JP2007052981A - Fuel cell power generation system and its operation method - Google Patents

Fuel cell power generation system and its operation method Download PDF

Info

Publication number
JP2007052981A
JP2007052981A JP2005236556A JP2005236556A JP2007052981A JP 2007052981 A JP2007052981 A JP 2007052981A JP 2005236556 A JP2005236556 A JP 2005236556A JP 2005236556 A JP2005236556 A JP 2005236556A JP 2007052981 A JP2007052981 A JP 2007052981A
Authority
JP
Japan
Prior art keywords
hot water
fuel cell
cooling water
power generation
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005236556A
Other languages
Japanese (ja)
Inventor
Hidekazu Fujimura
秀和 藤村
Tsutomu Okuzawa
奥澤  務
Takaaki Mizukami
貴彰 水上
Yoshihide Kondo
由英 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP2005236556A priority Critical patent/JP2007052981A/en
Publication of JP2007052981A publication Critical patent/JP2007052981A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance power generation efficiency in DSS operation of a household fuel cell and to enhance an availability factor of a system. <P>SOLUTION: The fuel cell power generation system is equipped with a fuel cell 9, a cell cooling system having a cooling water tank 10 for cooling the fuel cell 9 during operation, and an exhaust heat recovery system recovering heat from exhaust heats 14, 15a from the cell exhaust gas and the cooling water 12 in the cell cooling water system to make hot water, and the hot water made by heat recovery is stored in a hot water storage tank 18. The hot water in the hot water storage tank 28 is guided to a cooling water tank 10 through hot water supply piping (a hot water supply line for starting) 40 by utilizing the difference of elevation. Since the temperature of cooling water 13 in the fuel cell during stop of operation is decreased, before start of the operation, hot water in the hot water storage tank 8 is supplied to the cooling water tank 10 to heat the cooling water, and thereby, the starting time of the fuel cell 9 is shortened. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池を主電源とする小形電源システムに関わり、特に固体高分子型の家庭用燃料電池発電給湯システムに関する。   The present invention relates to a small power supply system using a fuel cell as a main power source, and more particularly to a solid polymer type household fuel cell power hot water supply system.

家庭用定置形燃料電池は燃料電池による発電にて電気を供給するだけでなく、電池や改質器からの排熱を回収して温水を作る、いわゆるコージェネシステムである。一般に家庭用燃料電池システムは60〜80度の温度で運転され、発電中に電池内で発生する熱は冷却水で冷やされる。冷却水に回収された熱は、さらに排熱回収系統に備わる熱交換器により湯水として回収し、貯湯槽に送られる。また、熱交換後の冷却水は冷やされて再び電池の冷却に用いられる。従って、貯湯槽が湯水で満杯になると排熱回収系統の循環ポンプが停止するため、電池の冷却が行えなくなるのでシステム運転を停止する。   A stationary fuel cell for home use is a so-called cogeneration system that not only supplies electricity by power generation by a fuel cell, but also collects exhaust heat from the cell and reformer to produce hot water. Generally, a household fuel cell system is operated at a temperature of 60 to 80 degrees, and heat generated in the battery during power generation is cooled by cooling water. The heat recovered in the cooling water is further recovered as hot water by a heat exchanger provided in the exhaust heat recovery system and sent to a hot water storage tank. Moreover, the cooling water after heat exchange is cooled and used again for cooling the battery. Accordingly, when the hot water tank is filled with hot water, the circulation pump of the exhaust heat recovery system stops, so that the battery cannot be cooled, and the system operation is stopped.

運転方法の一つであるDSS(Daily Start up & Shut down:深夜起動停止)運転は、昼夜連続運転とは異なり、一日のシステム運転中に起動と停止が行われる。特に起動時には電池や改質器を所定の動作温度まで昇温する必要があり、電池では常温から60〜80度の作動温度近傍まで昇温しなければならない。   DSS (Daily Start up & Shut down) operation, which is one of the operation methods, is started and stopped during the day system operation, unlike day and night continuous operation. In particular, at the time of start-up, it is necessary to raise the temperature of the battery and the reformer to a predetermined operating temperature. In the case of the battery, the temperature must be raised from room temperature to around the operating temperature of 60-80 degrees.

起動時の昇温手段に関する従来例としては、貯湯槽内温水循環系の温水を電池冷却水冷却器に流通させて電池冷却水循環系の電池冷却水と熱交換し、これにより昇温した冷却水を電池セルの冷却用流路に流すことで電池本体を昇温させる技術がある(特許文献1)。   As a conventional example regarding the temperature raising means at the time of startup, the hot water in the hot water circulation system in the hot water tank is circulated through the battery cooling water cooler to exchange heat with the battery cooling water in the battery cooling water circulation system. There is a technique in which the temperature of the battery body is raised by causing the battery body to flow through the cooling channel of the battery cell (Patent Document 1).

特開2004−039430号公報JP 2004-039430 A

ところで、家庭用の熱需要である湯水の消費量は季節によって電力需要とのバランスがよくない場合があり、電力需要は発電量よりも多いにもかかわらず、熱需要が熱回収量より下回る。特に夏場は湯水の使用量が電力使用に比べて極端に低減し、貯湯槽が短い運転時間で満杯となり、電力負荷があるにもかかわらず、発電運転を停止せざるを得ない状態が生じる。この結果、システム稼働率が低下し、電池運転の稼働率が上がらず、電力寄与率が低下してしまう。   By the way, the consumption of hot water, which is a heat demand for home use, may not be well balanced with the power demand depending on the season, and the power demand is lower than the heat recovery amount even though the power demand is larger than the power generation amount. Especially in summer, the amount of hot water used is drastically reduced compared to the use of electric power, the hot water storage tank becomes full in a short operation time, and there is a situation where the power generation operation must be stopped despite the power load. As a result, the system operating rate decreases, the operating rate of battery operation does not increase, and the power contribution rate decreases.

また、貯湯槽の湯水のレベルが高くなってくると、発電量を抑制して湯水の発生量を抑え、運転時間を延ばす方法がとられる。このような負荷の低い運転は発電効率も低くなり、1日の発電効率が不利になることは否めない。一方、電池の排熱を回収しないで冷却後の冷却水系統に熱を系外に放熱させることにより運転を継続する方法も考えられるが、有効な熱利用という家庭用コージェネの意図に反することになる。   Moreover, when the level of hot water in the hot water tank becomes higher, a method is taken in which the amount of power generation is suppressed to reduce the amount of hot water generated and the operation time is extended. Such a low-load operation has low power generation efficiency, and it cannot be denied that the daily power generation efficiency is disadvantageous. On the other hand, a method of continuing operation by dissipating heat outside the system without recovering the exhaust heat of the battery is also conceivable, but contrary to the intention of home cogeneration for effective heat utilization. Become.

特に、DSS運転を行う場合、従来の方法ではシステムを起動するたびに外部から供給される電力が1kWh以上にもなり、システムの補機損失増加となり、終日の平均発電効率低下の大きな要因となっていた。   In particular, when performing DSS operation, with the conventional method, every time the system is started, the power supplied from outside becomes 1 kWh or more, resulting in an increase in system auxiliary equipment loss, which is a major factor in reducing the average power generation efficiency throughout the day. It was.

DSS運転は発電効率や省エネ性や二酸化炭素削減といった環境性能にも悪影響を及ぼすため、ユーザの需要の他に有効な湯水の活用が望まれていた。   Since DSS operation also adversely affects environmental performance such as power generation efficiency, energy saving, and carbon dioxide reduction, effective utilization of hot water is desired in addition to user demand.

システム運用面から発電効率の高いDSS運転を実現するためには、システム起動時において省エネ性の高い電池昇温方法及び燃料電池発電システムが必要と考えられる。なお、前記従来技術の昇温手段では、貯湯槽の温水と冷却水循環系の冷却水とを冷却水冷却器で間接的に熱交換させるように構成されているため、冷却水タンク内の水温の上昇を短時間で行なうことはできなかった。   In order to realize DSS operation with high power generation efficiency in terms of system operation, it is considered that a battery temperature raising method and a fuel cell power generation system with high energy saving performance are necessary at the time of system startup. The temperature raising means of the prior art is configured to indirectly exchange heat between the hot water in the hot water storage tank and the cooling water in the cooling water circulation system with a cooling water cooler, so that the water temperature in the cooling water tank is reduced. The climb could not be done in a short time.

本発明の目的は、上記従来技術の問題点に鑑み、貯湯槽が満杯になる時間をできるだけ延長してシステムの稼働率の向上を図ると共に、起動時に冷却水タンク内の水温を上昇させる時間を短縮できる燃料電池発電システムを提供することにある。   The object of the present invention is to increase the operating rate of the system by extending the time when the hot water tank is full as much as possible in view of the problems of the prior art, and to increase the water temperature in the cooling water tank at startup. It is to provide a fuel cell power generation system that can be shortened.

また、発電効率の高い高負荷運転の時間をできるだけ多くして1日の平均発電効率の向上を図る、あるいは起動時にできるだけ外部からのエネルギーを使わないで電池昇温することで起動時の省エネを図る燃料電池発電システムを提供することにある。   Also, increase the average power generation efficiency of the day by increasing the time of high load operation with high power generation efficiency as much as possible, or by increasing the battery temperature without using external energy as much as possible at the time of start-up. An object is to provide a fuel cell power generation system.

上記課題を解決する本発明は、冷起動時に余った貯湯槽の湯水を燃料電池の電池冷却水系統に供給してシステム起動時の電池昇温に用いる。   In the present invention for solving the above-described problems, hot water remaining in the hot water tank at the time of cold start is supplied to the battery cooling water system of the fuel cell and used for battery temperature rise at the time of system start.

すなわち、本発明の燃料電池発電システムは、燃料電池と、それを冷却する電池冷却水系統と、電池排出ガスからの排熱および電池冷却水系統の冷却水から熱回収して温水を作る排熱回収系統と、熱回収して作られた温水を貯蔵する貯湯槽を有するシステムであって、前記貯湯槽の温水を前記電池冷却水系統に導く温水供給配管を設け、前記燃料電池の起動時間を短縮可能に構成したことを特徴とする。   That is, the fuel cell power generation system of the present invention includes a fuel cell, a battery cooling water system that cools the fuel cell, exhaust heat from the battery exhaust gas, and exhaust heat that recovers heat from the cooling water of the battery cooling water system to produce hot water. A system having a recovery system and a hot water storage tank for storing hot water produced by heat recovery, comprising a hot water supply pipe for guiding the hot water of the hot water storage tank to the battery cooling water system, and increasing the startup time of the fuel cell It is characterized in that it can be shortened.

前記温水供給配管は、前記貯湯槽から前記電池冷却水系統の冷却水タンクに高低差を利用して温水を供給するように構成したことを特徴とする。   The hot water supply pipe is configured to supply hot water from the hot water storage tank to a cooling water tank of the battery cooling water system using a height difference.

また、前記燃料電池の昇温に使われた後の温水を燃料処理装置(改質器)から排出される排熱を利用して加温する熱交換器を設け、再び燃料電池の昇温を行えるように構成したことを特徴とする。   In addition, a heat exchanger is provided for heating the hot water used for raising the temperature of the fuel cell using exhaust heat discharged from the fuel processing device (reformer), and the temperature of the fuel cell is raised again. It is configured so that it can be performed.

あるいは、前記電池冷却水系統の冷却水を始動前に排出させる排水ラインと、前記貯湯槽の温水を前記電池冷却水系統の冷却水タンクに供給する温水供給配管と、前記冷却水タンクから前記燃料電池に温水を供給する循環ポンプと、燃料電池出口からの温水と燃料処理装置(改質器)からの排ガスとを熱交換する熱交換器を設け、加温後の温水を冷却水タンクに再び戻すことを特徴とする。   Alternatively, a drain line for discharging the cooling water of the battery cooling water system before starting, a hot water supply pipe for supplying hot water of the hot water storage tank to a cooling water tank of the battery cooling water system, and the fuel from the cooling water tank A circulation pump that supplies hot water to the battery, and a heat exchanger that exchanges heat between the hot water from the fuel cell outlet and the exhaust gas from the fuel processing device (reformer) are provided, and the heated hot water is returned to the cooling water tank again. It is characterized by returning.

本発明の運転方法は、燃料電池を冷却する電池冷却水系統と、電池排出ガスからの排熱および電池冷却水系統の冷却水から熱回収して温水を作る排熱回収系統を有し、熱回収して作られた温水を貯蔵する貯湯槽殻の消費を可能にし、該貯湯槽の湯量が満杯以下の場合に運転を続ける燃料電池発電システムの運転方法において、前記燃料電池の運転開始前に、前記貯湯槽の温水を前記電池冷却水系統に導いて冷却水を加温し、前記燃料電池の起動時間を短縮したことを特徴とする。   The operation method of the present invention has a battery cooling water system for cooling a fuel cell, an exhaust heat recovery system for producing hot water by recovering heat from the exhaust heat from the battery exhaust gas and from the cooling water in the battery cooling water system, In a method of operating a fuel cell power generation system that enables consumption of a hot water tank shell for storing hot water that has been collected and that continues operation when the amount of hot water in the hot water tank is less than or equal to full, before starting the operation of the fuel cell The hot water in the hot water storage tank is guided to the battery cooling water system to heat the cooling water, thereby shortening the startup time of the fuel cell.

あるいは、前記燃料電池の運転開始前に、前記貯湯槽の温水を前記電池冷却水系統に導いて冷却水の加温に消費し、前記燃料電池の運転時間を消費分に見合って延長したことを特徴とする。   Alternatively, before starting the operation of the fuel cell, the hot water in the hot water tank is led to the battery cooling water system and consumed for heating the cooling water, and the operation time of the fuel cell is extended in accordance with the consumed amount. Features.

本発明の燃料電池発電システムによれば、発電時に作られ、貯湯されている余剰の湯水を電池冷却水系統に導入して、運転開始前の燃料電池の昇温を行う。このため、貯湯槽に貯まっていた余剰の湯水が運転開始前に使用され、その後の発電により貯湯槽が満杯になるまでの時間が延長できるので、運転稼働率の向上と高負荷運転時間の増加による発電効率の向上に効果がある。更には、湯水を電池冷却水系統に導入するので起動時の電池の昇温を短時間で行うことができる利点がある。   According to the fuel cell power generation system of the present invention, surplus hot water generated during power generation and stored in hot water is introduced into the battery cooling water system, and the temperature of the fuel cell before starting operation is increased. For this reason, excess hot water stored in the hot water storage tank is used before the start of operation, and the time until the hot water storage tank becomes full by subsequent power generation can be extended, improving the operating rate and increasing the high load operating time This is effective for improving power generation efficiency. Furthermore, since hot water is introduced into the battery cooling water system, there is an advantage that the temperature of the battery can be raised in a short time at startup.

本発明の最良の実施形態は、貯湯槽内の湯水を電池の冷却系統に設けられた冷却水タンクに貯湯槽と冷却水タンク間の落差を利用して供給し、冷却系統に設けられている電池冷却用の循環ポンプで電池に供給し、起動時の燃料電池を加温する。さらに、電池出口で温度低下した温水(湯水)のうち余剰分は系外に排出させ、熱的に必要な分は燃料処理装置(改質器)の排熱を利用して熱交換器により熱回収することにより加温させてから、再び冷却水タンクに戻る構成とする。以下、本発明の実施例について図面を用いて説明する。   In the best mode of the present invention, hot water in a hot water tank is supplied to a cooling water tank provided in a cooling system of the battery using a head between the hot water tank and the cooling water tank, and is provided in the cooling system. The battery is supplied to the battery by a circulation pump for cooling the battery, and the fuel cell at the time of startup is heated. Furthermore, the excess of the hot water (hot water) whose temperature has dropped at the battery outlet is discharged out of the system, and the heat required is heated by the heat exchanger using the exhaust heat of the fuel processor (reformer). It is set as the structure which returns to a cooling water tank again, after heating by collect | recovering. Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施例1による燃料電池発電給湯システムの系統図を示す。燃料電池発電給湯システムは、水素リッチなアノードガス6を生成する燃料処理装置1と、アノードガス6と空気29中の酸素が電気化学反応により直流電力を発生させる燃料電池9と、発電中に熱交換系を通って水道水から湯水に昇温されて貯められる貯湯槽18を有している。   FIG. 1 shows a system diagram of a fuel cell power hot water supply system according to Embodiment 1 of the present invention. The fuel cell power hot water supply system includes a fuel processing device 1 that generates a hydrogen-rich anode gas 6, a fuel cell 9 in which oxygen in the anode gas 6 and air 29 generates DC power through an electrochemical reaction, and heat generated during power generation. It has a hot water storage tank 18 that is heated from the tap water to the hot water through the exchange system and stored.

燃料処理装置1にはブロア34,35を介して都市ガス2、空気3が、また、水道水30から水処理装置23aを介して脱イオン水5が供給される。燃料電池9はアノード9a,カソード9c及び冷却セル9bからなる。アノード9aには熱交換器11−A及びドレントラップ25を通って適温のアノードガス6が供給され、カソード9cにはカソード空気8を供給する空気ブロア36、空気8を加湿する加湿セル28を介して空気29が供給される。運転中の冷却セル9bには、水道水30を取り込んだ冷却水タンク10、冷却水ポンプ24を有する電池冷却水系統を介して、冷却水13が流入する。燃料電池9で発電中に発生する熱はこの電池冷却水系統で除去され、残りはカソード排ガス15a及びアノード排ガス14となって電池外へ排出される。   The fuel treatment apparatus 1 is supplied with city gas 2 and air 3 through the blowers 34 and 35 and deionized water 5 from the tap water 30 through the water treatment apparatus 23a. The fuel cell 9 includes an anode 9a, a cathode 9c, and a cooling cell 9b. The anode 9a is supplied with the anode gas 6 having an appropriate temperature through the heat exchanger 11-A and the drain trap 25. The cathode 9c is supplied with an air blower 36 for supplying the cathode air 8 and a humidifying cell 28 for humidifying the air 8. Air 29 is supplied. The cooling water 13 flows into the cooling cell 9b in operation through a battery cooling water system having the cooling water tank 10 and the cooling water pump 24 that take in the tap water 30. Heat generated during power generation in the fuel cell 9 is removed by the battery cooling water system, and the remainder is discharged to the outside as the cathode exhaust gas 15a and the anode exhaust gas 14.

熱回収系統は水道水21を循環ポンプ17で取り込み、3つの熱交換器11D、11−B、11−Aを通過して熱をもらい、所定の給湯温度の湯水20となって貯湯槽18に貯められる系統である。これとは別の系統の熱交換器11−Cは、カソード排ガス15aと空気8との熱交換を行う。   The heat recovery system takes in tap water 21 with the circulation pump 17 and passes through the three heat exchangers 11D, 11-B, 11-A to obtain heat, and becomes hot water 20 at a predetermined hot water supply temperature into the hot water storage tank 18. It is a system that can be stored. A heat exchanger 11 -C of a system different from this performs heat exchange between the cathode exhaust gas 15 a and the air 8.

最初の熱交換器11−Dでは、電池アノード9aを出たアノード排ガス14と熱交換器11−Cを出たカソード排ガス15bと熱交換する。熱交換器11−Bでは、電池冷却水12との熱交換である。電池冷却水系統では燃料電池9を冷却するために、貯水槽(冷却水タンク)10からポンプ24により、冷却水13が冷却セル9bを流れて電池9を冷却する。冷却後の冷却水12は加湿セル28を通って熱交換器11−Bに入り、電池9から奪った熱を低温側の熱回収系統側に与え、冷却水タンク10に戻る。最後の熱交換器11−Aは燃料処理装置1から燃料電池9aに供給される途中で、100度以上のアノードガス6との熱交換を行う。熱交換器11−Aを出た熱回収水は所定の温度、たとえば60度の湯水20となり貯湯槽18に蓄えられる。   In the first heat exchanger 11-D, heat exchange is performed between the anode exhaust gas 14 exiting the battery anode 9a and the cathode exhaust gas 15b exiting the heat exchanger 11-C. In the heat exchanger 11-B, heat exchange with the battery cooling water 12 is performed. In the battery cooling water system, in order to cool the fuel cell 9, the cooling water 13 flows from the water storage tank (cooling water tank) 10 through the cooling cell 9 b by the pump 24 to cool the battery 9. The cooled cooling water 12 enters the heat exchanger 11 -B through the humidifying cell 28, gives the heat taken from the battery 9 to the low temperature side heat recovery system, and returns to the cooling water tank 10. The last heat exchanger 11-A performs heat exchange with the anode gas 6 at 100 degrees or more while being supplied from the fuel processing apparatus 1 to the fuel cell 9a. The heat recovery water that has exited the heat exchanger 11 -A becomes hot water 20 at a predetermined temperature, for example, 60 degrees, and is stored in the hot water storage tank 18.

貯湯槽18は最初は冷水で満たされている。運転が開始されると循環ポンプ17により、槽18の下部から冷水が排熱回収系に送られ、湯水となって槽18の上部に戻され、貯湯槽18の上部から下部に向かって湯水が貯まっていく構造となっている。湯水が下部まで達すると、満杯であることが検知される。また、ユーザーが湯水を使うとき、貯湯槽18の上部から湯水が給湯系22に導かれる。そして、使われた湯水の分だけ、水道水21が槽下部から熱回収系統側に供給される。従って、DSS運転において、その日の運転停止時に貯湯槽に蓄えられている湯水の量は一日の電池の発電電力量と湯水の使用量から決まる。   The hot water tank 18 is initially filled with cold water. When the operation is started, cold water is sent from the lower part of the tank 18 to the exhaust heat recovery system by the circulation pump 17 and returned to the upper part of the tank 18 as hot water, and hot water is supplied from the upper part of the hot water tank 18 toward the lower part. It has a structure that accumulates. When the hot water reaches the bottom, it is detected that it is full. When the user uses hot water, the hot water is led from the upper part of the hot water storage tank 18 to the hot water supply system 22. And the tap water 21 is supplied to the heat recovery system side from the lower part of the tank by the amount of hot water used. Therefore, in the DSS operation, the amount of hot water stored in the hot water storage tank when the operation is stopped on the day is determined from the amount of power generated by the battery and the amount of hot water used per day.

次に本実施例の起動方法について説明する。起動時には冷却水タンク10の水は停止中の放熱により電池作動温度以下になっており、このままポンプ24が作動して電池内に冷却水を循環させても、電池9の昇温はできない。   Next, the starting method of the present embodiment will be described. At the time of start-up, the water in the cooling water tank 10 is below the battery operating temperature due to heat radiation during stoppage, and the battery 9 cannot be heated even if the pump 24 is operated and the cooling water is circulated in the battery.

本実施例では起動時に、まず冷却水タンク10および冷却水系統内の水を排出する。その後、貯湯槽18に蓄えられていた60度の温水を貯湯槽上部の湯温の高い部位と接続している起動用温水供給ライン40を通し、開閉弁41を開くことにより冷却水タンク10に供給する。このように駆動にポンプを使用せず、貯湯槽18と冷却水タンク10との高低差だけを利用して温水を供給する。   In the present embodiment, at the time of start-up, first, the water in the cooling water tank 10 and the cooling water system is discharged. Thereafter, the 60-degree hot water stored in the hot water storage tank 18 is passed through the hot water supply line 40 for activation connected to a hot water temperature portion in the upper part of the hot water storage tank, and the on-off valve 41 is opened to enter the cooling water tank 10. Supply. In this way, hot water is supplied using only the difference in height between the hot water storage tank 18 and the cooling water tank 10 without using a pump for driving.

また、本実施例では貯湯槽の温水を直接電池冷却水系統(冷却水タンク)に導入しているので、冷却水タンクに送られた大量の温水により、冷却水タンク内の冷却水の水温をほぼ瞬時に貯湯槽の温度近くまで上昇させることができる。つまり、熱交換器による貯湯槽の温水と冷却タンク内の冷水との間接的な伝熱方式に比べて、各段に冷却タンク内の水の温度上昇は速くなる。また、その温水を用いて冷却水系統を循環させるため、結果的に電池の昇温を熱交換方式に比べて短時間に行うことができる。   Further, in this embodiment, the hot water in the hot water tank is directly introduced into the battery cooling water system (cooling water tank), so the water temperature of the cooling water in the cooling water tank is reduced by a large amount of hot water sent to the cooling water tank. The temperature can be raised almost instantaneously to the temperature of the hot water tank. That is, the temperature rise of the water in the cooling tank is accelerated at each stage as compared with the indirect heat transfer method between the hot water in the hot water tank and the cold water in the cooling tank by the heat exchanger. Moreover, since the cooling water system is circulated using the hot water, as a result, the temperature of the battery can be increased in a shorter time than the heat exchange system.

冷却水タンク10の湯水は冷却水ポンプ24で循環させ、冷却セル9bを通して熱を電池側に伝え、燃料電池9の昇温を行う。なお、電池出口の温水の温度は電池昇温により下がっているが、貯湯槽18に十分な温水が貯まっている場合は加湿セル28を出た後、排水ライン42を通して系外に排出させる。すなわち、電池出口の温水を貯湯槽に戻さないことにより、貯湯槽のお湯が確実に起動前に使用されるため、後述するように電池運転稼働率の向上が図れ、また発電効率の高い高負荷運転時間を長くとることができる。熱量的にみて貯湯槽18の温水の量が限られている場合は排水しないで、温度低下した分の熱エネルギーを補ってから冷却水タンク10に戻し、循環させることもできる。   The hot water in the cooling water tank 10 is circulated by the cooling water pump 24, and heat is transmitted to the battery side through the cooling cell 9b to raise the temperature of the fuel cell 9. The temperature of the hot water at the battery outlet is lowered due to the temperature rise of the battery, but when sufficient hot water is stored in the hot water storage tank 18, the hot water is discharged from the system through the drain line 42 after leaving the humidification cell 28. In other words, by not returning the hot water at the battery outlet to the hot water tank, the hot water in the hot water tank is surely used before starting up, so that the battery operation rate can be improved as described later, and the high load with high power generation efficiency is high. Driving time can be increased. If the amount of hot water in the hot water storage tank 18 is limited in terms of calorific value, the hot water tank 18 can be circulated by compensating for the heat energy corresponding to the temperature drop and returning to the cooling water tank 10 without draining.

熱エネルギーを与える最も簡便な方法は外部エネルギーを供給する方法で、たとえば冷却水タンク10に電気ヒーターを設ける。ただし、外部電力の使用は熱効率的には不利である。電気ヒーターを用いずに熱を補う方法として、燃料処理装置1を起動させ、電池与熱後の温水を燃料処理装置1から排出される温度の高い排ガスと熱交換させてから冷却水タンクに戻すことも可能である。   The simplest method of supplying thermal energy is a method of supplying external energy. For example, an electric heater is provided in the cooling water tank 10. However, the use of external power is disadvantageous in terms of thermal efficiency. As a method of supplementing heat without using an electric heater, the fuel processing apparatus 1 is started, and the hot water after battery heating is exchanged with the exhaust gas having a high temperature discharged from the fuel processing apparatus 1 and then returned to the cooling water tank. It is also possible.

図2は図1の変更例で、燃料処理装置の排ガスと熱交換して電池与熱後の温水を温める系統図である。燃料処理装置1の起動時は、燃料処理装置1に入る戻りアノードガス4に代わり都市ガスが供給され、燃料処理装置1にて燃焼する。高温の燃焼ガスは改質のための水蒸気発生や燃料や空気の予熱に使われ排ガス7となって排出される。この100度以上の排ガス7を熱交換器11−Eにより冷却セル9bから排出された与熱後の温水12と熱交換させる。熱を与えられた温水12は供給配管44を通って冷却水タンクに戻される。   FIG. 2 is a modified example of FIG. 1 and is a system diagram for warming the hot water after heating the battery by exchanging heat with the exhaust gas of the fuel processing apparatus. When the fuel processor 1 is started, city gas is supplied instead of the return anode gas 4 entering the fuel processor 1 and burns in the fuel processor 1. The high-temperature combustion gas is used to generate steam for reforming and to preheat fuel and air, and is discharged as exhaust gas 7. The exhaust gas 7 of 100 degrees or more is heat-exchanged with the heated hot water 12 discharged from the cooling cell 9b by the heat exchanger 11-E. The heated hot water 12 is returned to the cooling water tank through the supply pipe 44.

なお、起動時には貯湯槽18からの水は循環水ポンプ17を停止しているため流れていない。従って、電池冷却水系統内の熱交換器11−Bによる熱交換は行われない。また、起動用温水供給ライン40には、水道水に含まれるイオンを除去するための脱イオン器23bを備えることが電池の劣化を防ぐ上で望ましい。   In addition, at the time of starting, the water from the hot water storage tank 18 is not flowing because the circulating water pump 17 is stopped. Therefore, heat exchange by the heat exchanger 11-B in the battery cooling water system is not performed. In addition, it is desirable that the startup hot water supply line 40 is provided with a deionizer 23b for removing ions contained in tap water in order to prevent deterioration of the battery.

本発明の実施例2は運転開始前に、電池冷却水系統内の冷却水を加熱する方式である。図3は実施例2による燃料電池発電給湯システムの系統図を示す。貯湯槽18からの湯水を、電池冷却水系統に設けた熱交換器11−Fに供給し、冷却水13を加熱するものである。   Embodiment 2 of the present invention is a system in which the cooling water in the battery cooling water system is heated before the operation is started. FIG. 3 is a system diagram of a fuel cell power hot water supply system according to the second embodiment. Hot water from the hot water tank 18 is supplied to the heat exchanger 11-F provided in the battery cooling water system, and the cooling water 13 is heated.

これによれば、間接的に冷却水を加熱するため、直接、水道水が冷却水タンク10に混在することがなく、実施例1で用いた脱イオン水をつくる水処理装置23aが不要になるメリットがある。   According to this, since the cooling water is indirectly heated, the tap water is not directly mixed in the cooling water tank 10, and the water treatment device 23a for producing the deionized water used in the first embodiment is not necessary. There are benefits.

なお、熱交換器11−F出口の温排水42は燃料処理装置1の排ガス7と熱交換し、加温された後に再び熱交換器11−F入口に戻し、循環しながら熱を冷却水側に与え続けることも可能である。   The hot waste water 42 at the outlet of the heat exchanger 11-F exchanges heat with the exhaust gas 7 of the fuel processing apparatus 1, and after being heated, returns to the inlet of the heat exchanger 11-F again, and heat is supplied to the cooling water side while circulating. It is also possible to continue to give.

図4に実施例3による冷却水タンクの構成を示す。本実施例の冷却水タンクは、図1−図3の冷却水タンク10に適用可能で、冷却水タンク10内に熱交換を目的にした配管、たとえばフィン46が付いた配管45を設け、貯湯槽18からの起動用温水供給ライン40と接続する。   FIG. 4 shows the configuration of the cooling water tank according to the third embodiment. The cooling water tank of this embodiment is applicable to the cooling water tank 10 of FIGS. 1 to 3, and a piping for heat exchange, for example, a piping 45 with fins 46 is provided in the cooling water tank 10 to store hot water. The hot water supply line 40 for starting from the tank 18 is connected.

本燃料電池発電給湯システムは運転終了後から運転開始までの間、貯湯槽18からの湯水を配管45に落差だけで流し続け、冷却水タンク10内の冷却水13の水温が放熱により低下しないようにしたものである。これにより、起動時には燃料電池9の冷却水13を昇温させることなく、すぐに冷却セル9bに冷却水を流せるため、起動時間を短縮することができる。   In this fuel cell power generation and hot water supply system, hot water from the hot water storage tank 18 continues to flow into the pipe 45 only by a drop from the end of operation to the start of operation so that the temperature of the cooling water 13 in the cooling water tank 10 does not decrease due to heat dissipation. It is a thing. Thereby, at the time of starting, since the cooling water can be immediately flowed to the cooling cell 9b without raising the temperature of the cooling water 13 of the fuel cell 9, the starting time can be shortened.

なお、実施例2(図3)に関して追記すれば、熱交換器11−Fを設ける代わりに、本構造の冷却水タンクに替えても同様の間接加熱の効果が得られる。これにより、熱交換器11−Fが不要になり、システムが簡素化される効果がある。   In addition, if it adds about Example 2 (FIG. 3), the effect of the same indirect heating will be acquired even if it replaces with the cooling water tank of this structure instead of providing heat exchanger 11-F. This eliminates the need for the heat exchanger 11-F and has an effect of simplifying the system.

図5は本発明による実施例4を示す燃料電池の構成図である。ここでは、電池スタック9の周囲は温水を流す配管51を巡らしたジャケット50で覆われ、配管51に起動用温水供給ライン40が接続している。   FIG. 5 is a block diagram of a fuel cell showing Embodiment 4 according to the present invention. Here, the periphery of the battery stack 9 is covered with a jacket 50 around a pipe 51 through which hot water flows, and the hot water supply line 40 for activation is connected to the pipe 51.

本燃料電池発電給湯システムは運転終了後から運転開始までの間、貯湯槽18からの湯水を配管51に流し続け、電池スタック9の温度が放熱により低下しないようにし、起動時間の一層の短縮化が図れる効果を得ることができる。   In this fuel cell power generation and hot water supply system, hot water from the hot water storage tank 18 continues to flow through the pipe 51 from the end of operation to the start of operation so that the temperature of the battery stack 9 does not decrease due to heat dissipation, and the startup time is further shortened. Can be obtained.

なお、このようなジャケットを冷却水タンク18にも適用し、タンクの保温をすることにより冷却水の放熱を防止することも可能である。また、システム停止中の温水供給以外に、低負荷で運転中にも温水を燃料電池9のジャケット50に通すことにより、低負荷運転時の電池からの放熱による電池温度低下を防止できる。これにより、低負荷でも安定した運転が可能となり、運転負荷範囲が一層広がる効果もある。   Note that such a jacket can also be applied to the cooling water tank 18 to prevent heat dissipation of the cooling water by keeping the tank warm. In addition to supplying hot water while the system is stopped, by passing hot water through the jacket 50 of the fuel cell 9 even during operation at a low load, a decrease in battery temperature due to heat radiation from the battery during low load operation can be prevented. As a result, stable operation is possible even with a low load, and the operation load range is further expanded.

以上本発明の複数の実施例を説明した。これらの実施例では、貯湯槽の湯水を使用することにより、起動時に電池の昇温に要した外部エネルギーが節約できるため、起動損失が減少し、その結果、終日の発電効率が向上する。   The embodiments of the present invention have been described above. In these embodiments, the use of hot water in the hot water tank can save the external energy required for temperature rise of the battery at the time of start-up, thereby reducing the start-up loss and, as a result, improving the power generation efficiency throughout the day.

次に、貯湯槽の湯水をシステム起動に利用したことによる発電効率やシステムの稼働率の向上について説明する。   Next, improvement in power generation efficiency and system operation rate by using hot water in the hot water tank for system activation will be described.

図6は、家庭用燃料電池システムにおける電力使用量と発電量の相対的な関係、および熱需要量と熱回収量の関係を示す。一般に電力需要は電池発電量と同じかあるいは上回り、逆に熱需要は熱回収量を下回る場合が多い。特に、夏場には熱回収量に比べて熱需要がかなり少なくなり、その分だけ熱が余る。一方、電力需要は電池発電量だけでは賄えきれない場合もあり、系統電力も必要になる。また、電池発電量と熱回収量の関係はほぼ正比例の関係にあり、凡その比は熱回収量1に対して電力は0.7〜0.9程度である。   FIG. 6 shows the relative relationship between the amount of power used and the amount of power generated in the household fuel cell system, and the relationship between the amount of heat demand and the amount of heat recovered. In general, the power demand is the same as or higher than the battery power generation, and conversely, the heat demand is often less than the heat recovery. In particular, in summer, the heat demand is considerably less than the amount of heat recovered, and heat is left by that much. On the other hand, power demand may not be met by battery power generation alone, and system power is also required. Further, the relationship between the battery power generation amount and the heat recovery amount is almost directly proportional, and the ratio is about 0.7 to 0.9 with respect to the heat recovery amount 1.

このように、熱と電力の需要バランスによっては、発電しているうちに貯湯槽が満杯になると、電池の冷却ができないため、発電を続けられなくなり、運転を停止せざるを得なくなる。このため、システムの稼働率が低下する。あるいは稼働率を上げようとすると、発電効率面からみて有利な高負荷運転を維持できず、電力需要が有るにもかかわらず低負荷運転を余儀なくされる。   Thus, depending on the demand balance between heat and electric power, if the hot water storage tank becomes full during power generation, the battery cannot be cooled, so power generation cannot be continued, and operation must be stopped. For this reason, the operation rate of a system falls. Alternatively, when trying to increase the operating rate, it is impossible to maintain high-load operation that is advantageous from the viewpoint of power generation efficiency, and low-load operation is forced despite the power demand.

一般に、家庭では午前中の湯水の使用量が少ないため、起動時に貯湯槽に多くの湯水を貯めておく必要はない。この点、上記した本発明によれば、運転終了後あるいは運転開始前に貯湯槽の余剰温水を、燃料電池の昇温のために消費しているため、発電開始時点の貯湯槽の湯量は非常に少ない状態にあり、その分だけ運転時間を長くとれる。   In general, since the amount of hot water used in the morning is small at home, it is not necessary to store a large amount of hot water in a hot water tank at the time of startup. In this regard, according to the present invention described above, the excess hot water in the hot water tank is consumed for the temperature rise of the fuel cell after the operation is completed or before the operation is started. The operation time can be increased accordingly.

次に、運転時間の面からも、1日の高負荷運転の割合から見ても、本発明のように起動前に貯湯槽の湯量を消費することが有利な点を説明する。   Next, the advantages of consuming the amount of hot water in the hot water storage tank before the start-up as in the present invention will be described from the viewpoint of operation time and the ratio of daily high load operation.

図7、図8に、発電開始時の貯湯層の湯量と運転時間との関係を模式的に示す。図7の左図上は発電開始前の貯湯槽に残っている湯量が多い場合である。貯湯槽が満杯になるまでの運転時間は、左図下のようにA時間であった。その間の電池の運転負荷はXであり、給湯が2回行われている。   7 and 8 schematically show the relationship between the amount of hot water in the hot water storage layer and the operation time at the start of power generation. The upper left figure in FIG. 7 shows a case where the amount of hot water remaining in the hot water storage tank before the start of power generation is large. The operation time until the hot water tank became full was A time as shown in the lower left figure. The operation load of the battery during that time is X, and hot water is supplied twice.

図7の右図は発電開始前の貯湯槽に残っている湯量が少ない場合(本発明)で、電池の運転負荷は左図と同じくXであり、給湯も同時刻に2回行われている。しかしながら、貯湯槽が満杯になるまでの運転時間はB時間と左図より長くなっている。すなわち、運転負荷である発電量および給湯負荷が同じであれば、スタート時の貯湯槽のレベルが低いほどより長い間運転を継続できるので、本発明によると運転稼働率が向上する。   The right figure in FIG. 7 shows a case where the amount of hot water remaining in the hot water tank before the start of power generation is small (the present invention), the operating load of the battery is X as in the left figure, and hot water is also supplied twice at the same time. . However, the operation time until the hot water tank is full is longer than B time and the left figure. That is, if the power generation amount and the hot water supply load, which are the operation loads, are the same, the lower the level of the hot water storage tank at the start, the longer the operation can be continued. Therefore, according to the present invention, the operation availability is improved.

図8の場合は、貯湯槽の湯量は図7の場合と同じにし、かつ貯湯槽が満杯になる時刻を同じにしている。すなわち、運転稼動時間は双方ともA時間と変わらないが、発電開始前の貯湯槽の湯量が多い場合(左図)、2回の給湯が行われるまでは電池の運転負荷はXであり、給湯後の貯湯槽が満杯になるまで電池の運転負荷はYに低下する。ここで、上図の線の勾配が熱回収量に対応しており、熱回収量と発電量の関係はほぼ正比例の関係にある。一方、貯湯槽に残っている湯量が少ない場合(右図)、給湯後の上図の傾きは右図の方が大きくなり、左図と同時間で貯湯槽を満杯にするためには、左図より熱回収量を多くする運転が必要になる。この結果、右図の運転負荷はZとなり、左図のYと比べてより高負荷な運転が行われることになる。   In the case of FIG. 8, the amount of hot water in the hot water tank is the same as in FIG. 7, and the time when the hot water tank is full is the same. In other words, both the operating hours are the same as the A time, but when the amount of hot water in the hot water storage tank before the start of power generation is large (the left figure), the battery operating load is X until hot water is supplied twice, and the hot water supply The battery operating load is reduced to Y until the subsequent hot water tank is full. Here, the slope of the line in the upper diagram corresponds to the amount of heat recovered, and the relationship between the amount of heat recovered and the amount of power generation is almost directly proportional. On the other hand, when the amount of hot water remaining in the hot water tank is small (right figure), the inclination of the upper figure after hot water supply is larger in the right figure, and in order to fill the hot water tank in the same time as the left figure, Operation that increases the amount of heat recovery is required. As a result, the operating load in the right figure is Z, and a higher load operation is performed as compared with Y in the left figure.

このように、本発明によれば、高負荷運転は低負荷運転に比べて発電効率が高い状態で運転できるため、燃料電池発電システムを運用するに当たり、同じ運転時間でも発電効率の高い運転が可能になる。   As described above, according to the present invention, high load operation can be performed with higher power generation efficiency than low load operation. Therefore, when operating the fuel cell power generation system, operation with high power generation efficiency is possible even during the same operation time. become.

本発明の実施例1による燃料電池発電給湯システムの構成を示す系統図。1 is a system diagram showing a configuration of a fuel cell power hot water supply system according to Embodiment 1 of the present invention. FIG. 実施例1の変形例を示す燃料電池発電湯システムの系統図。FIG. 6 is a system diagram of a fuel cell power generation hot water system showing a modification of the first embodiment. 実施例2による燃料電池発電給湯システムの系統図。FIG. 5 is a system diagram of a fuel cell power hot water supply system according to a second embodiment. 実施例3による冷却水タンクの構成図。The block diagram of the cooling water tank by Example 3. FIG. 実施例4による燃料電池の構成図。FIG. 6 is a configuration diagram of a fuel cell according to a fourth embodiment. 家庭用燃料電池における電力と熱の需要と供給の関係の説明図。Explanatory drawing of the relationship between the demand and supply of electric power and heat in a household fuel cell. 貯湯量と燃料電池運転時間の関係の説明図。Explanatory drawing of the relationship between the amount of hot water storage, and fuel cell operation time. 貯湯量と燃料電池運転負荷の関係の説明図。Explanatory drawing of the relationship between hot water storage amount and a fuel cell driving | operation load.

符号の説明Explanation of symbols

1…燃料処理装置(改質器)、2…都市ガス、4…戻りアノードガス、5…脱イオン水、6…アノードガス、7…燃焼排ガス、8…カソード空気、9…燃料電池、10…冷却水タンク、11…熱交換器、17…循環ポンプ、18…貯湯槽、20…湯水、21…水道水、23…脱イオン装置、24…冷却水循環ポンプ、40…貯湯槽湯水、42…排水ライン、45…熱交換器配管、46…フィン、50…保温ジャケット。   DESCRIPTION OF SYMBOLS 1 ... Fuel processing apparatus (reformer), 2 ... City gas, 4 ... Return anode gas, 5 ... Deionized water, 6 ... Anode gas, 7 ... Combustion exhaust gas, 8 ... Cathode air, 9 ... Fuel cell, 10 ... Cooling water tank, 11 ... Heat exchanger, 17 ... Circulation pump, 18 ... Hot water tank, 20 ... Hot water, 21 ... Tap water, 23 ... Deionizer, 24 ... Cooling water circulation pump, 40 ... Hot water, hot water tank, 42 ... Drain Line, 45 ... heat exchanger piping, 46 ... fins, 50 ... heat insulation jacket.

Claims (9)

燃料電池と、それを冷却する電池冷却水系統と、電池排出ガスからの排熱および電池冷却水系統の冷却水から熱回収して温水を作る排熱回収系統と、熱回収して作られた温水を貯蔵する貯湯槽を有し、該貯湯槽の湯量が満杯以下の場合に運転を続ける燃料電池発電システムにおいて、
前記貯湯槽の温水を前記電池冷却水系統に導く温水供給配管を設け、前記燃料電池の起動時間を短縮可能に構成したことを特徴とする燃料電池発電システム。
Fuel cell, battery cooling water system that cools it, exhaust heat from battery exhaust gas and exhaust heat recovery system that recovers heat from the cooling water of battery cooling water system, and heat recovery In a fuel cell power generation system that has a hot water storage tank for storing hot water and continues operation when the amount of hot water in the hot water storage tank is less than full,
A fuel cell power generation system comprising a hot water supply pipe for guiding the hot water in the hot water storage tank to the battery cooling water system so that the startup time of the fuel cell can be shortened.
請求項1において、前記温水供給配管は前記貯湯槽から前記電池冷却水系統の冷却水タンクに高低差を利用して温水を供給するように構成したことを特徴とする燃料電池発電システム。   2. The fuel cell power generation system according to claim 1, wherein the hot water supply pipe is configured to supply hot water from the hot water storage tank to a cooling water tank of the battery cooling water system using a difference in height. 請求項1または2において、前記燃料電池の昇温に使われた後の温水を燃料処理装置(改質器)から排出される排熱を利用して加温する熱交換器を設け、再び燃料電池の昇温を行えるように構成したことを特徴とする燃料電池発電システム。   3. The heat exchanger according to claim 1 or 2, further comprising: a heat exchanger that heats the hot water used for raising the temperature of the fuel cell using exhaust heat discharged from a fuel processing device (reformer), and again fuels the fuel cell. A fuel cell power generation system configured to increase the temperature of a battery. 請求項1または2において、前記電池冷却水系統の冷却水を始動前に排出させる排水ラインと、前記貯湯槽の温水を前記電池冷却水系統の冷却水タンクに供給する温水供給配管と、前記冷却水タンクから前記燃料電池に温水を供給する循環ポンプと、燃料電池出口からの温水と燃料処理装置からの排ガスとを熱交換する熱交換器を設け、加温後の温水を冷却水タンクに再び戻すことを特徴とする燃料電池発電システム。   3. The drain line for discharging the cooling water of the battery cooling water system before starting, the hot water supply pipe for supplying hot water of the hot water storage tank to the cooling water tank of the battery cooling water system, and the cooling according to claim 1 or 2 A circulation pump for supplying hot water from the water tank to the fuel cell and a heat exchanger for exchanging heat between the hot water from the fuel cell outlet and the exhaust gas from the fuel processing device are provided, and the heated hot water is returned to the cooling water tank again. A fuel cell power generation system characterized by being returned. 請求項2において、前記電池冷却水タンクの内部に、前記貯湯槽からの温水を注入して間接的に前記電池冷却水系統の冷却水を保温する熱交換用配管を設けたことを特徴とする燃料発電システム。   3. The heat exchanger pipe according to claim 2, wherein hot water from the hot water storage tank is injected into the battery cooling water tank to indirectly retain the cooling water of the battery cooling water system. Fuel power generation system. 請求項1または2において、前記燃料電池の周囲に温水を供給するジャケットと、該温水を系外に排出する排出ラインと、前記貯湯槽から前記燃料電池のジャケットまで温水を供給する配管を設けたことを特徴とする燃料電池発電システム。   3. A jacket for supplying warm water around the fuel cell, a discharge line for discharging the warm water out of the system, and a pipe for supplying warm water from the hot water tank to the jacket of the fuel cell according to claim 1 or 2. A fuel cell power generation system. 燃料電池と、それを冷却する電池冷却水系統と、電池排出ガスからの排熱および電池冷却水系統の冷却水から熱回収して温水を作る排熱回収系統と、熱回収して作られた温水を貯蔵する貯湯槽を有し、該貯湯槽の湯量が満杯以下の場合に運転を続ける燃料電池発電システムの運転方法において、
前記燃料電池の運転開始前に、前記貯湯槽の温水を前記電池冷却水系統に導いて冷却水を加温し、前記燃料電池の起動時間を短縮したことを特徴とする燃料電池発電システムの運転方法。
Fuel cell, battery cooling water system that cools it, exhaust heat from battery exhaust gas and exhaust heat recovery system that recovers heat from the cooling water of battery cooling water system, and heat recovery In the operation method of the fuel cell power generation system, which has a hot water storage tank for storing hot water, and continues to operate when the amount of hot water in the hot water storage tank is less than full,
Before starting the operation of the fuel cell, the operation of the fuel cell power generation system is characterized in that the hot water in the hot water storage tank is guided to the battery cooling water system to heat the cooling water, thereby shortening the startup time of the fuel cell. Method.
請求項7において、前記燃料電池の発電停止中に前記貯湯槽の湯水を使用して、前記燃料電池または前記電池冷却水系統の冷却水タンクの保温をすることを特徴とする燃料電池発電システムの運転方法。   8. The fuel cell power generation system according to claim 7, wherein the fuel cell or the cooling water tank of the battery cooling water system is kept warm by using hot water in the hot water storage tank while the power generation of the fuel cell is stopped. how to drive. 燃料電池を冷却する電池冷却水系統と、電池排出ガスからの排熱および電池冷却水系統の冷却水から熱回収して温水を作る排熱回収系統を有し、熱回収して作られた温水を貯蔵する貯湯槽からの湯水の消費を可能にし、前記貯湯槽の湯量が満杯以下の場合に運転を続ける家庭用の燃料電池発電システムの運転方法において、
前記燃料電池の運転開始前に、前記貯湯槽の温水を前記電池冷却水系統に導いて冷却水の加温に消費し、前記燃料電池の運転時間を消費分に見合って延長したことを特徴とする燃料電池発電システムの運転方法。
Hot water produced by heat recovery with a battery cooling water system that cools the fuel cell and an exhaust heat recovery system that recovers heat from the exhaust gas from the battery exhaust gas and heat from the cooling water in the battery cooling water system. In a method for operating a household fuel cell power generation system that allows consumption of hot water from a hot water storage tank that stores water and continues operation when the amount of hot water in the hot water storage tank is less than full,
Before starting the operation of the fuel cell, the hot water in the hot water storage tank is led to the battery cooling water system and consumed for heating the cooling water, and the operation time of the fuel cell is extended in accordance with the consumption. To operate the fuel cell power generation system.
JP2005236556A 2005-08-17 2005-08-17 Fuel cell power generation system and its operation method Pending JP2007052981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005236556A JP2007052981A (en) 2005-08-17 2005-08-17 Fuel cell power generation system and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005236556A JP2007052981A (en) 2005-08-17 2005-08-17 Fuel cell power generation system and its operation method

Publications (1)

Publication Number Publication Date
JP2007052981A true JP2007052981A (en) 2007-03-01

Family

ID=37917282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005236556A Pending JP2007052981A (en) 2005-08-17 2005-08-17 Fuel cell power generation system and its operation method

Country Status (1)

Country Link
JP (1) JP2007052981A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181941A (en) * 2008-02-01 2009-08-13 Toshiba Corp Fuel cell system
JP2010140683A (en) * 2008-12-09 2010-06-24 Toshiba Fuel Cell Power Systems Corp Freeze preventing device for fuel cell system, and the fuel cell system
JP2014086157A (en) * 2012-10-19 2014-05-12 Tokyo Gas Co Ltd Fuel cell cogeneration system and control program and method thereof
JP2016014510A (en) * 2014-07-03 2016-01-28 大和ハウス工業株式会社 Cogeneration system
CN116031436A (en) * 2023-03-31 2023-04-28 合肥工业大学 Household hydrogen fuel cell heat recovery system and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181941A (en) * 2008-02-01 2009-08-13 Toshiba Corp Fuel cell system
JP2010140683A (en) * 2008-12-09 2010-06-24 Toshiba Fuel Cell Power Systems Corp Freeze preventing device for fuel cell system, and the fuel cell system
JP2014086157A (en) * 2012-10-19 2014-05-12 Tokyo Gas Co Ltd Fuel cell cogeneration system and control program and method thereof
JP2016014510A (en) * 2014-07-03 2016-01-28 大和ハウス工業株式会社 Cogeneration system
CN116031436A (en) * 2023-03-31 2023-04-28 合肥工业大学 Household hydrogen fuel cell heat recovery system and method

Similar Documents

Publication Publication Date Title
US8470484B2 (en) Fuel cell system
JP4644704B2 (en) Fuel cell system
KR101843380B1 (en) Cooling and heating device
JP2005100873A (en) Fuel cell system
JP2007052981A (en) Fuel cell power generation system and its operation method
CN114284524B (en) Heat exchange system and control method for liquid hydrogen fuel cell
CN113793947B (en) Fuel cell waste heat utilization system and energy system
JP2019132477A (en) Cogeneration system and operation method of the same
JP2889807B2 (en) Fuel cell system
JP5201850B2 (en) Fuel cell device
JP2016515190A (en) Heating equipment and method of operating heating equipment
JP4845899B2 (en) Fuel cell system
JP4128054B2 (en) Fuel cell system and operating method thereof
JP4087840B2 (en) Fuel cell system
JP3956208B2 (en) Fuel cell power generation system and operation method thereof
JP2003343916A (en) Cogeneration system
JP4217940B2 (en) Fuel cell power generation system and operation method thereof
JP4467261B2 (en) Fuel cell cogeneration system
JP5266782B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
KR102347322B1 (en) Thermal Management Method and Device For PEFMC
JP5501750B2 (en) Fuel cell system
JP2010161080A (en) Fuel cell system
JP2002134143A (en) Fuel cell cogeneration system
JPH06215784A (en) Fuel cell generating facilities
JP2016207581A (en) Fuel cell cogeneration system