JPH044572A - Vapor generator of fuel cell power generation system - Google Patents
Vapor generator of fuel cell power generation systemInfo
- Publication number
- JPH044572A JPH044572A JP2104007A JP10400790A JPH044572A JP H044572 A JPH044572 A JP H044572A JP 2104007 A JP2104007 A JP 2104007A JP 10400790 A JP10400790 A JP 10400790A JP H044572 A JPH044572 A JP H044572A
- Authority
- JP
- Japan
- Prior art keywords
- water
- fuel cell
- steam
- steam generator
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 70
- 238000010248 power generation Methods 0.000 title claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 120
- 239000000498 cooling water Substances 0.000 claims abstract description 29
- 238000010438 heat treatment Methods 0.000 claims abstract description 7
- 238000000638 solvent extraction Methods 0.000 claims abstract description 3
- 238000011084 recovery Methods 0.000 claims description 14
- 238000012423 maintenance Methods 0.000 abstract description 2
- 230000008878 coupling Effects 0.000 abstract 2
- 238000010168 coupling process Methods 0.000 abstract 2
- 238000005859 coupling reaction Methods 0.000 abstract 2
- 238000001816 cooling Methods 0.000 description 12
- 230000007423 decrease Effects 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- 239000008213 purified water Substances 0.000 description 3
- 230000036647 reaction Effects 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 239000008214 highly purified water Substances 0.000 description 2
- 239000008235 industrial water Substances 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、水冷式燃料電池の冷却水源を兼ねて燃料電池
の冷却水循環ラインに接続した燃料電池発電システムの
水蒸気発生器に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a water vapor generator for a fuel cell power generation system, which also serves as a cooling water source for a water-cooled fuel cell and is connected to a cooling water circulation line of the fuel cell.
[従来の技術]
液冷式燃料電池の冷却方式として加圧水冷使方式が従来
より知られている。この冷却方式は、燃料電池のセルス
タック内に組み込んだ冷却板に加圧した純水を外部より
循環通水して燃料電池の電池反応に伴う発生熱を系外に
除熱し、燃料電池を所定の動作温度に維持するようCご
したものである。[Prior Art] A pressurized water cooling system has been known as a cooling system for liquid-cooled fuel cells. This cooling method circulates pressurized pure water from the outside through a cooling plate built into the fuel cell cell stack, removes the heat generated by the fuel cell reaction to the outside of the system, and cools the fuel cell at a specified level. It is rated C to maintain an operating temperature of .
また、この場合に通常の燃料電池発電ソステ1゜では、
燃料電池の発生熱を回収して有効活用するために、燃料
電池の冷却水循環ラインに水蒸気発生器を接続しておき
、水を熱媒としで水蒸気発生器に住した水蒸気を燃料ガ
ス改質器用水蒸気、そのほかコジェネレーションシステ
ムなどに使用し、て発電システム全体での熱効率の向上
を図るようにしている。In addition, in this case, in a normal fuel cell power generation system 1°,
In order to recover and effectively utilize the heat generated by the fuel cell, a steam generator is connected to the cooling water circulation line of the fuel cell, and water is used as a heat medium, and the steam stored in the steam generator is used for the fuel gas reformer. It is used in steam and other cogeneration systems to improve the thermal efficiency of the entire power generation system.
第2図は前記の従来構成の水蒸気発生器を中心に表した
燃料電池発電システムのフロー図であり、図において1
は天然ガスを原料として水素リッチな燃料ガスに改質す
る水蒸気改質器、2は燃料電池、3は燃料電池2のセル
スタックに組み込まれた冷却板、4が水蒸気発生器であ
り、該水蒸気発生器4と燃料電池2の冷却板3との間に
は循環ポンプ5.熱回収用の熱交換器6を含む冷却水循
環ライン7が配管されている。FIG. 2 is a flow diagram of a fuel cell power generation system centered on the conventional steam generator described above.
2 is a steam reformer that reformes natural gas into hydrogen-rich fuel gas as a raw material; 2 is a fuel cell; 3 is a cooling plate incorporated in the cell stack of fuel cell 2; 4 is a steam generator; A circulation pump 5 is installed between the generator 4 and the cooling plate 3 of the fuel cell 2. A cooling water circulation line 7 including a heat exchanger 6 for heat recovery is piped.
ここで、水蒸気発生器4は胴肉の上部に水蒸気発生空間
を有する単一の圧力タンクであり、その内部には純水8
を加熱する電熱ヒータ9を備えるとともに、タンクの頂
部には水蒸気8aを外部に抽出して発電システム内に供
給する水蒸気供給弁10゜並びにタンク内圧の圧力調整
弁11を装備している。Here, the steam generator 4 is a single pressure tank having a steam generation space in the upper part of the body, and inside the tank there is pure water 8.
The top of the tank is equipped with a steam supply valve 10° for extracting steam 8a to the outside and supplying it into the power generation system, and a pressure regulating valve 11 for controlling the internal pressure of the tank.
なお、12はタンクの液面計、13は純水8の純度を監
視する電導度肝である。また、水蒸気発生器4には純水
処理装置14.純水タンク15.給水ポンプ16を含む
純水補給系が接続されている。Note that 12 is a liquid level gauge in the tank, and 13 is a conductivity gauge for monitoring the purity of pure water 8. The steam generator 4 also includes a pure water treatment device 14. Pure water tank 15. A pure water supply system including a water supply pump 16 is connected.
かかる構成で、燃料電池2の起動時には水蒸気発生器4
に所定水位の純水8を供給した状態で、ヒータ加熱によ
り水蒸気発生器4内の純水8を加熱昇温させながら純水
を循環ポンプ5により燃料電池2の冷却板3に循環通水
し、燃料電池2の温度を所定動作温度(りん酸型燃料電
池では160〜170°C)まで予熱する。With this configuration, when the fuel cell 2 is started, the steam generator 4
With pure water 8 at a predetermined water level being supplied to the pump, the pure water is circulated through the cooling plate 3 of the fuel cell 2 by the circulation pump 5 while heating the pure water 8 in the steam generator 4 to raise its temperature by heating the heater. , the temperature of the fuel cell 2 is preheated to a predetermined operating temperature (160 to 170° C. for phosphoric acid fuel cells).
また、燃料電池2の発電開始後は、冷却水の循環通水に
より、燃料電池2の発生熱を冷却水循環ライン7に介装
した熱交換器6に放熱して除熱しつつ、一方では水蒸気
発生器4に発生した水蒸気8aを水蒸気供給弁10を通
じて改質器1の入口側へ供給し、天然ガスに混合させる
。また、電池反応により燃料電池に生じた生成水は空気
極の排気空気を復水器17に導いて復水させた上で、そ
の回収水を純水補給系に戻し、純水処理装置14で浄化
処理した上で純水タンク】5に貯えておき、水蒸気発生
器4の水位が低下した際に給水ポンプ16を通じて水蒸
気発生器に補給する。なお、燃料電池2の運転中は水蒸
気発生器4の圧力、つまり水蒸気の飽和温度を圧力調整
弁11の弁開度により制御し、純水8の温度、水蒸気圧
を所定の制御範囲に調整するようにしている。After the fuel cell 2 starts generating electricity, the heat generated by the fuel cell 2 is radiated and removed by circulating cooling water to the heat exchanger 6 installed in the cooling water circulation line 7, while at the same time generating water vapor. Steam 8a generated in the vessel 4 is supplied to the inlet side of the reformer 1 through the steam supply valve 10 and mixed with natural gas. In addition, the generated water generated in the fuel cell due to the cell reaction is produced by guiding the exhaust air of the air electrode to the condenser 17 to condense it, and then returning the recovered water to the pure water supply system and passing it through the pure water treatment device 14. Purified water is stored in a pure water tank 5, and is supplied to the steam generator through a water supply pump 16 when the water level in the steam generator 4 drops. Note that during operation of the fuel cell 2, the pressure of the steam generator 4, that is, the saturation temperature of steam, is controlled by the valve opening of the pressure regulating valve 11, and the temperature and steam pressure of the pure water 8 are adjusted within a predetermined control range. That's what I do.
ところで、前記した従来の水蒸気発生器では次記のよう
な問題点がある。By the way, the conventional steam generator described above has the following problems.
(1)水蒸気発生器4に収容されている純水8の温度は
水蒸気発生器の内圧、つまり水蒸気8aの飽和温度に依
存して変わり、かつ純水の水温は燃料電池2の運転温度
を決定して電池出力に影響を及ぼす。したがって、例え
ば第2図における冷却水循環ライン7に介装した熱回収
用熱交換器6への冷水の給水開始時、ないしその流量の
変動、あるいは水蒸気発生器4から取り出す水蒸気の抽
出量の増減などの外乱が加わると、その外乱の影響が直
接冷却水の水温変化として現れ、燃料電池の運転温度、
ひいては電池出力を変動させる。また、水蒸気供給弁1
0.圧力調整弁11の弁開度が大となりで水蒸気発生器
4の内圧が急激に降下すると、冷却水循環ライン7にお
ける循環ポンプ5の吸込圧が一時的に許容値以下となっ
て吐出流量が大きく低下し、この結果として燃料電池2
の温度が異常に上昇し、電極の触媒層を劣化させるよう
な事態を引き起こす。(1) The temperature of the pure water 8 stored in the steam generator 4 changes depending on the internal pressure of the steam generator, that is, the saturation temperature of the steam 8a, and the temperature of the pure water determines the operating temperature of the fuel cell 2. and affect battery output. Therefore, for example, the start of supply of cold water to the heat recovery heat exchanger 6 installed in the cooling water circulation line 7 in FIG. When a disturbance is applied, the influence of that disturbance appears directly as a change in the cooling water temperature, and the operating temperature of the fuel cell changes.
This in turn causes the battery output to fluctuate. In addition, steam supply valve 1
0. When the opening degree of the pressure regulating valve 11 becomes large and the internal pressure of the steam generator 4 drops rapidly, the suction pressure of the circulation pump 5 in the cooling water circulation line 7 temporarily becomes below the allowable value, and the discharge flow rate decreases significantly. As a result, fuel cell 2
The temperature of the electrode rises abnormally, causing a situation that deteriorates the catalyst layer of the electrode.
(2)燃料電池の冷却板に循環通水する冷却水は純度の
高い純水(電気抵抗が大)であることが必要条件であり
、純水に不純物が混入するなどして電気抵抗が低下する
と、燃料電池の内部で単セル間を短絡するリーク電流、
あるいは対アース間のリーク電流が増加して電池出力が
低下する。(2) The cooling water that circulates through the cooling plate of the fuel cell must be highly purified water (high electrical resistance), and the electrical resistance will decrease if impurities are mixed into the pure water. Then, leakage current that short-circuits between single cells inside the fuel cell,
Alternatively, the leakage current between the battery and ground increases and the battery output decreases.
かかる点、従来の水蒸気発生器の構成では、熱回収用の
熱交換器6を含めた冷却水循環ライン7゜純水処理装置
14を含む純水の補給系などが全て単一の圧力容器に接
続配管されているので、例えば熱交換器6の内部で冷却
水側の配管が水中の溶存酸素などにより腐食してピンホ
ールが生したり、純水処理装置14の浄化機能が低下し
たりすると、このことが原因で燃料電池に循環通水する
冷却水の純水としての純度が低下し、燃料電池に前記の
ようなリーク電流増大の障害を引き起こす。In view of this, in the configuration of a conventional steam generator, the cooling water circulation line 7 including the heat exchanger 6 for heat recovery, the pure water supply system including the pure water treatment device 14, etc. are all connected to a single pressure vessel. For example, if the piping on the cooling water side inside the heat exchanger 6 corrodes due to dissolved oxygen in the water, creating pinholes, or the purification function of the water purification device 14 deteriorates, This causes the purity of the cooling water that is circulated through the fuel cell to decrease, causing the problem of increased leakage current in the fuel cell.
(3)従来の配管系では、熱回収用の熱交換器6が水蒸
気発生器4とは別に独立して冷却水循環ライン7に設置
されているため、その配管系を含めた設備費、並びに熱
交換器の液漏れ(ピンホール発注)などに対する予防保
全に大きな経費がかかる。(3) In the conventional piping system, the heat exchanger 6 for heat recovery is installed in the cooling water circulation line 7 separately from the steam generator 4, so the equipment cost including the piping system and the heat Preventive maintenance to prevent liquid leakage (ordering pinholes) from exchangers costs a lot of money.
本発明は、上記の点にかんがみなされたものであり、水
蒸気発生器の構造を改良することにより、前記した従来
の問題点を解消できるようにした燃料電池発電システム
の水蒸気発生器を提供することを目的とする。The present invention has been made in consideration of the above points, and provides a steam generator for a fuel cell power generation system that can solve the conventional problems described above by improving the structure of the steam generator. With the goal.
上記課題を解決するために、本発明は、燃料電池との間
に閉ループの冷却水循環ラインを配管した加熱手段内蔵
の加圧水溜部と、該加圧水溜部と伝熱的に結合した水蒸
気発生部とに二分割して水蒸気発生器を構成するものと
する。In order to solve the above problems, the present invention provides a pressurized water reservoir with a built-in heating means, which is connected to a fuel cell with a closed-loop cooling water circulation line, and a water vapor generator that is thermally connected to the pressurized water reservoir. The water vapor generator shall be constructed by dividing into two parts.
また、前記構成の水蒸気発生器において、加圧水溜部と
水蒸気発生部との間の伝熱性を高めるために、両者の間
をヒートパイプを介して伝熱的に結合することができる
7
さらに、熱回収系の構造簡略化を図るために、前記構成
の水蒸気発生器において、水蒸気発生部に熱回収用熱交
換器を組み込んで構成することができる。Furthermore, in the steam generator having the above configuration, in order to improve heat transfer between the pressurized water reservoir and the steam generation section, the pressurized water reservoir and the steam generation section may be thermally coupled via a heat pipe. In order to simplify the structure of the recovery system, the steam generator having the above structure can be constructed by incorporating a heat exchanger for heat recovery into the steam generation section.
上記の構成で、加圧水溜部は燃料電池の冷却水源として
機能し、ここに貯えられた純水が閉ループの冷却水循環
ラインを通して燃料;池との間で循環通水される。これ
に対して水蒸気発生部はそのタンク胴の内部に水蒸気発
生空間を形成した水蒸気分離器として機能し、ここで生
成した水蒸気は水蒸気改質器、そのほかのコジェネレー
ションシステムなどに供給され、その水蒸気の消費に伴
う補給水は直接水蒸気発生部に導入される。しかも両者
の間は互いに隔絶されていて水が混入し合うことがない
。したがって、燃料電池の冷却水として使用する加圧水
溜部側の純水は、水蒸気発生部側での急激な圧力、温度
変化などの外乱、並びに水蒸気発生部側に生じた水質汚
染の影響を直接受けることがなく、高純度を維持して安
定よく燃料電池との間で循環通水できる。With the above configuration, the pressurized water reservoir functions as a cooling water source for the fuel cell, and the purified water stored here is circulated between the fuel pond and the fuel pond through a closed loop cooling water circulation line. On the other hand, the steam generator functions as a steam separator with a steam generation space inside its tank body, and the steam generated here is supplied to the steam reformer and other cogeneration systems. Make-up water accompanying consumption is directly introduced into the steam generator. Furthermore, the two are isolated from each other so that water cannot mix with each other. Therefore, the pure water in the pressurized water reservoir used as cooling water for the fuel cell is directly affected by disturbances such as sudden pressure and temperature changes in the steam generator, as well as water pollution generated in the steam generator. Water can be circulated between the fuel cell and the fuel cell in a stable manner while maintaining high purity.
また、加圧水溜部と水蒸気発生部との間に配したヒート
パイプは加圧水溜部側の熱を水蒸気発生部側へ伝熱する
よう機能する。これにより、燃料電池より奪った回収熱
を効率よく加圧水溜部から水蒸気発生部側へ伝熱して除
熱できる。Further, the heat pipe arranged between the pressurized water reservoir and the steam generating section functions to transfer heat from the pressurized water reservoir to the steam generating section. Thereby, the recovered heat taken from the fuel cell can be efficiently transferred from the pressurized water reservoir to the steam generating section and removed.
さらに、水蒸気発生部に組み込んだ熱回収用の熱交換器
に対しては、外部から工業水などを通水して熱回収し、
コジェネレーションシステムなどで有効利用される。こ
のように熱回収用の熱交換器を水蒸気発生部に直接組み
込むことで、熱交換器に対する接続配管を省略できるほ
か、接続配管からの放熱による熱損失分もなくなる。Furthermore, industrial water or other water is passed through the heat exchanger built into the steam generation section from the outside to recover heat.
Effectively used in cogeneration systems, etc. By directly incorporating the heat exchanger for heat recovery into the steam generating section in this way, not only can connecting piping to the heat exchanger be omitted, but also heat loss due to heat radiation from the connecting piping can be eliminated.
第1図は本発明実施例による水蒸気発生器の構成ととも
に表した燃料電池発電システムのフロー図であり、第2
図に対応する同一部材には同じ符号が付しである。FIG. 1 is a flow diagram of a fuel cell power generation system together with the configuration of a steam generator according to an embodiment of the present invention.
Identical parts corresponding to the figures are given the same reference numerals.
すなわち、本発明により水蒸気発生器4は加圧水溜部1
8と水蒸気発生部19となる各独立した二つのタンクを
上下に積み重ねて構成されており、かつ両タンクの間に
またがって複数本の伝熱用ヒートパイプ20が設置しで
ある。That is, according to the present invention, the steam generator 4 is connected to the pressurized water reservoir section 1.
It is constructed by stacking two independent tanks 8 and 19 vertically, and a plurality of heat pipes 20 for heat transfer are installed across both tanks.
また、前記の加圧水溜部18と燃料電池2の冷却板3と
の間には循環ポンプ5を含む閉ループの冷却水循環ライ
ン7が配管されている。これに対して水蒸気発生部19
には、水蒸気供給弁10.圧力調整分11のほかに、そ
のタンク胴肉には熱回収用の熱交換器17が直接組み込
まれている。さらに、純水補給系の給水ポンプ16より
引出した給水配管は、加圧水溜部18に内蔵した純水予
熱用の熱交換器21゜給水弁22.23を介してそれぞ
れ加圧水溜部J8.および水蒸気発生部19に分岐接続
されている。Further, a closed loop cooling water circulation line 7 including a circulation pump 5 is installed between the pressurized water reservoir 18 and the cooling plate 3 of the fuel cell 2 . On the other hand, the steam generating section 19
The steam supply valve 10. In addition to the pressure regulator 11, a heat exchanger 17 for heat recovery is built directly into the tank body. Furthermore, the water supply piping drawn out from the water supply pump 16 of the pure water supply system is connected to the pressurized water reservoir J8. and a branch connection to the steam generating section 19.
次に上記構成の動作について説明する。まず、水蒸気発
生器4に対し、外部からの補給水を純水処理装置14で
高純度な純水に浄化した上で、給水ポンプ16により給
水弁22.23を通して加圧水溜部18、水蒸気発生部
19に給水する。この場合に、加圧水溜部18に対して
は殆ど残余空間を残すことなく満水状態とし、水蒸気発
生部19では胴内上部に水蒸気発生空間を残して熱交換
器17が水没する所定水位に設定する。Next, the operation of the above configuration will be explained. First, make-up water supplied from the outside to the steam generator 4 is purified into high-purity pure water by the deionized water treatment device 14, and then passed through the water supply valves 22 and 23 by the water supply pump 16 to the pressurized water reservoir 18 and the steam generation section. Supply water to 19. In this case, the pressurized water reservoir 18 is filled with water leaving almost no residual space, and the steam generating section 19 is set to a predetermined water level at which the heat exchanger 17 is submerged, leaving a steam generating space in the upper part of the body. .
次に、燃料電池2の起動時には、ヒータ9により加圧水
溜部18に収容されている純水8を加熱昇温しつつ、循
環ポンプ5により閉ループの冷却水循環ライン7を通じ
て純水8を燃料電池2の冷却板3に循環通水し、燃料電
池2の温度を所定の動作温度まで予熱する。同時に加圧
水溜部18で加熱された純水8の保有熱はタンク胴の隔
壁1並びにヒートパイプ20を介して水蒸気発生部19
に伝熱され、ここに貯えられている純水8を加熱昇温さ
せる。そして、水蒸気発生部19の貯留水が圧力調整弁
11で設定した圧力に対応した飽和温度まで上昇すると
水蒸気8aが発生し、水蒸気供給弁10を通じて水蒸気
が改質器、その他に供給される。Next, when starting up the fuel cell 2, the pure water 8 stored in the pressurized water reservoir 18 is heated and heated by the heater 9, and the pure water 8 is supplied to the fuel cell 2 through the closed loop cooling water circulation line 7 by the circulation pump 5. Water is circulated through the cooling plate 3 of the fuel cell 2 to preheat the fuel cell 2 to a predetermined operating temperature. At the same time, the retained heat of the pure water 8 heated in the pressurized water storage section 18 is transferred to the steam generating section 19 via the partition wall 1 of the tank body and the heat pipe 20.
The heat is transferred to the pure water 8 stored here, and the temperature of the purified water 8 is increased. When the water stored in the steam generating section 19 rises to a saturation temperature corresponding to the pressure set by the pressure regulating valve 11, steam 8a is generated, and the steam is supplied to the reformer and others through the steam supply valve 10.
一方、燃料電池2の運転時には、熱回収用の熱交換器1
7に対し外部から工業水を通水し、図示されてないコジ
ェネレーションシステムなどで熱回収する。これにより
、燃料電池2の発生熱は冷却水循環ライン7の通流水を
熱媒として燃料電池から除熱され、さらに加圧水溜部1
8よりヒートパイプ20などを介して水蒸気発生器19
側に伝熱された後に熱交換器17で熱回収され、コジェ
ネレーションシステムなどで有効利用される。また、燃
料電池2の電池反応に伴う生成水は水回収装置24で復
水1回収され、純水に浄化処理した上で純水タンク15
に貯えられており、水蒸気8aの抽出(水蒸気供給弁1
0.圧力調整弁11からの抽出分)により水蒸気発生部
19の液面が基準水位より低下すれば、給水ポンプ16
により加圧水溜部18に設けた熱交換器21.給水弁2
3を通して水蒸気発生部19に純水が補給される。なお
、加圧水溜部18の貯留水は燃料電池2の冷却板3との
間で閉ループの冷却水循環ライン7を循環通水するだけ
で水量が減少せず、運転開始当初、ないし定期的なメン
テナンス時に行うタンク内洗浄などの場合を除き、燃料
電池の運転中には純水の補給は必要ない。On the other hand, when the fuel cell 2 is operating, the heat exchanger 1 for heat recovery
Industrial water is passed from the outside to 7, and heat is recovered by a cogeneration system (not shown) or the like. As a result, the heat generated by the fuel cell 2 is removed from the fuel cell using the flowing water of the cooling water circulation line 7 as a heat medium, and further
8 to a steam generator 19 via a heat pipe 20, etc.
After the heat is transferred to the side, the heat is recovered by the heat exchanger 17 and effectively used in a cogeneration system or the like. In addition, the water produced by the cell reaction of the fuel cell 2 is collected as condensate in a water recovery device 24, purified to pure water, and then stored in a pure water tank 15.
Extraction of steam 8a (steam supply valve 1)
0. If the liquid level in the steam generating section 19 falls below the standard water level due to the amount extracted from the pressure regulating valve 11, the water supply pump 16
The heat exchanger 21 provided in the pressurized water reservoir section 18. Water supply valve 2
3, pure water is supplied to the steam generating section 19. The water stored in the pressurized water reservoir 18 is simply circulated through the closed-loop cooling water circulation line 7 between the cooling plate 3 of the fuel cell 2 and the amount of water does not decrease. There is no need to replenish pure water during fuel cell operation, except when cleaning the inside of the tank.
なお、図示実施例の水蒸気発生器は加圧水溜部と水蒸気
発生部とをそれぞれ独立したタンクで構成したものを示
したが、1基のタンクを中間隔壁でと部の水蒸気発生部
と下部の加圧水溜部とに仕切って構成することも可能で
ある。In addition, although the steam generator of the illustrated embodiment is shown as having a pressurized water reservoir and a steam generating section each constructed of independent tanks, one tank is separated by a middle partition between the steam generating section at the end and the pressurized water at the bottom. It is also possible to configure it by partitioning it into a reservoir section.
〔発明の効果]
本発明による燃料電池発電システムの水蒸気発生器は、
以上説明したように構成されているので、次記の効果を
奏する。[Effect of the invention] The steam generator of the fuel cell power generation system according to the present invention has the following features:
Since it is configured as described above, the following effects are achieved.
(1)水蒸気発生器を、燃料電池との間に閉ループの冷
却水循環ラインを配管した加熱手段内蔵の加圧水溜部と
1.該加圧水溜部と伝熱的に結合した水蒸気発生器とに
二分割して構成したことにより、燃料電池との間で循環
通水する加圧水溜部の貯留水と、水蒸気発生部の貯留水
とは互いに隔離して混合し合うことがなく、水蒸気発生
部側の系で圧力、温度、および純水の純度低下などの外
乱が加わっても、この外乱の影響が加圧水溜部側の系に
直接及ぶことがない。したがって、純度の高い純水を燃
料電池との間で循環通水しつつ、燃料電池を所定の動作
温度に安定維持して高出力運転することができる。(1) The steam generator is connected to a pressurized water reservoir with a built-in heating means and a closed-loop cooling water circulation line piped between it and the fuel cell. By configuring the pressurized water reservoir and the steam generator that are thermally coupled to each other, the water stored in the pressurized water reservoir and the water vapor generated in the steam generator can be circulated between the fuel cell and the water vapor. are isolated from each other and do not mix, so even if disturbances such as pressure, temperature, and deterioration in the purity of pure water are applied to the system on the steam generation side, the effects of these disturbances will not be directly affected by the system on the pressurized water reservoir side. It never reaches. Therefore, while highly purified water is circulated between the fuel cell and the fuel cell, the fuel cell can be stably maintained at a predetermined operating temperature and operated at high output.
(2)加圧水溜部と水蒸気発生部との間の伝熱手段とし
て伝熱効率の高いヒートパイプを採用したことにより、
加圧水溜部と水蒸気発生部の間で高い伝熱性を確保でき
る。(2) By adopting a heat pipe with high heat transfer efficiency as a heat transfer means between the pressurized water reservoir and the steam generation section,
High heat conductivity can be ensured between the pressurized water reservoir and the steam generator.
(3)また、熱回収用熱の交換器を水蒸気発生部に組み
込んで構成したことにより、配管系が簡素化できる他、
配管系での熱損失分も少なくして熱回収効率の向上化が
図れる。(3) In addition, by incorporating a heat exchanger for heat recovery into the steam generation section, the piping system can be simplified, and
Heat loss in the piping system can also be reduced and heat recovery efficiency can be improved.
第1図は本発明実施例の水蒸気発生器とともに表した燃
料電池発電システムのフロー図、第2図は従来構成の水
蒸気発生器を含む燃料電池発電システムのフロー図であ
る。図において、′L:改譬器、2:燃料電池、3:冷
却板、4:水蒸気発生器、5:冷却水循環ポンプ、7;
冷却水循環ライン、8:純水、8a:水蒸気、9:純水
加熱ヒータ、17:熱回収用熱交換器、18:加圧水溜
部、19.水蒸気発生部、20:ヒートパイプ。
ぐ了\
、″iFIG. 1 is a flow diagram of a fuel cell power generation system shown together with a steam generator according to an embodiment of the present invention, and FIG. 2 is a flow diagram of a fuel cell power generation system including a steam generator of a conventional configuration. In the figure, 'L: tampering device, 2: fuel cell, 3: cooling plate, 4: steam generator, 5: cooling water circulation pump, 7;
Cooling water circulation line, 8: Pure water, 8a: Steam, 9: Pure water heater, 17: Heat recovery heat exchanger, 18: Pressurized water reservoir, 19. Steam generation part, 20: heat pipe. Guryo\ ,″i
Claims (1)
気発生器であって、燃料電池との間に閉ループの冷却水
循環ラインを配管した加熱手段内蔵の加圧水溜部と、該
加圧水溜部との間を仕切って伝熱的に結合した水蒸気発
生部とに二分割して構成したことを特徴とする燃料電池
発電システムの水蒸気発生器。 2)請求項1に記載の水蒸気発生器において、加圧水溜
部と水蒸気発生部との間をヒートパイプを介して伝熱的
に結合したことを特徴とする燃料電池発電システムの水
蒸気発生器。 3)請求項1に記載の水蒸気発生器において、水蒸気発
生部に熱回収用の熱交換器を組み込んだことを特徴とす
る燃料電池発電システムの水蒸気発生器。[Scope of Claims] 1) A steam generator connected to a cooling water circulation line of a water-cooled fuel cell, comprising a pressurized water reservoir with a built-in heating means and a closed loop cooling water circulation line connected to the fuel cell; 1. A steam generator for a fuel cell power generation system, characterized in that the steam generator is divided into two parts, and a steam generating part is thermally connected to a pressurized water reservoir by partitioning the water vapor generating part. 2) The steam generator for a fuel cell power generation system according to claim 1, wherein the pressurized water reservoir and the steam generation section are thermally coupled via a heat pipe. 3) The steam generator for a fuel cell power generation system according to claim 1, wherein a heat exchanger for heat recovery is incorporated in the steam generation section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2104007A JP2811905B2 (en) | 1990-04-19 | 1990-04-19 | Steam generator for fuel cell power generation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2104007A JP2811905B2 (en) | 1990-04-19 | 1990-04-19 | Steam generator for fuel cell power generation system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH044572A true JPH044572A (en) | 1992-01-09 |
JP2811905B2 JP2811905B2 (en) | 1998-10-15 |
Family
ID=14369211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2104007A Expired - Lifetime JP2811905B2 (en) | 1990-04-19 | 1990-04-19 | Steam generator for fuel cell power generation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2811905B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03114434A (en) * | 1990-09-10 | 1991-05-15 | Topcon Corp | Ophthalmic photographing apparatus |
US6638655B2 (en) | 2000-04-13 | 2003-10-28 | Matsushita Electric Industrial Co., Ltd. | Fuel cell system |
JP2006040553A (en) * | 2004-07-22 | 2006-02-09 | Matsushita Electric Ind Co Ltd | Fuel cell system |
JP2008004516A (en) * | 2006-06-20 | 2008-01-10 | Samsung Sdi Co Ltd | Fuel cell electric power generation system |
JP2008273822A (en) * | 2007-04-06 | 2008-11-13 | Panasonic Corp | Hydrogen forming apparatus, fuel cell system, and method of controlling hydrogen forming apparatus |
JP2011103309A (en) * | 2011-01-27 | 2011-05-26 | Panasonic Corp | Fuel cell system |
JP2011108659A (en) * | 2011-01-27 | 2011-06-02 | Panasonic Corp | Fuel cell system |
JP2011119270A (en) * | 2011-01-27 | 2011-06-16 | Panasonic Corp | Fuel cell system |
JP2017526163A (en) * | 2014-06-04 | 2017-09-07 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Heat exchanger for freeze prevention of reagent supply system |
-
1990
- 1990-04-19 JP JP2104007A patent/JP2811905B2/en not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03114434A (en) * | 1990-09-10 | 1991-05-15 | Topcon Corp | Ophthalmic photographing apparatus |
JPH042249B2 (en) * | 1990-09-10 | 1992-01-17 | ||
US6638655B2 (en) | 2000-04-13 | 2003-10-28 | Matsushita Electric Industrial Co., Ltd. | Fuel cell system |
JP2006040553A (en) * | 2004-07-22 | 2006-02-09 | Matsushita Electric Ind Co Ltd | Fuel cell system |
JP2008004516A (en) * | 2006-06-20 | 2008-01-10 | Samsung Sdi Co Ltd | Fuel cell electric power generation system |
JP2008273822A (en) * | 2007-04-06 | 2008-11-13 | Panasonic Corp | Hydrogen forming apparatus, fuel cell system, and method of controlling hydrogen forming apparatus |
JP2013075821A (en) * | 2007-04-06 | 2013-04-25 | Panasonic Corp | Method for operating hydrogen generating apparatus, and method for operating fuel cell system |
JP2011103309A (en) * | 2011-01-27 | 2011-05-26 | Panasonic Corp | Fuel cell system |
JP2011108659A (en) * | 2011-01-27 | 2011-06-02 | Panasonic Corp | Fuel cell system |
JP2011119270A (en) * | 2011-01-27 | 2011-06-16 | Panasonic Corp | Fuel cell system |
JP2017526163A (en) * | 2014-06-04 | 2017-09-07 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Heat exchanger for freeze prevention of reagent supply system |
Also Published As
Publication number | Publication date |
---|---|
JP2811905B2 (en) | 1998-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5295257B2 (en) | Heat recovery device for fuel cell system | |
JP2811905B2 (en) | Steam generator for fuel cell power generation system | |
JP2013012381A (en) | Fuel cell cogeneration system | |
JP2008300058A (en) | Fuel cell device | |
JP2008300059A (en) | Fuel cell device | |
JP4095782B2 (en) | Gas generator | |
JP3240840B2 (en) | Method of adjusting cooling water temperature of fuel cell power generator | |
JP2924671B2 (en) | Water treatment system for fuel cell power plant | |
JP2003282108A (en) | Fuel cell system | |
JP2007052981A (en) | Fuel cell power generation system and its operation method | |
JPH0249359A (en) | Fuel cell power generating system | |
JP2010113967A (en) | Fuel cell system | |
JPH09147885A (en) | Thermal power generation system for fuel cell | |
JP2004039430A (en) | Fuel cell generator and its operation method | |
KR101366488B1 (en) | Water tank with excellent dispersion efficiency for water pressure and fuel cell system using the same | |
CN113497247A (en) | High-response-level hydrogen fuel cell system | |
JP2003342768A (en) | Hydrogen supplying apparatus using solid polymer type water electrolytic cell | |
JPH0817455A (en) | Exhaust heat recovery device for fuel cell generating unit | |
JPH1064566A (en) | Fuel cell power generator and waste heat recovery method therefor | |
JP2002100382A (en) | Fuel cell power generator | |
JP7568770B2 (en) | Hydrogen production system and method for operating the hydrogen production system | |
KR101200689B1 (en) | Heat recovery apparatus of fuel cell | |
JP2002151095A (en) | Fuel cell generating system and driving method thereof | |
JP2018037300A (en) | Fuel battery device | |
JPH0541231A (en) | Fuel cell |