow rate of oxygen gas that is electrolytically eroded in the air at the oxidizer image inlet varies depending on the load's magnetic current and the mixing ratio with the compressed air of the compressor 19 when part of the exhaust gas is recirculated. In other words, the air utilization rate will fluctuate, and in some cases it may exceed the allowable range.

つまり燃料電池の燃料憾入ロ4二供給される燃料ガス中
の水素ガス流量及び燃料利用率、あるいは酸化剤極入口
に供給される空気中の酸素ガス流量及び空気利用率は、
ガス供給系の特性や燃料電池の負荷゛磁流、または再循
環びt瀘に上ってたえず変化を受けることになる。すな
わち燃料*mが安定な出力電圧を保ちながら負荷指令(
2応じた負荷電流を出力しつづけるためには上述のよう
に燃料極入口の水素ガス量および酸化剤極入口の酸素ガ
ス量を常ζ=適切なレベルに調節するような何らかの手
法が必要となる。
In other words, the hydrogen gas flow rate and fuel utilization rate in the fuel gas supplied to the fuel cell, or the oxygen gas flow rate and air utilization rate in the air supplied to the oxidizer electrode inlet are:
It is subject to constant changes due to the characteristics of the gas supply system, the load of the fuel cell, the magnetic current, or the recirculation and filtering. In other words, the load command (
2. In order to continue outputting the corresponding load current, as mentioned above, some method is required to adjust the amount of hydrogen gas at the inlet of the fuel electrode and the amount of oxygen gas at the inlet of the oxidizer electrode to an appropriate level. .

〔発明の目的〕[Purpose of the invention]

本発明の目的は゛眠気負荷量(;応じて燃料電池入口の
燃料ガス中に含む水素ガス′重量と燃料利用率または空
気中に含む酸素ガス流量と空気利用率を所定の範囲の値
に保つためC二、再循環流量を調節する機能を備えた燃
料電池プラントの制御システムを提供することでちゃ、
これによって電池負荷レベルの全領域にわたり安定した
燃料゛電池の発′慮状態を得るととも(;、以上の利用
率が許容される範囲C二おいて再循環流量を最大量に確
保することで燃料電池プラントの効率増大の効果を実現
することである。
The purpose of the present invention is to maintain the drowsiness load (accordingly, the weight of hydrogen gas contained in the fuel gas at the inlet of the fuel cell and the fuel utilization rate, or the flow rate of oxygen gas contained in the air and the air utilization rate) within a predetermined range. C2. By providing a control system for a fuel cell plant with a function to adjust the recirculation flow rate,
As a result, it is possible to obtain a stable starting state of the fuel cell over the entire range of cell load levels (;, and to ensure the maximum recirculation flow rate in range C2 where the above utilization rate is permissible). The objective is to realize the effect of increasing the efficiency of fuel cell plants.

〔開明の概要〕[Overview of Kaimei]

本発明は燃料電池の入口または出口に設けたガス検知器
のガス@度検出値を用いて再循環流量を調節できるよう
シユシたもので再循環流量のIA節方法として、再循環
ファン吐出側に設けた流量関節弁C二より直接流量を調
節する方法、再循環ファンの吸入側と吐出側の間に設け
たバイパス流量調節弁じより再循環ファンの吐出流量の
一部を吸入側に戻し再循環流量をFA節する方法、−再
循環ファン(ニー転数制御装置を設は再循環ファンの回
転数を調節し吐出流量を変えることによp再循環流量を
調節する方法以上3つの方法の内の1つあるいは組み合
わせC二より流量な調節できるようにしたものである。
The present invention is designed to adjust the recirculation flow rate using the gas detection value of the gas detector installed at the inlet or outlet of the fuel cell. A method in which the flow rate is directly adjusted using a flow joint valve C2 provided, and a portion of the discharge flow rate of the recirculation fan is returned to the suction side for recirculation through a bypass flow control valve provided between the suction side and the discharge side of the recirculation fan. A method of adjusting the flow rate at FA, - A method of adjusting the recirculation flow rate by installing a recirculation fan (knee rotation speed control device) to adjust the rotation speed of the recirculation fan and changing the discharge flow rate. The flow rate can be adjusted by one or combination C2.

〔発明の実施列〕[Implementation sequence of the invention]

以下本発明の実施例を図面に基づいて詳細に説明する。 Embodiments of the present invention will be described in detail below based on the drawings.

なお図面中の同一部分は同一符号を付して示した。Note that the same parts in the drawings are designated by the same reference numerals.

第1芙施レリ (構成) 第1図は本発明の第1例の燃料憶測の再循環系の構成図
を示したもので11は竜屏層を迭んで燃料@IIA及び
酸化剤億IIBの一対の電憾を配置するとともに上紀燃
料憶11A l二燃料ガスを供給しまた上記酸化剤偽1
1B4二空気を供給してこのとき起仁る電気化学的反応
により上記両′4憾間から電気エネルギを取り出す燃料
電池、15は上記燃料電池11の燃料&11Aの出ロi
ll:設けられ燃料値11Aから排出される燃料排ガス
の一部を再び燃料極IIAの入口側に循環する燃料?4
傭塊ファン、諺は上記再循環ファンの出口11111二
設は上記再循環ファンの吐出流量な調節する再循環燃料
流it調節弁、カは燃料極11Aの入口ラインに設け、
当該ラインを流れる燃料ガス流量を検出する燃料ガス流
量計、31は燃料極11Aの入口ラインに設は当該ライ
ンを流れる燃料ガスの水素ガス濃度を検出する水素°ガ
ス濃度計、40は上記燃料ガス流量計(9)により検出
される燃料ガス流量信号(資)と上記水素ガスは直針3
1により検出される水素ガス(If(を号51とから前
記燃料極11Aの入口側に供給さnる水素ガス流量を演
算する演算器、41は上記演算器の演算流量を設定水素
ガス流量と比較しこの比較結果に基づいて前記再循環燃
料流ff1tA節弁32の弁開度指令信号口演算する第
2の演算器、工2は燃料改質装d5で改質され更に変成
器7、および燃料ガス気水分離器を通過した燃料ガスを
fA′1rJする燃料ガス流量調節弁である。
1st Fuse Reli (Configuration) Figure 1 shows the configuration of the recirculation system for fuel speculation in the first example of the present invention. At the same time, a pair of electric oxidizers are arranged, and the oxidizer 11A is supplied with two fuel gases.
1B4 is a fuel cell which supplies air and extracts electrical energy from the space between the two 4's by an electrochemical reaction that occurs at this time; 15 is the fuel of the fuel cell 11 & the output of 11A
ll: Fuel that circulates part of the fuel exhaust gas discharged from the fuel value 11A back to the inlet side of the fuel electrode IIA? 4
The outlet 11111 of the recirculation fan is a recirculation fuel flow regulating valve for adjusting the discharge flow rate of the recirculation fan, and the valve is installed at the inlet line of the fuel electrode 11A.
A fuel gas flow meter 31 detects the flow rate of the fuel gas flowing through the line; 31 is a hydrogen gas concentration meter installed on the inlet line of the fuel electrode 11A to detect the hydrogen gas concentration of the fuel gas flowing through the line; 40 is the fuel gas concentration meter 40; The fuel gas flow rate signal (capital) detected by the flow meter (9) and the hydrogen gas mentioned above are connected to the straight needle 3.
1 is a computing unit that calculates the hydrogen gas (If) detected by No. 51 and supplied to the inlet side of the fuel electrode 11A; 41 is a computing unit that calculates the flow rate of the hydrogen gas detected by the computing unit; A second computing unit, which calculates the valve opening command signal port of the recirculation fuel flow ff1tA control valve 32 based on the comparison result, is reformed by the fuel reforming device d5, and is further modified by the shift converter 7, and This is a fuel gas flow rate control valve that adjusts the fuel gas that has passed through the fuel gas steam/water separator to fA'1rJ.

(作用)゛ !J12図は本発明の5441例の燃料憶測の流!制御
を示したブロック図で燃料峨池兄砥プラントが運転状態
で燃料電池の出力電流や発生電圧などに対応する負荷指
令100C二よる作用を示したものである。負荷指令1
00が入力すると設定演算器42において燃料電池11
が必要とする水素ガス流量を演算し設定流量信号52を
求める。また演算器40では燃料ガス流量計加の燃料ガ
ス流量信号(資)と水素ガス濃度計31の水素ガス濃度
信号51から現在燃料値11A i二供給している水素
ガス流量を演算し測定流量信号53を求める。次(;比
較器部では、設定流量信号52と画定流f1ぎ号53の
比較を行い流量偏差信号54を求める。次層;第2の演
算器41では、その演算関数をあらかじめ適切に収定し
ておくことにより、比較器43で得られた流11偏差悄
号54を入力として、再循環燃料流it調仇弁32の弁
一度が適切な値となるように弁開し1目標信号55を演
算し出力する。ここで例えば流量偏差信号54がプラス
(すなわち電池入口水素ガス流量が過少)の場合は弁開
度1目標信号55は当該弁の弁開度を増やすよう4;変
化し、また流量偏差信号54がマイナス(すなわち°(
電入ロ水素ガス流量が過大)の場合は弁開度1目標信号
55は当該弁の弁開度を減らすように変化するよう決め
ておくことができる。次に弁開度1目標信号55はPI
D調節器や不感帯を持つリミッタ等により構成された調
節器44を経て実際に弁をイ潰械力、油圧力°または空
気圧力で駆動するための弁開度l調節1d号56に変換
されこの信号によI)再循4燃料流jtA顔弁32の弁
開度を調節する。
(action) ゛! J12 diagram is the fuel speculation flow of 5441 examples of the present invention! This is a block diagram showing the control, and shows the effect of the load command 100C2 corresponding to the output current and generated voltage of the fuel cell when the fuel fuel plant is in operation. Load command 1
When 00 is input, the setting calculator 42 selects the fuel cell 11.
The set flow rate signal 52 is obtained by calculating the required hydrogen gas flow rate. In addition, the calculator 40 calculates the current fuel value 11A i2 and the supplied hydrogen gas flow rate from the fuel gas flow rate signal from the fuel gas flow meter and the hydrogen gas concentration signal 51 from the hydrogen gas concentration meter 31, and generates a measured flow rate signal. Find 53. Next layer: The comparator section compares the set flow rate signal 52 and the defined flow f1 signal 53 to obtain the flow rate deviation signal 54. By using the flow 11 deviation signal 54 obtained by the comparator 43 as an input, the valve 32 of the recirculation fuel flow control valve 32 is opened so that it becomes an appropriate value, and the 1 target signal 55 is set. Here, for example, if the flow rate deviation signal 54 is positive (that is, the hydrogen gas flow rate at the battery inlet is too small), the valve opening degree 1 target signal 55 changes to increase the valve opening degree of the valve, Also, the flow rate deviation signal 54 is negative (that is, °(
If the flow rate of electrified hydrogen gas is excessive, the valve opening degree 1 target signal 55 can be determined to change so as to reduce the valve opening degree of the valve. Next, the valve opening degree 1 target signal 55 is PI
Through the regulator 44, which is composed of a D regulator, a limiter with a dead zone, etc., it is converted into a valve opening adjustment number 1d 56 for actually driving the valve with mechanical force, hydraulic pressure, or air pressure. I) Adjust the valve opening degree of the recirculation 4 fuel flow jtA face valve 32 by the signal.

+4循4燃料流jltfA節弁32の弁開度が調節され
ることにより再循環燃料流量が変化し燃料値11A に
供給される燃料ガス流産が変化する。このような弁開度
の調節は、水素ガス測定流産信号53が故定流! 1に
号52(;近づくまで繰返えされる。すなわちこの結果
として貞′#指令100で擬木きれた負荷に応する水素
ガス流量な當に′磁電入口に供#するよう調節できる。
+4 circulation 4 fuel flow jltfA By adjusting the valve opening degree of the control valve 32, the recirculation fuel flow rate changes, and the fuel gas miscarriage supplied to the fuel value 11A changes. Such adjustment of the valve opening is possible because the hydrogen gas measurement miscarriage signal 53 is a constant flow! This is repeated until the hydrogen gas approaches 1 to 52. As a result, the flow rate of hydrogen gas corresponding to the simulated load can be adjusted with the current command 100 so as to be supplied to the magnetic inlet.

C’A釆) 燃料部11A(電流入する燃料ガス中(:tまれる水素
ガス流量は出力′電流や発生゛磁圧などの負#指令によ
り適切に調節されなければ安定した発゛磁ができず燃料
′1池の性能低下の原因にもなる。、第1列はこの対末
として燃料部11Aの人口側に*υ付けた燃料ガス流量
1加と水素ガスaV計31の検出信号より演算した水素
ガス流量と負荷指令に対応して設定されている設定水素
ガス流量との流量偏差を求め再循環燃料流量を調節する
ことによ)、燃料憔lIAζ=設定水素ガス流量にきわ
めて近い水素ガス流量を供給できるよう(−しているの
で適正な燃料利用率を確保することが可能となり、燃料
電池は安定な出力電圧を保ちながら負荷指令値に応じ九
負荷″絨流を出力しつづけることができるという効果を
得ることができる。
C'A button) Fuel part 11A (in the fuel gas into which current is supplied), stable magnetization will not occur unless the flow rate of hydrogen gas injected is appropriately adjusted by negative commands such as output current and generated magnetic pressure. If this happens, it will cause a decrease in the performance of the fuel tank '1.The first column is based on the fuel gas flow rate 1 added with *υ on the population side of the fuel section 11A and the detection signal of the hydrogen gas aV meter 31. By determining the flow rate deviation between the calculated hydrogen gas flow rate and the set hydrogen gas flow rate set corresponding to the load command and adjusting the recirculation fuel flow rate), the fuel flow rate lIAζ = hydrogen extremely close to the set hydrogen gas flow rate. Since the gas flow rate can be supplied (-), it is possible to ensure an appropriate fuel utilization rate, and the fuel cell can continue to output a 9-load flow in accordance with the load command value while maintaining a stable output voltage. You can get the effect of being able to do this.

第2実施列 (構成) 第3図は本発明の第2例の燃料部側の再循環系の構成図
を示したもので、第1図の坐1例と比べて異なる点は3
2の再循環燃料流量調節弁ではなく、新たC;燃料再循
Rファン15の吸入側と吐出側(ニバイパスするライン
を設けその間に燃料バイパス流量14節弁あを設けて4
s成したことにめる。
Second implementation row (configuration) Figure 3 shows a configuration diagram of the recirculation system on the fuel section side of the second example of the present invention.
Instead of the recirculation fuel flow rate control valve of 2, a new C: Fuel recirculation R fan 15 has a suction side and a discharge side (two bypass lines are provided, and a fuel bypass flow rate 14-node valve is installed between them.
Congratulations on what you accomplished.

(作用) 第4図は本発明の第2例の燃料部側の流量制御を示した
ブロック図である。第2図の第1例と異なる点は、第2
の演算器41では比較器43で得られた流量偏差信号5
4を入力として、燃料バイパス流量調節弁33の弁開度
になるように弁開度2目標信号57を演算して出力し、
また弁開度2目標信号57より調節器44を経て、実際
に弁を機械力、油圧力または空気圧力で駆動するための
弁開厩2調節信号58に&換し燃料バイパス流!調節弁
おをl114節するようにしたことである。ここで演算
器41の演X関数をあらかじめ適切に設定しておくこと
により、 例えば流量偏差信号54がプラスの場合は弁開度2目標
信号57は当該弁の弁開度を減らすように変化し燃料再
循環ファン15が吐出する流量のバイパス量を減らし燃
料部11Aに再循環する燃料ガス量を増加きせるよう篭
二作用させることができる。また流量偏差信号54がマ
イナスの場合は弁開度2目標信号57は当該弁の弁開度
を増やすように変化し燃料部11Aに再循環する燃料ガ
ス量を減少させるように作用させることができる。
(Operation) FIG. 4 is a block diagram showing flow rate control on the fuel section side in a second example of the present invention. The difference from the first example in Figure 2 is that the second example
The computing unit 41 calculates the flow rate deviation signal 5 obtained by the comparator 43.
4 as an input, calculates and outputs a valve opening 2 target signal 57 so as to match the valve opening of the fuel bypass flow rate control valve 33,
Further, the valve opening 2 target signal 57 is passed through the regulator 44 and converted into a valve opening 2 adjustment signal 58 for actually driving the valve with mechanical force, hydraulic pressure, or air pressure, resulting in a fuel bypass flow! The control valve was set to 114 degrees. By appropriately setting the operational X function of the calculator 41 in advance, for example, when the flow rate deviation signal 54 is positive, the valve opening degree 2 target signal 57 changes to reduce the valve opening degree of the valve in question. It is possible to reduce the bypass amount of the flow rate discharged by the fuel recirculation fan 15 and increase the amount of fuel gas recirculated to the fuel section 11A. Further, when the flow rate deviation signal 54 is negative, the valve opening degree 2 target signal 57 changes to increase the valve opening degree of the valve concerned, and can act to reduce the amount of fuel gas recirculated to the fuel section 11A. .

(効果) 化1例と同様の効果を得ることができる。(effect) The same effect as in Example 1 can be obtained.

s3実施例 (構成) 第5図は本発明の!P13例の燃料億−鰭の再循環系の
構成図を示したもので第1図の第1例と異なる点は、諺
の再循環流量調節弁ではなく、tR7’cに燃料再循環
ファン15に回転数調節器34を設けて構成したことに
める。
s3 Example (Configuration) Figure 5 shows the present invention! This is a diagram showing the configuration of the fuel recirculation system for example P13.The difference from the first example in Figure 1 is that instead of the recirculation flow rate control valve, a fuel recirculation fan 15 is installed at tR7'c. It is noted that a rotation speed regulator 34 is provided in the structure.

(作用) 第6図は本発明のW2B例の燃料部側の流量制御を示し
たブロック図である。第2図の第11yIlと異なる点
は、第2の演算器41では比較器43で得られfc流量
偏差信号54を入力として、回転数調節器あの回転数に
なるよう(ニー祇叔目4s信号59を演算して出力し、
また回転数目標信号59から調節器44を経て実@(1
777回転数を11mする゛4気信号等の回転数詞′R
i信号60を求め、回転数調節器具にて燃料再循環ファ
ン15の回転数をa14tftJするようにしたことで
必る。ここで演算器41の演算器iiLをあらかじめ適
切に設定しておくことにより、例えば流量偏差信号がプ
ラスの場合は回転数目S侶号59は燃料再循環ファン1
5の回fxaを増やすように変化し、燃料再循環ファン
15の吐出流量な増加させ、これによシ燃料憔11A 
i二再循環する燃料ガス量を増加させるように作用させ
ることができる。また流量偏差信号がマイナスの場合は
回転数目標信号59は燃料再循環ファン15の回転数を
減らすように変化し燃料再循環ファン15の吐出流量を
減少させ燃料憾11Aに再循環する燃料ガス量を減少さ
せるようC二作用させることができる。
(Operation) FIG. 6 is a block diagram showing flow rate control on the fuel section side of the W2B example of the present invention. The difference from No. 11yIl in FIG. Calculate and output 59,
In addition, the actual @(1
777 rotation speed is 11m.
This is achieved by determining the i signal 60 and adjusting the rotation speed of the fuel recirculation fan 15 to a14tftJ using the rotation speed adjustment device. By setting the computing unit iiL of the computing unit 41 appropriately in advance, for example, if the flow rate deviation signal is positive, the rotation number S 59 is set to the fuel recirculation fan 1.
5, the discharge flow rate of the fuel recirculation fan 15 is increased, thereby increasing the fuel recirculation fan 11A.
It can be operated to increase the amount of fuel gas that is recirculated. If the flow rate deviation signal is negative, the rotational speed target signal 59 changes to reduce the rotational speed of the fuel recirculation fan 15, thereby reducing the discharge flow rate of the fuel recirculation fan 15 and the amount of fuel gas recirculated to the fuel tank 11A. C2 can be used to reduce the

(効果) 第1例と同様の効果を得ることができる。(effect) The same effects as in the first example can be obtained.

尚上記第1例から第3例の実施例においては燃料ガス流
量計30あるいは水素端直計31を燃料億11Aの入口
側(;設けたが、そのe直はこれ口限らず燃料他11A
の出口側に設けても演算器40において、負荷電流等に
応じて電池反応で消費される水素ガス量を求め加算する
ことC二より燃料懺11A入口の水素ガス流量を推定演
算するようにすれば同様に適用できる。
In the first to third embodiments described above, the fuel gas flow meter 30 or the hydrogen end direct meter 31 was provided on the inlet side of the fuel 11A (; however, its e direct is not limited to this;
Even if installed on the outlet side of the fuel tank 11A, the calculation unit 40 calculates and adds the amount of hydrogen gas consumed in the cell reaction according to the load current, etc. From C2, the hydrogen gas flow rate at the inlet of the fuel tank 11A can be estimated and calculated. The same applies if

また第1列から第31/IJの実施例はそれぞれ別々の
構成を説明しているが、場合に応じてこれらの種々の方
法を組み会わせることにより燃料憔11AC二供給する
燃料ガス中の水素ガス流量を調節するように#成しても
本発明の王旨を適用することができるものである。
In addition, although the embodiments from the 1st column to the 31st/IJ explain different configurations, these various methods can be combined depending on the case to reduce hydrogen in the fuel gas supplied. The gist of the present invention can also be applied even if the gas flow rate is adjusted.

以上は燃料電池1工の燃料憾11Aの例(:ついて述べ
たもので、空気憔11Bの場合についても同様の機器を
有し同様の作用によ夕空気憔11B l二供給する酸素
ガス原遺と空気利用率をgwJできるという点で本発明
の王旨を適用することができる。
The above is an example of the fuel tank 11A for a fuel cell.In the case of the air tank 11B, the same equipment is used and the oxygen gas source that supplies the air tank 11Bl2 with the same action is described. The gist of the present invention can be applied in that the air utilization rate can be reduced to gwJ.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発#y3によれば混合成分の原燃
料を水素主成分の燃料ガスに改質する燃料改質装置、圧
縮した空気を供#iする空気供#装置。
As explained above, according to the present invention #y3, there is a fuel reformer that reformes the raw fuel as a mixed component into a fuel gas mainly composed of hydrogen, and an air supply device that supplies compressed air #i.

前記燃料ガス中の水素と前記圧縮空気中の酸素の反応に
よシ゛磁流を出力する燃料゛電池、前記燃料電池の反応
熱を冷却する燃料電池冷却装置、および前記燃料電池を
通過した未反応の水素を含む燃料排ガス、あるいは未反
応の酸素を含む空気排ガスの両者あるいは一方の排ガス
の一部を再循環ファンを通して上記燃料電池式ロ側C二
再循環するよう(−構成された再循環装置な有して構成
される燃料電池発電プラントにおいて、前記燃料電池の
入口側ラインまたは出ロg11−yインに設けられて当
該ラインを流れるガス中の水素ガス濃度または酸素ガス
讃度を検出するガス検知器と、前記燃料電池の入口側ラ
インに設けられて当該ラインを流れるガ ・ス流量を検
出する流量計と前記ガス検知器により検出されるガス濃
度信号と前記流量計(;より検出されるガス流産信号と
から前記燃料電池入口に供給される水成ガスまたは酸素
ガスなどの反応ガス流量を演算する演算器と前記演算器
の演奥流量を設定反応ガス流量と比威しこの比@結果に
基づいて前記再循環装置の再循環流量を制御するような
制御器とを設けて成ることを特徴とする燃料電池発電プ
ラントの制御システムを提案することにより、題気負荷
瀘に応じて燃料゛rX池入口の燃料ガス中に含む水素ガ
ス流量と燃料利用率、または空気中に含む献素ガス流量
と空気利用率を所定の範囲の1直に諷つために、再循環
流値を調節する截能を備えた燃料電池プラントを実現す
ることが可能となり、これによって電池負荷レベルの全
領域にわたり安定した燃料電池の発電状態を得るととも
(ミ以上の利用率が許容ぢれる範囲(:お!/)で再循
環流量を最大重に確抹することで燃料電池プラントの効
率増大の効果を実現することができる。
A fuel cell that outputs a magnetic current due to the reaction between hydrogen in the fuel gas and oxygen in the compressed air, a fuel cell cooling device that cools the reaction heat of the fuel cell, and an unreacted magnetic current that has passed through the fuel cell. A recirculation device configured to recirculate a portion of the fuel exhaust gas containing hydrogen and/or the air exhaust gas containing unreacted oxygen through the recirculation fan. In a fuel cell power generation plant configured with the above, a gas is provided at the inlet side line or outlet line of the fuel cell to detect the hydrogen gas concentration or oxygen gas concentration in the gas flowing through the line. a detector, a flow meter installed on the inlet side line of the fuel cell to detect the gas flow rate flowing through the line, and a gas concentration signal detected by the gas detector and a gas concentration signal detected by the flow meter (; A computing unit that computes the flow rate of a reactive gas such as aqueous gas or oxygen gas supplied to the fuel cell inlet based on the gas miscarriage signal, and a ratio of the flow rate of the computing unit to the set reactive gas flow rate @result By proposing a control system for a fuel cell power plant, which is characterized by comprising a controller that controls the recirculation flow rate of the recirculation device based on the The recirculation flow value is adjusted to directly match the hydrogen gas flow rate and fuel utilization rate contained in the fuel gas at the rX pond inlet, or the nitrogen gas flow rate and air utilization rate contained in the air, within a predetermined range. This makes it possible to realize a fuel cell plant with a high efficiency, which allows stable fuel cell power generation over the entire range of cell load levels. By ensuring the maximum recirculation flow rate with !/), it is possible to achieve the effect of increasing the efficiency of the fuel cell plant.

【図面の簡単な説明】[Brief explanation of drawings]

#1図は本発明の第1の列の構成図、弔2図は本発明の
廁S1の?ljの制御ブロック図、第3図は第2の例の
構成図、第4図は本発明の第2の実施例の制御ブロック
図、第5図は本発明の第3の実施例の賛成図、第6図は
本発明の第3の実施例の制御ブロック図、WI7図は従
来の燃料′颯池発亀システムを示す構成図。 1 燃料       7 変成器 2 スチーム供給器  8 燃料ガス気水分離器3 燃
料流量7m弁  9 補助バーナ4  スチーム流鉦調
即弁   10  柳吹七燃訓施−歌脚5 燃′4+改
lX表直   11  燃料電池6 改質接触チューブ
  IIA燃料協11B  空気極        3
2  再循環燃料流量調節弁12  燃料ガス流量調節
弁 お 燃料バイパス流量調節弁13  メインバーナ
   あ 回転数調節器14  燃料リサイクル配管 
 40  演算器15  燃料再循環ファン 41  
第2の演算器16  燃料排ガスA水分離器  42 
 設定yL舅器17  高温排ガス    43  比
較器18  混合器      44  調節器19 
 ターボコンプレッサ  5o  燃料ガス流量信号1
9Aタービン     51  水素ガス1lII度信
号19Bコンプレッサ   52  設定流量信号20
  try<−九ぬ一趣所 53  測定流量信号21
   メインパーす堕女鯖口し噛眞午 8  流量偏差
信号部 空気流量調節弁  55  弁開度l目標信号
23  空気リテイクル配管 56  弁開度l調節信
号24を気再循環ファン 57  fP開度2目標信号
25  窒気排ガス気水分離器58  弁開度2祠節侶
号が 電気負荷     59  回転数−II(!9
園 燃料ガス流量計  ω 回転数i、11節信号31
  水素ガス濃度計  100負荷指令第1図 沖、?2 第2図 第3図 X〜33 第4図 第5図 第6図
Figure #1 is a configuration diagram of the first column of the present invention, and Figure #2 is a diagram of the first column of the present invention. lj control block diagram, FIG. 3 is a configuration diagram of the second example, FIG. 4 is a control block diagram of the second embodiment of the present invention, and FIG. 5 is an agreement diagram of the third embodiment of the present invention. , FIG. 6 is a control block diagram of a third embodiment of the present invention, and FIG. WI7 is a configuration diagram showing a conventional fuel supply system. 1 Fuel 7 Transformer 2 Steam supply device 8 Fuel gas steam water separator 3 Fuel flow rate 7m valve 9 Auxiliary burner 4 Steam flow key adjustment valve 10 Yanagibuki Nanen training - Utakyaku 5 En'4 + revised lX table direct 11 Fuel cell 6 Reforming contact tube IIA Fuel Association 11B Air electrode 3
2 Recirculation fuel flow control valve 12 Fuel gas flow control valve O Fuel bypass flow control valve 13 Main burner A Rotation speed regulator 14 Fuel recycling piping
40 Computing unit 15 Fuel recirculation fan 41
Second computing unit 16 Fuel exhaust gas A water separator 42
Setting YL armpit 17 High temperature exhaust gas 43 Comparator 18 Mixer 44 Adjuster 19
Turbo compressor 5o Fuel gas flow signal 1
9A turbine 51 hydrogen gas 1lII degree signal 19B compressor 52 set flow rate signal 20
try<-Kunuichishusho 53 Measured flow rate signal 21
Main Pursu Fallen Sabaguchi Shigamingo 8 Flow rate deviation signal section Air flow rate adjustment valve 55 Valve opening l target signal 23 Air retake piping 56 Valve opening l adjustment signal 24 to air recirculation fan 57 fP opening 2 target signal 25 Nitrogen exhaust gas steam/water separator 58 Valve opening degree 2 is electrical load 59 Number of revolutions - II (!9
Garden Fuel gas flow meter ω Rotation speed i, 11 node signal 31
Hydrogen gas concentration meter 100 load command figure 1 offshore, ? 2 Figure 2 Figure 3 X-33 Figure 4 Figure 5 Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)混合成分の原燃料を水素生成分の燃料ガスに改質
する燃料改質装置、圧縮した空気を供給する空気供給装
置、前記燃料ガス中の水素と前記圧縮空気中の酸素の反
応により電流を出力する燃料電池、前記燃料電池の反応
熱を冷却する燃料電池冷却装置、および前記燃料電池を
通過した未反応の水素を含む燃料排ガス、あるいは未反
応の酸素を含む空気排ガスの両者あるいは一方の排ガス
の一部を再循環ファンを通して上記燃料電池入口側に再
循環するように構成された再循環装置を有して構成され
る燃料電池発電プラントにおいて、前記燃料電池の入口
側ラインまたは出口側ラインに設けられて当該ラインを
流れるガス中の水素ガス濃度または酸素ガス濃度を検出
するガス検知器と前記燃料電池の入口側ラインに設けら
れて当該ラインを流れるガス流量を検出する流量計と前
記ガス検知器により検出されるガス濃度信号と前記流量
計により検出されるガス流量信号とから前記燃料電池入
口に供給される水素ガスまたは酸素ガスなどの反応ガス
流量を演算する演算器と前記演算器の演算流量を設定反
応ガス流量と比較し、この比較結果に基づいて前記再循
環装置の再循環流量を制御するような制御器とを設けて
成ることを特徴とする燃料電池発電プラントの制御シス
テム。
(1) A fuel reformer that reforms raw fuel as a mixed component into fuel gas for hydrogen generation, an air supply device that supplies compressed air, and a reaction between hydrogen in the fuel gas and oxygen in the compressed air. A fuel cell that outputs current, a fuel cell cooling device that cools the reaction heat of the fuel cell, and either or both of a fuel exhaust gas containing unreacted hydrogen and an air exhaust gas containing unreacted oxygen that has passed through the fuel cell. A fuel cell power plant comprising a recirculation device configured to recirculate part of the exhaust gas of the fuel cell to the inlet side of the fuel cell through a recirculation fan, the inlet line or the outlet side of the fuel cell. a gas detector provided in the line to detect the hydrogen gas concentration or oxygen gas concentration in the gas flowing through the line; a flowmeter provided in the inlet side line of the fuel cell to detect the gas flow rate flowing through the line; a computing unit that computes a flow rate of a reactant gas such as hydrogen gas or oxygen gas supplied to the fuel cell inlet from a gas concentration signal detected by the gas detector and a gas flow rate signal detected by the flow meter; and the computing unit A control system for a fuel cell power generation plant, comprising: a controller that compares the calculated flow rate of the flow rate with a set reaction gas flow rate and controls the recirculation flow rate of the recirculation device based on the comparison result. .
(2)特許請求の範囲第1項記載の燃料電池発電プラン
トの制御システムにおいて、制御器としては再循環ファ
ンに接続するライン中に流量調節弁を設けるとともに前
記演算器の演算流量と設定反応ガス流量との比較結果か
ら前記流量調節弁の弁開度指令信号を演算して当該調節
弁に対し出力する第2の演算器とを設けて、これにより
再循環装置の再循環流量を調節することを特徴とする燃
料電池発電プラントの制御システム。
(2) In the control system for a fuel cell power generation plant according to claim 1, the controller includes a flow rate control valve in a line connected to the recirculation fan, and the calculated flow rate of the calculator and the set reaction gas. and a second calculator that calculates a valve opening command signal for the flow rate control valve based on the comparison result with the flow rate and outputs the signal to the control valve, thereby adjusting the recirculation flow rate of the recirculation device. A control system for a fuel cell power generation plant featuring:
(3)特許請求の範囲第1項記載の燃料電池発電プラン
トの制御システムにおいて制御器としては、再循環ファ
ンの吸入側と吐出側の間にバイパス流量調節弁を設ける
とともに前記演算器の演算流量と設定反応ガス流量との
比較結果から前記バイパス流量調節弁の弁開度指令信号
を演算して当該調節弁に対して出力する第2の演算器を
設けてこれにより再循環装置の再循環流量を調節するこ
とを特徴とする燃料電池発電プラントの制御システム。
(3) In the control system for a fuel cell power plant according to claim 1, the controller includes a bypass flow rate control valve between the suction side and the discharge side of the recirculation fan, and a calculated flow rate of the arithmetic unit. A second calculator is provided which calculates a valve opening command signal for the bypass flow rate control valve based on the comparison result between the current flow rate and the set reaction gas flow rate, and outputs the signal to the control valve. A control system for a fuel cell power generation plant, characterized in that the control system adjusts.
(4)特許請求の範囲第1項記載の燃料電池発電プラン
トの制御システムにおいて制御器としては前記再循環フ
ァンの回転数制御装置を設けるとともに前記演算器の演
算流量と設定反応ガス流量との比較結果から再循環ファ
ンの回転数指令信号を演算して前記回転数制御装置に対
し出力する第2の演算器を設けてこれにより再循環装置
の再循環流量を調節することを特徴とする燃料電池発電
プラントの制御システム。
(4) In the control system for a fuel cell power generation plant according to claim 1, the controller includes a rotation speed control device for the recirculation fan and compares the calculated flow rate of the calculator with the set reaction gas flow rate. A fuel cell characterized in that a second computing unit is provided which calculates a rotation speed command signal of the recirculation fan from the result and outputs it to the rotation speed control device, thereby adjusting the recirculation flow rate of the recirculation device. Power plant control system.
JP60258694A 1985-11-20 1985-11-20 Control system for fuel cell power generation plant Pending JPS62119869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60258694A JPS62119869A (en) 1985-11-20 1985-11-20 Control system for fuel cell power generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60258694A JPS62119869A (en) 1985-11-20 1985-11-20 Control system for fuel cell power generation plant

Publications (1)

Publication Number Publication Date
JPS62119869A true JPS62119869A (en) 1987-06-01

Family

ID=17323798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60258694A Pending JPS62119869A (en) 1985-11-20 1985-11-20 Control system for fuel cell power generation plant

Country Status (1)

Country Link
JP (1) JPS62119869A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222571A (en) * 1986-03-25 1987-09-30 Tokyo Electric Power Co Inc:The Fuel cell power generating plant
EP1091437A1 (en) * 1998-06-25 2001-04-11 Toyota Jidosha Kabushiki Kaisha Fuel cell system and cell control method
WO2007093868A2 (en) * 2006-02-14 2007-08-23 Toyota Jidosha Kabushiki Kaisha Hydrogen supply for a fuel cell system
FR2914786A1 (en) * 2007-04-06 2008-10-10 Peugeot Citroen Automobiles Sa Gas flow rate evaluating method for fuel cell of e.g. motor vehicle, involves calculating total molar flow rate of gas with respect to formula comprising parameters of hydrogen concentrations, current, number of cells and Faraday's constant

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222571A (en) * 1986-03-25 1987-09-30 Tokyo Electric Power Co Inc:The Fuel cell power generating plant
EP1091437A1 (en) * 1998-06-25 2001-04-11 Toyota Jidosha Kabushiki Kaisha Fuel cell system and cell control method
EP1091437A4 (en) * 1998-06-25 2002-05-29 Toyota Motor Co Ltd Fuel cell system and cell control method
US6656618B2 (en) 1998-06-25 2003-12-02 Toyota Jidosha Kabushiki Kaisha Fuel cells system and method of controlling cells
US7476457B2 (en) 1998-06-25 2009-01-13 Toyota Jidosha Kabushiki Kaisha Fuel cells system and method of controlling cells
WO2007093868A2 (en) * 2006-02-14 2007-08-23 Toyota Jidosha Kabushiki Kaisha Hydrogen supply for a fuel cell system
WO2007093868A3 (en) * 2006-02-14 2007-10-25 Toyota Motor Co Ltd Hydrogen supply for a fuel cell system
FR2914786A1 (en) * 2007-04-06 2008-10-10 Peugeot Citroen Automobiles Sa Gas flow rate evaluating method for fuel cell of e.g. motor vehicle, involves calculating total molar flow rate of gas with respect to formula comprising parameters of hydrogen concentrations, current, number of cells and Faraday's constant

Similar Documents

Publication Publication Date Title
WO1991006987A1 (en) Fuel cell power plant fuel control
JP3664178B2 (en) Multistage fuel cell
JPS60177565A (en) Operation method of fuel cell power generating system
JPS62119869A (en) Control system for fuel cell power generation plant
JPS6056374A (en) Fuel flow controlling device for fuel cell
JPH0249359A (en) Fuel cell power generating system
JPH0461464B2 (en)
CN114362259B (en) Thermal power plant joint frequency modulation system containing solid oxide fuel cell and energy storage and control method thereof
JPS61277171A (en) Fuel cell power generation system
JPS6229868B2 (en)
JP3513933B2 (en) Fuel cell power generator
JPS62222571A (en) Fuel cell power generating plant
JP2998301B2 (en) Combustor temperature control method and apparatus for fuel cell power generator
JPH0824054B2 (en) Fuel cell power plant and control method thereof
JPS6220256A (en) Fuel cell power generating plant
JP2004185961A (en) Operation method of fuel cell power generation device
JP2810367B2 (en) Operating method of fuel cell power plant and fuel cell power plant
JP3467759B2 (en) Control method of outlet temperature of reformer
JPH09320626A (en) Phosphoric acid fuel cell generating system
JPS63254675A (en) Fuel cell power generating system
JPH06231786A (en) Fuel cell controller
JPS6177273A (en) Control system for fuel cell power generation plant
JPS61227371A (en) Fuel cell power generation system
JPH088108B2 (en) Fuel cell power plant
JPS62115671A (en) Fuel cell power generating system