JPH0463755B2 - - Google Patents

Info

Publication number
JPH0463755B2
JPH0463755B2 JP61147466A JP14746686A JPH0463755B2 JP H0463755 B2 JPH0463755 B2 JP H0463755B2 JP 61147466 A JP61147466 A JP 61147466A JP 14746686 A JP14746686 A JP 14746686A JP H0463755 B2 JPH0463755 B2 JP H0463755B2
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
osmosis membrane
raw water
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61147466A
Other languages
Japanese (ja)
Other versions
JPS634808A (en
Inventor
Isao Itsuhoshi
Sadakazu Yamada
Goro Fujiwara
Mitsunobu Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP14746686A priority Critical patent/JPS634808A/en
Publication of JPS634808A publication Critical patent/JPS634808A/en
Publication of JPH0463755B2 publication Critical patent/JPH0463755B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超純水製造プラント等における逆浸透
膜装置システムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a reverse osmosis membrane device system in an ultrapure water production plant or the like.

(従来の技術) 超純水製造プラント等における逆浸透膜装置シ
ステムにおいて、被処理原水の加温は逆浸透膜装
置に対する透過水量の向上、採水量の安定化及び
超純水たる生産水の使用点での一定温度確保のた
めに必要不可欠であり、逆浸透膜装置に供給され
る被処理原水の温度を25℃〜30℃程度に保持する
ことはこの種プラント設計上の必須条件である。
(Conventional technology) In reverse osmosis membrane equipment systems in ultrapure water production plants, etc., heating of raw water to be treated improves the amount of water permeating the reverse osmosis membrane equipment, stabilizes the amount of water taken, and uses produced water as ultrapure water. Maintaining the temperature of the raw water to be treated, which is supplied to the reverse osmosis membrane device, at about 25°C to 30°C is an essential condition in the design of this type of plant.

そこで従来の逆浸透膜装置システムにおいて
は、被処理原水を逆浸透膜装置への供給前に蒸気
ボイラによる発生蒸気を熱源として加温するよう
にしているのが普通である。すなわち、熱交換器
を用いて被処理原水を発生蒸気と熱交換させ、若
しくは被処理原水に直接発生蒸気を吹込むことに
より、被処理原水を加温するようにしている。
Therefore, in conventional reverse osmosis membrane equipment systems, the raw water to be treated is usually heated using steam generated by a steam boiler as a heat source before being supplied to the reverse osmosis membrane equipment. That is, the raw water to be treated is heated by exchanging heat with the generated steam using a heat exchanger, or by directly blowing the generated steam into the raw water to be treated.

(発明が解決しようとする問題点) しかし、このように被処理原水の加温を蒸気ボ
イラで発生させた蒸気によつて行う場合には、生
産水製造コストに占める加熱用蒸気コストの割合
が大きく、プラント全体の運転に必要な燃料費し
たがつてトータルのランニングコストが大幅に高
騰することになる。
(Problem to be solved by the invention) However, when heating the raw water to be treated in this way using steam generated by a steam boiler, the proportion of the heating steam cost in the production water production cost is This is largely due to the fuel costs required to operate the entire plant, resulting in a significant increase in total running costs.

しかも従来の逆浸透膜装置システムは、そのシ
ステム及びこれを装備する超純水製造プラント等
において種々の低温排熱が発生するにも拘らず、
かかる低温排熱を利用することによいては何ら配
慮されておらず、省エネルギー化の要請を満足さ
せ得ないものであつた。すなわち、逆浸透膜装置
から出る濃縮水や使用点での使用済生産水等は低
温熱を含んでいるが、かかる低温水はその温度が
低いところから熱源として利用されることなく、
そのまま放流されており、また逆浸透膜装置を使
用する工場等においては年間を通して冷房等空調
設備が必要な場合が多いが、かかる空調設備から
の低温廃熱は全て冷却塔等から大気へ放出されて
いるのが実情である。
Moreover, the conventional reverse osmosis membrane device system generates various low-temperature waste heat in the system and the ultrapure water production plant equipped with it.
No consideration was given to the benefits of utilizing such low-temperature waste heat, and the demand for energy conservation could not be met. In other words, although concentrated water from reverse osmosis membrane equipment and used produced water at the point of use contain low-temperature heat, such low-temperature water is not used as a heat source due to its low temperature.
In addition, factories that use reverse osmosis membrane equipment often require air conditioning equipment throughout the year, but all low-temperature waste heat from such air conditioning equipment is released into the atmosphere from cooling towers, etc. The reality is that

本発明は、このような問題を解決して、ランニ
ングコストの低減並びに省エネルギー化を効果的
に実現しうる逆浸透膜装置システムを提供するこ
とを目的とするものである。
An object of the present invention is to solve such problems and provide a reverse osmosis membrane device system that can effectively reduce running costs and save energy.

(問題点を解決するための手段) 本発明は、水道水や河川水、井戸水などの溶存
塩類の少ない原水を貯留する原水タンクと;原水
タンクから低温の原水が加圧供給される逆浸透膜
装置と;逆浸透膜装置の膜面を透過した透過水を
処理して超純水とする真空脱気器やイオン交換塔
を備えた透過水処理設備と;透過水処理設備で処
理した温度が24〜30゜の超純水を使用する超純水
の使用設備とから成る逆浸透膜装置システムに於
いて、前記原水タンクと逆浸透膜装置との間に、
原水タンクからの原水を加熱する熱交換器と当該
熱交換器からの原水を加熱するヒートポンプとを
備えた熱回収装置を設け、前記逆浸透膜装置から
の濃縮水及び前記超純水使用設備からの使用済生
産水を前記熱交換器及びヒートポンプの蒸発器の
加熱側へ供給し、濃縮水及び使用済生産水の有す
る低温排熱の回収により25℃〜30℃に加熱した原
水を逆浸透膜装置へ供給することの発明の基本構
成とするものである。
(Means for Solving the Problems) The present invention provides a raw water tank for storing raw water with low dissolved salts such as tap water, river water, well water, etc.; and a reverse osmosis membrane to which low-temperature raw water is supplied under pressure from the raw water tank. Equipment; Permeated water treatment equipment equipped with a vacuum deaerator and ion exchange tower that process permeated water that has passed through the membrane surface of the reverse osmosis membrane device to produce ultrapure water; In a reverse osmosis membrane device system consisting of ultrapure water usage equipment that uses ultrapure water of 24 to 30°, between the raw water tank and the reverse osmosis membrane device,
A heat recovery device equipped with a heat exchanger that heats the raw water from the raw water tank and a heat pump that heats the raw water from the heat exchanger is provided, and the concentrated water from the reverse osmosis membrane device and the ultrapure water usage equipment are The used produced water is supplied to the heat exchanger and the heating side of the evaporator of the heat pump, and the raw water heated to 25°C to 30°C by recovering the low-temperature waste heat of the concentrated water and the used produced water is passed through the reverse osmosis membrane. This is the basic configuration of the invention for supplying to the device.

(作用) かかる構成によれば、被処理原水は熱回収装置
による回収熱によつて加温された上で、逆浸透膜
装置に供給されることになる。
(Function) According to this configuration, the raw water to be treated is heated by the heat recovered by the heat recovery device and then supplied to the reverse osmosis membrane device.

(実施例) 以下、本発明の構成を第1図〜第3図に示す実
施例に基づいて具体的に説明する。
(Example) Hereinafter, the structure of the present invention will be specifically described based on the example shown in FIGS. 1 to 3.

第1図は本発明に係る逆浸透膜装置システムを
装備した超純水製造プラントを示すフローシート
であり、第1図において、1は原水タンク2から
順次原水ポンプ3、熱回収装置4、フイルタ5、
昇圧用ポンプ6を経て逆浸透膜装置7に至る被処
理原水の供給経路、8は逆浸透膜装置7から順次
透過水タンク9、透過水ポンプ10、セパレータ
タンク11及び真空ポンプ12を備えた真空脱気
器13、送水ポンプ14、陽イオン交換塔15、
陰イオン交換塔16、一次純水タンク17、一次
純水ポンプ18、紫外線殺菌塔19、ポリツシヤ
20を経て限外過膜装置21に至る透過水の処
理経路即ち透過水処理設備、22は限外過膜装
置21から使用点即ち超純水使用設備23に至る
生産水(超純水)の供給経路、24は限外過膜
装置21から原水タンク2に至るブロー水の還流
経路、25は使用点23から一次純水タンク17
に至る未使用生産水の還流経路、26は熱回収装
置4に至る低温排水の排熱回収経路、27は熱回
収装置4から排水処理装置28を経て適宜の放流
個所に至る熱回収済低温排水の放流経路、29は
逆浸透膜装置7から排熱回収経路26に至る濃縮
水の供給経路、30は使用点23から排熱回収経
路26に至る使用済生産水の供給経路、31は使
用点23から排水処理装置32を経て排熱回収経
路26に至る使用済生産水の供給経路、33は使
用点23から排水処理装置34を経て原水タンク
2に至る使用済生産水の還流経路、35は冷房等
の空調設備(図示せず)から排熱回収経路26に
至る低温排水の供給経路、36は放流経路27か
ら該空調設備に至る熱回収済排水の還流経路であ
る。
FIG. 1 is a flow sheet showing an ultrapure water production plant equipped with a reverse osmosis membrane device system according to the present invention. In FIG. 5,
A supply route for raw water to be treated passes through a pressure boosting pump 6 and reaches a reverse osmosis membrane device 7, and 8 is a vacuum system that sequentially includes a permeate tank 9, a permeate pump 10, a separator tank 11, and a vacuum pump 12 from the reverse osmosis membrane device 7. deaerator 13, water pump 14, cation exchange tower 15,
A permeated water treatment path, that is, a permeated water treatment equipment 22, passes through an anion exchange tower 16, a primary pure water tank 17, a primary pure water pump 18, an ultraviolet sterilization tower 19, and a polisher 20 and reaches an ultrafiltration membrane device 21. A supply route for produced water (ultra-pure water) from the ultra-filtration membrane device 21 to the point of use, that is, the ultra-pure water usage equipment 23, 24 a reflux route for blow water from the ultra-filtration membrane device 21 to the raw water tank 2, and 25 a used water supply path. From point 23 to primary pure water tank 17
26 is an exhaust heat recovery path for low-temperature wastewater that reaches the heat recovery device 4, and 27 is a heat-recovered low-temperature wastewater that flows from the heat recovery device 4 to an appropriate discharge point via the wastewater treatment device 28. 29 is a concentrated water supply route from the reverse osmosis membrane device 7 to the waste heat recovery route 26, 30 is a used product water supply route from the use point 23 to the waste heat recovery route 26, 31 is the use point 33 is a used product water supply route from 23 to the waste heat recovery route 26 via the wastewater treatment device 32; 33 is a used product water return route from the usage point 23 to the raw water tank 2 via the wastewater treatment device 34; A supply path 36 is a supply path for low-temperature waste water from an air conditioner (not shown) such as an air conditioner to the exhaust heat recovery path 26, and a reflux path 36 is a recirculation path for heat-recovered waste water from the discharge path 27 to the air conditioner.

被処理原水は一連の超純水製造装置つまり逆浸
透膜装置7、真空脱気器13、陽イオン交換塔1
5、陰イオン交換塔16、紫外線殺菌塔19、ポ
リツシヤ20、限外過膜装置21を順次経過せ
しめられることによつて超純水に処理され、限外
過膜装置21から生産水として使用点23に供
給されるようになされている。かかる純水処理工
程において、逆浸透膜装置7で発生する濃縮水は
供給経路29から排熱回収経路26に流入せしめ
られ、限外過膜装置21のブロー水はその一定
量が還流経路24から原水タンク2に戻されるよ
うになされている。そして使用点23で使用され
なかつた未使用生産水は還流経路25から一次純
水タンク17に戻される。また、使用点23で使
用された使用済生産水のうち、一部は還流経路3
3から排水処理装置34で処理された上で原水タ
ンク2に戻されるが、他の一部は供給経路30か
ら直接に、又更に他の一部は供給経路31から排
水処理装置32で処理された上で夫々排熱回収経
路26に流入せしめられるようになされている。
さらに空調設備から出る低温排水を供給経路35
から排熱回収経路26に流入させるようにしてい
る。この空調設備には熱回収装置4を経過した熱
回収済排水の一部が還流経路36から戻されるよ
うになされている。その他の熱回収済排水は放流
経路27から排水処理装置28で処理した上で系
外に放流される。
The raw water to be treated is passed through a series of ultrapure water production devices, namely a reverse osmosis membrane device 7, a vacuum deaerator 13, and a cation exchange column 1.
5. The anion exchange tower 16, the ultraviolet sterilization tower 19, the polisher 20, and the ultrafiltration device 21 are used to process the water into ultrapure water, which is then sent to the point of use as produced water from the ultrafiltration device 21. 23. In this pure water treatment process, the concentrated water generated in the reverse osmosis membrane device 7 is made to flow into the exhaust heat recovery path 26 from the supply path 29, and a certain amount of the blow water from the ultrafiltration membrane device 21 is passed through the reflux path 24. The raw water is returned to the raw water tank 2. Unused produced water that is not used at the point of use 23 is returned to the primary pure water tank 17 from the reflux path 25. In addition, some of the used produced water used at the use point 23 is recycled to the reflux route 3.
3 is treated in the waste water treatment device 34 and then returned to the raw water tank 2. However, some of the water is treated directly from the supply route 30, and still another part is treated in the waste water treatment device 32 from the supply route 31. Then, they are made to flow into the exhaust heat recovery path 26, respectively.
Furthermore, the low-temperature waste water from the air conditioning equipment is supplied to the route 35.
He is trying to make it flow into the exhaust heat recovery path 26 from there. A portion of the heat-recovered wastewater that has passed through the heat recovery device 4 is returned to this air conditioning equipment through a reflux path 36. Other heat-recovered wastewater is discharged from the discharge path 27 to the outside of the system after being treated by the wastewater treatment device 28.

前記熱回収装置4は熱交換器37と電動ヒート
ポンプ38とから構成されている。熱交換器37
は経路1の原水ポンプ3、フイルタ5間に介装さ
れていて、被処理原水を排熱回収経路26の低温
排水と熱交換させることによつて一次加温するよ
うになされている。ヒートポンプ38は蒸発器3
9、圧縮器40、凝縮器41、膨張弁42及びこ
れら蒸発器39〜膨張弁42を連通接続する冷媒
流動管43からなり、圧縮器40を電動モータ4
4により駆動することにより、冷媒が蒸発器39
から順次圧縮器40、凝縮器41、膨張弁42を
経て蒸発器39へと循環せしめられるように構成
されている。すなわち、蒸発器39を経路26,
27間に介装すると共に、凝縮器41を経路1の
フイルタ5、熱交換器37間に介装してあつて、
蒸発器39において排熱回収経路26の低温排水
によつて与熱された冷媒ガスが圧縮器40により
圧縮昇温されて、一次加温された被処理原水を凝
縮器41において所定温度(通常25℃〜30℃)に
加温するようになされており、被処理原水を与熱
した冷媒は、爾後冷媒液として凝縮器41から膨
張弁42を経て再び蒸発器39に戻されるように
なされている。
The heat recovery device 4 includes a heat exchanger 37 and an electric heat pump 38. Heat exchanger 37
is interposed between the raw water pump 3 and the filter 5 in the route 1, and is designed to primarily heat the raw water to be treated by exchanging heat with the low-temperature waste water in the exhaust heat recovery route 26. Heat pump 38 is evaporator 3
9, consists of a compressor 40, a condenser 41, an expansion valve 42, and a refrigerant flow pipe 43 that connects the evaporator 39 to the expansion valve 42, and the compressor 40 is connected to the electric motor 4.
4, the refrigerant flows into the evaporator 39.
It is constructed so that it is circulated sequentially from the compressor 40, the condenser 41, and the expansion valve 42 to the evaporator 39. That is, the evaporator 39 is connected to the path 26,
27, and a condenser 41 is interposed between the filter 5 of route 1 and the heat exchanger 37,
In the evaporator 39, the refrigerant gas heated by the low-temperature waste water in the exhaust heat recovery path 26 is compressed and heated in the compressor 40, and the primary heated raw water to be treated is heated to a predetermined temperature (usually 25°C) in the condenser 41. The refrigerant that heated the raw water to be treated is then returned as a refrigerant liquid from the condenser 41 to the evaporator 39 via the expansion valve 42. .

ところで、被処理原水の温度はその性状つまり
井戸水、河川水等によつて異なるが、一般には5
℃〜20℃であり、一方経路29,30,31,3
5から夫々排熱回収経路26に流入した各低温排
水の合流温度は、各低温排水の合流比率によつて
異なるが、通常、生産水温度より0.5℃〜1.0℃低
い24℃〜29℃程度であるから、熱交換器37、ヒ
ートポンプ38によつて上記低温排水から回収し
た回収熱は、逆浸透膜装置7に供給される被処理
原水をその純水処理に最適な温度(25℃〜30℃程
度)に昇温しうる熱源として十分有効に利用する
ことができるのである。
By the way, the temperature of the raw water to be treated varies depending on its properties, such as well water, river water, etc., but in general, the temperature is 5.
℃~20℃, one route 29, 30, 31, 3
The convergence temperature of each low-temperature wastewater that has flowed into the waste heat recovery path 26 from 5 varies depending on the confluence ratio of each low-temperature wastewater, but is usually about 24℃ to 29℃, which is 0.5℃ to 1.0℃ lower than the produced water temperature. Therefore, the recovered heat recovered from the low-temperature wastewater by the heat exchanger 37 and the heat pump 38 is used to maintain the raw water to be treated, which is supplied to the reverse osmosis membrane device 7, at the optimum temperature for pure water treatment (25°C to 30°C). It can be used effectively as a heat source that can raise the temperature to a certain degree.

なお、上記実施例においては、使用済生産水及
び5の濃縮水の保有熱並びに空調設備の廃熱を熱
交換器37、ヒートポンプ38からなる熱回収装
置4でもつて回収し、これを被処理原水加温熱源
として利用するようにしたが、本発明の構成はこ
れに限定されるものではない。
In the above embodiment, the heat retained in the used produced water and the concentrated water 5 and the waste heat of the air conditioning equipment are recovered by the heat recovery device 4 consisting of the heat exchanger 37 and the heat pump 38, and this is used as the raw water to be treated. Although it is used as a heating heat source, the configuration of the present invention is not limited to this.

例えば、熱回収装置4に供給される被処理原水
の温度が年間を通じて比較的高い場合には、経路
26の低温排水温度が前述した如く24℃〜29℃程
度であるため、熱交換器37の伝熱面積が大きく
なる割には熱回収量が少なくなることがあり、し
たがつて熱交換器37は熱回収装置4全体として
の経済的観点から廃し、ヒートポンプ38のみに
よつて被処理原水を加温するようにした方が良い
場合もある。また逆に初期設備投資を減じるため
に、ヒートポンプ38を設置せず、熱交換器37
のみを取敢える設置する場合もありうる。
For example, when the temperature of the raw water to be treated that is supplied to the heat recovery device 4 is relatively high throughout the year, the temperature of the low-temperature waste water in the route 26 is about 24°C to 29°C as described above, so the temperature of the heat exchanger 37 is Although the heat transfer area becomes larger, the amount of heat recovery may decrease. Therefore, the heat exchanger 37 is eliminated from the economical point of view of the heat recovery device 4 as a whole, and the raw water to be treated is treated only by the heat pump 38. In some cases, it may be better to heat the food. Conversely, in order to reduce the initial capital investment, the heat pump 38 is not installed and the heat exchanger 37 is installed.
There may also be cases where the installation requires only

また、上記実施例では、電動ヒートポンプ38
つまり圧縮器40を買電々力によつて駆動させる
ようにしているが、第2図に示す如く、デイーゼ
ルエンジン発電装置、ガスエンジン発電装置又は
ガスタービン発電装置等の適宜の発電装置45を
設けて、その発電々力によつて圧縮器40のモー
タ44を駆動させるようにしてもよい。この場
合、発電装置45によつて圧縮器40のみならず
前記各ポンプ3,6,10,14,18や空調設
備等をも駆動させるようにしておくと、生産水の
製造コストに占める電力料金の比率を大幅に縮減
でき、延いてはプラント全体のランニングコスト
を低減でき、低温排熱の利用と相俟つて極めて効
果的な省エネルギー化を実現できる。またヒート
ポンプ38は吸収式のものとしておいてもよい。
さらに第3図に示す如く、ヒートポンプ38をデ
イーゼルエンジン又ガスエンジン等の適宜のエン
ジン46に直結して、かかるエンジン46によつ
て圧縮器40を駆動させるように構成してもよ
い。かかる場合、電力料金を削減できる他、エン
ジン46のジヤケツト冷却で発生する温水を超純
水製造ラインの定期的な熱水殺菌処理に使用する
ことができる。
Further, in the above embodiment, the electric heat pump 38
In other words, the compressor 40 is driven by the purchased power, but as shown in FIG. 2, an appropriate power generation device 45 such as a diesel engine power generation device, a gas engine power generation device, or a gas turbine power generation device is provided. The motor 44 of the compressor 40 may be driven by the generated power. In this case, if the power generator 45 is used to drive not only the compressor 40 but also the pumps 3, 6, 10, 14, 18, air conditioning equipment, etc., the electricity cost will account for the production cost of produced water. It is possible to significantly reduce the ratio of energy consumption, which in turn reduces the running costs of the entire plant, and together with the use of low-temperature waste heat, extremely effective energy savings can be achieved. Further, the heat pump 38 may be of an absorption type.
Furthermore, as shown in FIG. 3, the heat pump 38 may be directly connected to an appropriate engine 46 such as a diesel engine or a gas engine, and the compressor 40 may be driven by the engine 46. In such a case, in addition to reducing electricity charges, the hot water generated by cooling the jacket of the engine 46 can be used for periodic hot water sterilization treatment in the ultrapure water production line.

又空調設備からの低温廃熱を利用しない場合に
は経路35,36の経路26への接続は不要であ
る。
Furthermore, if low-temperature waste heat from air conditioning equipment is not used, there is no need to connect paths 35 and 36 to path 26.

(発明の効果) 本発明の逆浸透膜装置システムは、従来におい
ては利用されることなく廃棄されていた低温排熱
を熱回収装置で回収して、その回収熱を熱源とし
て逆浸透膜装置に供給される被処理原水を所定の
最適温度に加温するようにしたものであるから、
従来システムにおける如く蒸気ボイラといつた被
処理原水加温用熱源を別途設ける必要がなく、ラ
ンニングコストの大幅な低減並びに省エネルギー
化を効果的に実現しうる、実用的価値極めて大な
るものである。
(Effects of the Invention) The reverse osmosis membrane device system of the present invention recovers low-temperature waste heat, which was conventionally discarded without being used, using a heat recovery device, and uses the recovered heat as a heat source for the reverse osmosis membrane device. Because it is designed to heat the supplied raw water to be treated to a predetermined optimum temperature,
Unlike conventional systems, there is no need to separately provide a heat source for heating the raw water to be treated, such as a steam boiler, and the practical value of this system is extremely great, as it can effectively reduce running costs and save energy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る逆浸透膜装置システムを
備えた超純水製造プラントの一例を示す系統図、
第2図はその変形例を示す系統図、第3図は更に
その変形例を示す要部の系統図である。 1……被処理原水の供給経路、4……熱回収装
置、7……逆浸透膜装置、26……排熱回収経
路、37……熱交換器、38……ヒートポンプ、
45……デイーゼルエンジン発電装置、ガスレン
ジ発電装置又はガスタービン発電装置、46……
デイーゼルエンジン又はガスエンジン。
FIG. 1 is a system diagram showing an example of an ultrapure water production plant equipped with a reverse osmosis membrane device system according to the present invention;
FIG. 2 is a system diagram showing a modification thereof, and FIG. 3 is a system diagram of main parts further showing the modification. 1... Supply route for raw water to be treated, 4... Heat recovery device, 7... Reverse osmosis membrane device, 26... Exhaust heat recovery route, 37... Heat exchanger, 38... Heat pump,
45... Diesel engine power generation device, gas range power generation device, or gas turbine power generation device, 46...
Diesel engine or gas engine.

Claims (1)

【特許請求の範囲】[Claims] 1 水道水や河川水、井戸水などの溶存塩類の少
ない原水1を貯留する原水タンク2と;原水タン
ク2から低温の原水1が加圧供給される逆浸透膜
装置7と;逆浸透膜装置7の膜面を透過した透過
水を処理して超純水とする真空脱気器13やイオ
ン交換塔15,16を備えた透過水処理設備と;
透過水処理設備で処理した温度が24〜30゜の超純
水を使用する超純水の使用設備23とから成る逆
浸透膜装置システムに於いて、前記原水タンク2
と逆浸透膜装置7との間に、原水タンク2からの
原水1を加熱する熱交換器37と当該熱交換器3
7からの原水1を加熱するヒートポンプ38とを
備えた熱回収装置4を設け、前記逆浸透膜装置7
からの濃縮水及び前記超純水使用設備23からの
使用済生産水を前記熱交換器37及びヒートポン
プ38の蒸発器39の加熱側へ供給し、濃縮水及
び使用済生産水の有する低温排熱の回収により25
℃〜30℃に加熱した原水1を逆浸透膜装置7へ供
給する構成とした逆浸透膜装置システム。
1 A raw water tank 2 that stores raw water 1 with low dissolved salts such as tap water, river water, well water, etc.; A reverse osmosis membrane device 7 to which low-temperature raw water 1 is supplied under pressure from the raw water tank 2; Reverse osmosis membrane device 7 A permeated water treatment facility equipped with a vacuum deaerator 13 and ion exchange towers 15 and 16 that process permeated water that has permeated through the membrane surface to produce ultrapure water;
In the reverse osmosis membrane device system, the raw water tank 2 comprises an ultrapure water usage facility 23 that uses ultrapure water treated with a permeated water treatment facility at a temperature of 24 to 30°C.
and the reverse osmosis membrane device 7, a heat exchanger 37 for heating the raw water 1 from the raw water tank 2 and the heat exchanger 3 are provided.
A heat recovery device 4 equipped with a heat pump 38 that heats the raw water 1 from the reverse osmosis membrane device 7 is provided.
The concentrated water from the evaporator 39 of the heat exchanger 37 and the heat pump 38 are supplied with concentrated water and the used produced water from the ultrapure water usage equipment 23 to the heating side of the evaporator 39 of the heat pump 38, and the low-temperature waste heat possessed by the concentrated water and the used produced water is 25 due to collection of
A reverse osmosis membrane device system configured to supply raw water 1 heated to ℃ to 30℃ to a reverse osmosis membrane device 7.
JP14746686A 1986-06-24 1986-06-24 Reverse-osmosis membrane device system Granted JPS634808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14746686A JPS634808A (en) 1986-06-24 1986-06-24 Reverse-osmosis membrane device system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14746686A JPS634808A (en) 1986-06-24 1986-06-24 Reverse-osmosis membrane device system

Publications (2)

Publication Number Publication Date
JPS634808A JPS634808A (en) 1988-01-09
JPH0463755B2 true JPH0463755B2 (en) 1992-10-12

Family

ID=15431016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14746686A Granted JPS634808A (en) 1986-06-24 1986-06-24 Reverse-osmosis membrane device system

Country Status (1)

Country Link
JP (1) JPS634808A (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443304A (en) * 1987-08-06 1989-02-15 Maruyama Mfg Co Method for heating feed water in reverse osmosis process
JPH01245817A (en) * 1988-03-29 1989-10-02 Toray Ind Inc Hot superpure water generating apparatus
ES2100817B1 (en) * 1995-06-08 1998-03-01 Batlles Paniagua Jose PROCEDURE TO IMPROVE THE PERFORMANCE OF THE REVERSE OSMOSIS, APPLIED TO THE DESALINATION OF SALOBRES WATERS.
JP5101322B2 (en) * 2008-02-01 2012-12-19 パナソニック株式会社 Pure water production method and apparatus
KR100874854B1 (en) 2008-05-05 2008-12-18 (주)이에스 Ground source heat pump system for heating and cooling combined advanced wastewater treatment system
US9314742B2 (en) 2010-03-31 2016-04-19 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system for reverse osmosis predictive maintenance using normalization data
US8221628B2 (en) 2010-04-08 2012-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system to recover waste heat to preheat feed water for a reverse osmosis unit
JP2013146642A (en) * 2010-04-21 2013-08-01 Nitto Denko Corp Fluid membrane-separation power generation system
US8505324B2 (en) 2010-10-25 2013-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Independent free cooling system
JP5743489B2 (en) * 2010-10-27 2015-07-01 オルガノ株式会社 Water treatment system
JP5743490B2 (en) * 2010-10-27 2015-07-01 オルガノ株式会社 Water treatment system and water treatment method
CA2864381C (en) * 2012-02-15 2016-08-02 Mitsubishi Heavy Industries, Ltd. Seawater desalination system
JP5962135B2 (en) * 2012-03-29 2016-08-03 栗田工業株式会社 Ultrapure water production equipment
JP6280860B2 (en) * 2014-11-21 2018-02-14 大阪瓦斯株式会社 Wastewater recycling system
JP6796382B2 (en) * 2016-02-10 2020-12-09 野村マイクロ・サイエンス株式会社 Heating water manufacturing method and manufacturing system
JP6149993B1 (en) * 2016-09-14 2017-06-21 栗田工業株式会社 Ultrapure water production equipment
JP6149992B1 (en) * 2016-09-14 2017-06-21 栗田工業株式会社 Ultrapure water production equipment
JP6532494B2 (en) * 2017-03-16 2019-06-19 栗田工業株式会社 Reverse osmosis processing method and apparatus
JP6350718B2 (en) * 2017-05-24 2018-07-04 栗田工業株式会社 Ultrapure water production equipment
JP6350719B2 (en) * 2017-05-24 2018-07-04 栗田工業株式会社 Ultrapure water production equipment
JP2018153799A (en) * 2018-01-10 2018-10-04 栗田工業株式会社 Reverse osmosis treatment method and device
JP6590016B2 (en) * 2018-03-20 2019-10-16 栗田工業株式会社 Reverse osmosis processing method and apparatus
WO2020008884A1 (en) * 2018-07-06 2020-01-09 栗田工業株式会社 Reverse osmosis treatment method and system
JP7359198B2 (en) * 2021-12-03 2023-10-11 栗田工業株式会社 Warm ultrapure water production equipment
KR102565081B1 (en) * 2022-09-28 2023-08-10 지오릿에너지(주) Reverse Osmosis Purification Water Treatment System Using Raw Water Bypass Piping
KR102565078B1 (en) * 2022-09-28 2023-08-10 지오릿에너지(주) Water Treatment System with Thermal Energy Utilization Method of Purified Water Purified by Reverse Osmosis
KR102505557B1 (en) * 2022-09-28 2023-03-06 지엔원에너지(주) Water Treatment System with Thermal Energy Utilization Method Of Treated Water Treated By Sequencing Batch Reactor
KR102565087B1 (en) * 2022-09-28 2023-08-10 지오릿에너지(주) Reverse Osmosis Purification Water Treatment System Using Purified Water Bypass Piping

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676209A (en) * 1979-11-27 1981-06-23 Babcock Hitachi Kk Apparatus for turning salt water to fresh water installed also with salt manufacturing section
JPS59154187A (en) * 1983-02-21 1984-09-03 Kawasaki Heavy Ind Ltd Desalting method utilizing waste heat of diesel engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676209A (en) * 1979-11-27 1981-06-23 Babcock Hitachi Kk Apparatus for turning salt water to fresh water installed also with salt manufacturing section
JPS59154187A (en) * 1983-02-21 1984-09-03 Kawasaki Heavy Ind Ltd Desalting method utilizing waste heat of diesel engine

Also Published As

Publication number Publication date
JPS634808A (en) 1988-01-09

Similar Documents

Publication Publication Date Title
JPH0463755B2 (en)
CN101481154B (en) Method and apparatus for seawater desalination by comprehensive utilization of solar energy
US7037430B2 (en) System and method for desalination of brackish water from an underground water supply
US20020166758A1 (en) Evaporation process for producing high-quality drinking water and high-grade brine from any-grade salt water
CN109442449B (en) Spraying treatment device for flue gas
CN104190258B (en) Liquid gap multiple-effect membrane distillation technique and device thereof
JP7112226B2 (en) Exhaust heat recovery and reuse system for water treatment equipment in semiconductor manufacturing equipment
CN102219273A (en) Solar and thermocompression vapor-compression distillation type water purifying device
CN201338952Y (en) Device capable of comprehensively utilizing solar energy to desalinize seawater
CN104803532A (en) Seawater desalting device adopting membrane type humidification and dehumidification and seawater desalting method
US4102388A (en) Heat recovery process
US20090107156A1 (en) Heat pump system, operation procedure therefor and evaporator system
CN109395539B (en) Device for removing white by spraying
WO2003091162A1 (en) Integrated energy recovery system
JPS60241984A (en) Brine thickener
US20110239666A1 (en) Heat transfer processes and equipment for industrial applications
US4094355A (en) Heat recovery process
CN211025713U (en) Waste heat recovery disappears white device that unites waste water concentration
CN109821340B (en) Double-regeneration flue gas treatment system
CN217303239U (en) Absorption refrigeration and sea water desalination system based on solar energy cascade utilization
CN109569199B (en) Flue gas treatment device
CN206410360U (en) A kind of air-conditioning water manufacturing system
CN112919565B (en) Solar energy-hot spring-heat pump coupling multistage membrane distillation water treatment system and method
CN106766369A (en) A kind of air-conditioning water manufacturing system
CN205316748U (en) Compound heat pump hydrothermal coproduction device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees