JP6532494B2 - Reverse osmosis processing method and apparatus - Google Patents

Reverse osmosis processing method and apparatus Download PDF

Info

Publication number
JP6532494B2
JP6532494B2 JP2017051091A JP2017051091A JP6532494B2 JP 6532494 B2 JP6532494 B2 JP 6532494B2 JP 2017051091 A JP2017051091 A JP 2017051091A JP 2017051091 A JP2017051091 A JP 2017051091A JP 6532494 B2 JP6532494 B2 JP 6532494B2
Authority
JP
Japan
Prior art keywords
reverse osmosis
water
heat pump
heat
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017051091A
Other languages
Japanese (ja)
Other versions
JP2018153732A (en
Inventor
拓自 彦坂
拓自 彦坂
小野 雄壱
雄壱 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2017051091A priority Critical patent/JP6532494B2/en
Priority to PCT/JP2017/032491 priority patent/WO2018168012A1/en
Priority to TW106132174A priority patent/TW201834737A/en
Publication of JP2018153732A publication Critical patent/JP2018153732A/en
Application granted granted Critical
Publication of JP6532494B2 publication Critical patent/JP6532494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、逆浸透膜装置を用いて水を処理する逆浸透処理方法に係り、特に逆浸透膜装置への給水をヒートポンプで加熱する逆浸透処理方法及び装置に関する。   The present invention relates to a reverse osmosis treatment method for treating water using a reverse osmosis membrane device, and more particularly to a reverse osmosis treatment method and device for heating water supplied to the reverse osmosis membrane device by heat pump.

逆浸透膜装置(以下、RO装置ということがある。)にあっては、処理水量維持(水の粘度低下によるフラックス上昇、シリカ飽和溶解度上昇による回収率向上)の為、給水温度を25℃程度に加温している。この給水の加熱には蒸気、温水、電気ヒーターなどが使用され、エネルギーを消費している。   In the reverse osmosis membrane device (hereinafter sometimes referred to as RO device), the feed water temperature is about 25 ° C to maintain the amount of treated water (increase in flux due to decrease in viscosity of water, recovery rate due to increase in silica saturation solubility). Warming up. Steam, hot water, an electric heater, etc. are used to heat this feed water, and energy is consumed.

特開2012−91118号公報の請求項7には、RO装置の給水をヒートポンプによって23〜25℃に加熱することが記載されているが、同号公報にはヒートポンプの熱源についての具体的記載はなされていない。   Although claim 7 of JP 2012-91118 A heats the feed water of the RO apparatus to 23-25 ° C. by heat pump is described, the specific description of the heat source of the heat pump is described in the same publication. It has not been done.

特開2012−91118号公報JP 2012-91118 A

RO装置の給水を、蒸気、温水、電気ヒーター等によって加熱する場合、加熱コストが高い。また、給水加熱に投入したエネルギーは濃縮水と一緒に廃棄されることなり、エネルギーロスとなっている。   When the feed water of the RO system is heated by steam, hot water, an electric heater or the like, the heating cost is high. In addition, the energy input to feed water heating is discarded together with the concentrated water, resulting in energy loss.

原水と濃縮水を熱交換して、濃縮水排熱を回収することが可能であるが、温度差が小さい為、熱交換器の伝熱面積を大きくする必要があり、熱交換器費用が高くなる。また、温度差が必要なため、加熱分を全量回収することは不可能である。   It is possible to exchange heat between the raw water and the concentrated water to recover the concentrated water exhaust heat, but since the temperature difference is small, it is necessary to increase the heat transfer area of the heat exchanger, and the heat exchanger cost is high. Become. Moreover, since a temperature difference is required, it is impossible to collect all the heating components.

異なる設備(冷凍機、コンプレッサーなど)の排熱を熱源にする場合、RO装置との配管コスト長が長くなり、工事費用が高くなる。また、稼働のタイミングが合わないこともある。   When using the exhaust heat of different equipment (refrigerator, compressor, etc.) as a heat source, the piping cost length with the RO device becomes long, and the construction cost becomes high. In addition, the timing of operation may not match.

RO装置の給水をヒートポンプで加熱する場合において、ヒートポンプの熱源をRO装置の濃縮水(以下、RO濃縮水ということがある。)もしくは処理水とすることが考えられる。しかしながら、RO濃縮水は、スケール成分(例えばシリカやカルシウム等の硬度成分)濃度やその他の塩類濃度、有機物濃度が高いため、ヒートポンプの蒸発器等にスケール、スライム等の汚れが生成し易い。   In the case where the feed water of the RO device is heated by a heat pump, it is conceivable to use the heat source of the heat pump as concentrated water (hereinafter sometimes referred to as RO concentrated water) of the RO device or treated water. However, RO concentrated water has a high concentration of scale components (e.g., hardness components such as silica and calcium), other salts concentration, and organic matter concentration, and therefore dirt such as scale and slime is easily generated in the evaporator of heat pump.

本発明は、RO濃縮水を熱源としたヒートポンプでRO装置への給水を加熱することにより加熱コストを低減することを目的とする。また、本発明は、その一態様において、このヒートポンプの蒸発器やRO装置等でのスケール、スライム等を防止又は抑制することを目的とする。   An object of this invention is to reduce heating cost by heating the feed water to RO apparatus by heat pump which made RO concentrated water a heat source. Moreover, this invention aims at preventing or suppressing the scale, the slime, etc. in the evaporator of this heat pump, RO apparatus, etc. in the one aspect | mode.

本発明の逆浸透処理方法は、原水をヒートポンプで加熱した後、逆浸透膜装置で膜分離処理する逆浸透処理方法であって、該ヒートポンプの蒸発器に通水される熱源流体の少なくとも一部として該逆浸透膜装置の濃縮水を用いるとともに、以下の(a)および(b)の少なくとも一方を採用することを特徴とするものである。
(a)前記ヒートポンプの蒸発器の熱源流体出口における熱源流体のシリカ濃度がシリカスケール析出濃度未満、及び/又はランゲリア指数が0以下となるように、前記逆浸透膜装置の回収率及び前記原水の温度の少なくとも一方を調整する
(b)前記ヒートポンプの蒸発器でスケールが析出しないように、前記原水にスケール防止剤を添加する
The reverse osmosis treatment method of the present invention is a reverse osmosis treatment method in which raw water is heated by a heat pump and then subjected to membrane separation treatment by a reverse osmosis membrane device, wherein at least a part of the heat source fluid passed through the evaporator of the heat pump And using at least one of the following (a) and (b):
(A) The recovery rate of the reverse osmosis membrane device and the raw water so that the silica concentration of the heat source fluid at the heat source fluid outlet of the evaporator of the heat pump is less than the silica scale deposition concentration and / or the Langeria index is 0 or less. adjusting at least one of the temperature (b) as scale by the evaporator of the heat pump does not precipitate, adding a scale inhibitor to said raw water

本発明の逆浸透処理装置は、原水をヒートポンプで加熱した後、逆浸透膜装置で膜分離処理する逆浸透処理装置であって、該ヒートポンプの蒸発器に通水される熱源流体の少なくとも一部として該逆浸透膜装置の濃縮水を通水する手段と、下記(A)および(B)の少なくとも一方とを備えたことを特徴とするものである。
(A)前記ヒートポンプの蒸発器の熱源流体出口における熱源流体のシリカ濃度がシリカスケール析出濃度未満、及び/又はランゲリア指数が0以下となるように、前記逆浸透膜装置の回収率及び前記原水の温度の少なくとも一方を調整する手段
(B)前記ヒートポンプの蒸発器でスケールが析出しないように、前記原水にスケール防止剤を添加する手段
The reverse osmosis treatment apparatus according to the present invention is a reverse osmosis treatment apparatus in which raw water is heated by a heat pump and then subjected to membrane separation treatment by a reverse osmosis membrane apparatus, wherein at least a part of the heat source fluid passed through the evaporator of the heat pump And a means for passing concentrated water of the reverse osmosis membrane device, and at least one of the following (A) and (B).
(A) The recovery rate of the reverse osmosis membrane device and the raw water so that the silica concentration of the heat source fluid at the heat source fluid outlet of the evaporator of the heat pump is less than the silica scale deposition concentration and / or the Langeria index is 0 or less. as scale does not precipitate in the evaporator means (B) the heat pump for adjusting at least one of temperature, means for adding a scale inhibitor to said raw water

本発明によると、RO濃縮水を熱源としたヒートポンプでRO装置への給水を加熱することにより、加熱コストを低減することができる。また、RO濃縮水を熱源とすることにより、RO装置近傍のみでの配管工事等で本発明装置を構成することができる。   ADVANTAGE OF THE INVENTION According to this invention, heating cost can be reduced by heating the feed water to RO apparatus by heat pump which used RO concentrated water as a heat source. Further, by using RO concentrated water as a heat source, the device of the present invention can be configured by piping work or the like only in the vicinity of the RO device.

ヒートポンプを用いることにより、原水との温度差を大きくでき、小さい伝熱面積で熱回収できる。   By using a heat pump, the temperature difference with the raw water can be increased, and heat can be recovered with a small heat transfer area.

本発明の一態様によると、シリカ濃度や塩類濃度が高い等の理由によりヒートポンプの熱源として利用することが難しい水質のRO濃縮水を直接ヒートポンプ熱源として利用できる。   According to one aspect of the present invention, RO concentrated water having a water quality that is difficult to use as a heat source of a heat pump due to high silica concentration or salt concentration can be directly used as a heat pump heat source.

実施の形態に係る逆浸透処理装置のブロック図である。It is a block diagram of a reverse osmosis processing device concerning an embodiment.

以下、図1を参照して実施の形態について説明する。   Hereinafter, an embodiment will be described with reference to FIG.

RO処理される原水は、配管1から熱交換器2に供給され、加熱された後、配管3から熱交換器4に供給され、さらに加熱された後、RO装置6に供給される。RO装置6の透過水は配管7から処理水として取り出され、濃縮水は配管8へ流出し、ヒートポンプ10の熱源流体として該ヒートポンプ10の蒸発器11に通水される。   Raw water to be RO-treated is supplied from the piping 1 to the heat exchanger 2, heated, then supplied from the piping 3 to the heat exchanger 4, further heated, and then supplied to the RO device 6. The permeated water of the RO device 6 is taken out from the pipe 7 as treated water, and the concentrated water flows out to the pipe 8 and is passed through the evaporator 11 of the heat pump 10 as a heat source fluid of the heat pump 10.

熱交換器2の熱源流体流路には、ヒートポンプ10の凝縮器13によって加熱された媒体水(伝熱媒体としての水)が循環流通される。   Media water (water as a heat transfer medium) heated by the condenser 13 of the heat pump 10 is circulated through the heat source fluid flow path of the heat exchanger 2.

ヒートポンプ10は、蒸発器11からの代替フロン等の熱媒体を圧縮機12で圧縮して凝縮器13に導入し、凝縮器13からの熱媒体を膨張弁14を介して蒸発器11に導入するように構成されている。   The heat pump 10 compresses a heat medium such as substitute fluorocarbon from the evaporator 11 with the compressor 12 and introduces it into the condenser 13 and introduces the heat medium from the condenser 13 into the evaporator 11 through the expansion valve 14 Is configured as.

凝縮器13に熱交換器2からの媒体水が配管15及びポンプ17を介して導入され、凝縮器13で加熱された媒体水が配管16を介して熱交換器2に送水される。   The medium water from the heat exchanger 2 is introduced to the condenser 13 through the pipe 15 and the pump 17, and the medium water heated by the condenser 13 is supplied to the heat exchanger 2 through the pipe 16.

蒸発器11の熱源流体流路に配管8からRO装置6の濃縮水が導入される。熱交換により降温した濃縮水は、配管9を介して排出される。   Concentrated water of the RO device 6 is introduced from the pipe 8 into the heat source fluid flow path of the evaporator 11. The concentrated water whose temperature has been lowered by heat exchange is discharged through the pipe 9.

熱交換器4の熱源流体流路には、蒸気が供給される。   Steam is supplied to the heat source fluid flow path of the heat exchanger 4.

RO装置6の濃縮水のスケール成分濃度や有機物濃度が原水よりも高いため、ヒートポンプ10の蒸発器11や配管8,9でスケールやスライムが発生するおそれが高いので、これを防止ないし抑制(以下、防止という。)する必要がある。また、RO装置6においてもスケールやスライムが発生することを防止する必要がある。   The scale component concentration and organic matter concentration of the concentrated water of the RO device 6 are higher than that of the raw water, so there is a high possibility that scale and slime will be generated in the evaporator 11 and pipes 8 and 9 of the heat pump 10 It is necessary to prevent. Further, it is also necessary to prevent the generation of scale and slime in the RO device 6.

そこで、この実施の形態では、蒸発器11や、RO装置6、配管8,9におけるスケール、スライム防止のために次のi),ii)又はiii)の対策を行う。   Therefore, in this embodiment, the following measures i), ii) or iii) are taken to prevent the scale in the evaporator 11, the RO device 6, and the pipes 8 and 9 and slime.

i) 蒸発器11の熱源流体出口11aを流れる濃縮水のシリカ濃度がシリカスケール析出濃度を超えない様に、及び/又は、ランゲリア指数が0以下となるように、RO回収率及び原水温度の一方又は双方を調整する。 i) One of the RO recovery rate and the raw water temperature so that the silica concentration of the concentrated water flowing through the heat source fluid outlet 11a of the evaporator 11 does not exceed the silica scale precipitation concentration and / or the Langeria index is 0 or less. Or adjust both.

すなわち、[ヒートポンプ蒸発器出口11aにおけるシリカ濃度]が[シリカ飽和溶解度]よりも低くなるように、及び/又は、[ヒートポンプ蒸発器出口11aにおけるランゲリア指数]が[0以下]となるように、RO回収率を下げること、及び原水温度を上げることの一方又は双方を行う。   That is, RO is set so that [silica concentration at the heat pump evaporator outlet 11a] is lower than [silica saturation solubility] and / or [Langeria index at the heat pump evaporator outlet 11a] is [0 or less]. Do one or both of lowering the recovery rate and raising the raw water temperature.

なお、RO濃縮水及び蒸発器出口でのランゲリア指数(LSI)は、通常、次の式(1)により求められる。
LSI=pH−pHs (1)
(1)において、pHは濃縮水もしくは蒸発器出口のpH値である。また、pHsは、濃縮水もしくは蒸発器において炭酸カルシウムが溶解も析出もしない平衡状態にあるときの理論上のpH値であり、次の式(2)により求められる。
pHs=9.3+A値+B値−C値−D値 (2)
式(2)において、A値は、蒸発残留物濃度により定まる補正値である。蒸発残留物濃度は、電気伝導率と相関があるため、所定の換算式を用いて電気伝導率から蒸発残留物濃度を求めることができる。B値は、水温により定まる補正値である。C値は、カルシウム硬度により定まる補正値である。D値は、総アルカリ度により定まる補正値である。
In addition, the Lungeria index (LSI) at the RO concentrated water and the evaporator outlet is usually determined by the following equation (1).
LSI = pH-pHs (1)
In (1), the pH is the pH value of the retentate or evaporator outlet. Further, pHs is a theoretical pH value when calcium carbonate is in an equilibrium state where neither dissolution nor precipitation occurs in the concentrated water or the evaporator, and is obtained by the following equation (2).
pHs = 9.3 + A value + B value-C value-D value (2)
In the equation (2), the A value is a correction value determined by the evaporation residue concentration. Since the evaporation residue concentration has a correlation with the electrical conductivity, the evaporation residue concentration can be determined from the electrical conductivity using a predetermined conversion formula. The B value is a correction value determined by the water temperature. The C value is a correction value determined by calcium hardness. The D value is a correction value determined by the total alkalinity.

なお、RO透過水の一部をRO濃縮水に添加して、ヒートポンプ蒸発器に通水するのに適当な水質にしてもよい。即ち、RO透過水の一部をRO濃縮水に添加することも「回収率を低下させること」に包含される。   In addition, a part of the RO permeated water may be added to the RO concentrated water to make the water quality suitable for passing through the heat pump evaporator. That is, adding a part of the RO permeated water to the RO concentrated water is also included in "reducing the recovery rate".

このように、回収率を下げたり原水温度を高くしたりすることにより、RO濃縮水中のシリカ濃度やランゲリア指数をスケール非発生条件とすることができる。例えば、23〜25℃の濃縮水中のシリカ濃度を100〜120ppm以下とすることにより、シリカスケールが防止される。   Thus, by reducing the recovery rate or raising the raw water temperature, it is possible to set the silica concentration in the RO concentrated water and the Langeria index as non-scale generation conditions. For example, by setting the silica concentration in concentrated water at 23 to 25 ° C. to 100 to 120 ppm or less, silica scale is prevented.

ii) RO装置6およびヒートポンプ蒸発器11でシリカスケールが析出しない様に原水のpHを調整する。具体的には、原水のCa硬度が5mg/L以下の条件でpHを9以上(例えば、9〜11)とする。又は、原水のpHを6以下(例えば、4〜6)とする。高pHでシリカをイオン化させることにより、ゲル化を抑制し、スケール析出を抑制することができる。また、原水を低pHとすることにより、シリカの析出速度を低下させてシリカスケールを抑制することができる。 ii) Adjust the pH of the raw water so that the silica scale does not precipitate in the RO unit 6 and the heat pump evaporator 11. Specifically, the pH is set to 9 or more (e.g., 9 to 11) under the condition that the Ca hardness of the raw water is 5 mg / L or less. Alternatively, the pH of the raw water is set to 6 or less (e.g., 4 to 6). By ionizing silica at high pH, gelation can be suppressed and scale precipitation can be suppressed. In addition, by setting the raw water to a low pH, the deposition rate of silica can be reduced to suppress the silica scale.

iii) RO装置6およびヒートポンプ蒸発器11でスケール、スライムが析出しない様に原水に薬品(スケール防止剤やスライム防止剤など)を添加する。スケール防止剤やスライム防止剤としては、特に制限はなく、各種のものを用いることができる。 iii) Add chemicals (such as scale inhibitor and slime inhibitor) to the raw water so that scale and slime are not deposited by the RO apparatus 6 and the heat pump evaporator 11. There is no restriction | limiting in particular as a scale inhibiting agent and a slime inhibiting agent, A various thing can be used.

また、ランゲリア指数を0以下とするには、原水のpHを6以下(例えば、4〜6)とするか、又は、RO膜の前段に軟水器を設けて硬度成分を除去するようにしても良い。なお、カルシウムスケール用のスケール防止剤を原水に添加しても良く、その場合は、ランゲリア指数は0を超えても良い。例えば、スケール防止剤の性能にもよるが、有機高分子スケール防止剤を利用することにより、ランゲリア指数を0.5以下となるように制御することが可能となる。   Also, in order to set the Langelier index to 0 or less, the pH of the raw water is set to 6 or less (for example, 4 to 6) or a water softener is provided in front of the RO membrane to remove the hardness component. good. In addition, you may add the scale inhibiting agent for calcium scales to raw water, and in that case, a Langeria index may exceed zero. For example, depending on the performance of the scale inhibitor, it is possible to control the Langeria index to be 0.5 or less by using the organic polymer scale inhibitor.

なお、原水としては、工業用水(河川水、湖沼水等)、地下水、水道水、各種排水の処理水などが例示されるが、これに限定されない。   In addition, although raw water is exemplified by industrial water (river water, lake water, etc.), underground water, tap water, treated water of various drainage, etc., it is not limited thereto.

図1のシステムに従って井水(18℃)を25℃に加熱して20m/hでRO処理して透過水25℃、14m/h、濃縮水25℃、6m/hで膜分離し、ヒートポンプをCOP(成績係数)5で運転する場合、図1のようにヒートポンプ10及び熱交換器2,4を設置し、蒸発器出口11aの濃縮水温度を20℃とする条件でシステムを運転するときの熱交換器4の蒸気使用量は101.8kW相当となる。 Well water (18 ° C.) was heated to 25 ° C. in accordance with the system of Figure 1 with 20 m 3 / h RO process to permeate 25 ° C. In, 14m 3 / h, concentrated water 25 ° C., and membrane separation with 6 m 3 / h When the heat pump is operated at COP (coefficient of performance) 5, the heat pump 10 and the heat exchangers 2 and 4 are installed as shown in FIG. 1, and the system is operated under the condition that the concentrated water temperature at the evaporator outlet 11a is 20.degree. The amount of steam used by the heat exchanger 4 at that time is equivalent to 101.8 kW.

なお、本発明のヒートポンプを備えた逆浸透膜装置においては、RO膜の入口や出口、蒸発器の熱源流体入口や出口の一部もしくは全部に、シリカや硬度成分(もしくはランゲリア指数)、水温等の測定機器(センサや算出ユニット等)を設け、該機器の測定値に基づいて、RO膜の回収率、pH調整(酸やアルカリの添加手段の制御)、薬品添加(スケール防止剤やスライム防止剤の添加手段)の一部又は全部を自動で制御する制御ユニットを設け、装置全体を自動運転可能に設計しても良い。熱源流体出口に上記測定機器を設けてRO膜の運転条件を制御することで、ヒートポンプを備えた逆浸透膜装置全体を安定に運転することが可能となる。   In the reverse osmosis membrane device equipped with the heat pump according to the present invention, silica, a hardness component (or Langeria index), water temperature, etc. in part or all of the inlet and outlet of the RO membrane and the heat source fluid inlet and outlet of the evaporator. Measurement equipment (sensor, calculation unit, etc.) is provided, and the recovery rate of RO membrane, pH adjustment (control of addition means of acid and alkali), chemical addition (scale inhibitor and slime prevention) based on the measurement value of the equipment A control unit for automatically controlling part or all of the agent addition means may be provided to design the entire apparatus to be capable of automatic operation. By providing the measurement device at the heat source fluid outlet to control the operating conditions of the RO membrane, it becomes possible to stably operate the entire reverse osmosis membrane device equipped with a heat pump.

一方、図1のシステムにおいて熱交換器2及びヒートポンプ10を設置しない場合、同条件でRO処理するときの熱交換器4の蒸気使用量は162.8kW相当となる。   On the other hand, when the heat exchanger 2 and the heat pump 10 are not installed in the system of FIG. 1, the amount of steam used by the heat exchanger 4 when performing RO processing under the same conditions is equivalent to 162.8 kW.

上記実施の形態は本発明の一例であり、本発明は図示以外の形態とされてもよい。   The above embodiment is an example of the present invention, and the present invention may be in a form other than illustrated.

2,4 熱交換器
6 RO装置
10 ヒートポンプ
11 蒸発器
12 圧縮機
13 凝縮器
14 膨張弁
2, 4 Heat Exchanger 6 RO Unit 10 Heat Pump 11 Evaporator 12 Compressor 13 Condenser 14 Expansion Valve

Claims (2)

原水をヒートポンプで加熱した後、逆浸透膜装置で膜分離処理する逆浸透処理方法であって、
該ヒートポンプの蒸発器に通水される熱源流体の少なくとも一部として該逆浸透膜装置の濃縮水を用いるとともに、前記ヒートポンプの蒸発器の熱源流体出口における熱源流体のシリカ濃度がシリカスケール析出濃度未満となるように、前記逆浸透膜装置の回収率及び前記原水の温度の少なくとも一方を調整することを特徴とする逆浸透処理方法。
A reverse osmosis treatment method in which raw water is heated by a heat pump and then subjected to membrane separation treatment by a reverse osmosis membrane device,
At least with use of concentrated water of the reverse osmosis unit as part, silica concentration silica scale deposition density of the heat source fluid in the heat-source fluid outlet of the evaporator before Symbol heat source of the heat pump fluid to be passed through the evaporator of the heat pump such that less than, reverse osmosis treatment method characterized by adjusting at least one of the recovery and of the raw water temperature of said reverse osmosis membrane apparatus.
原水をヒートポンプで加熱した後、逆浸透膜装置で膜分離処理する逆浸透処理装置であって、
該ヒートポンプの蒸発器に通水される熱源流体の少なくとも一部として該逆浸透膜装置の濃縮水を通水する手段と、前記ヒートポンプの蒸発器の熱源流体出口における熱源流体のシリカ濃度がシリカスケール析出濃度未満となるように、前記逆浸透膜装置の回収率及び前記原水の温度の少なくとも一方を調整する手段とを備えたことを特徴とする逆浸透処理装置。
It is a reverse osmosis treatment device in which raw water is heated by a heat pump and then subjected to membrane separation treatment by a reverse osmosis membrane device,
At least means for passing water to concentrate of the reverse osmosis unit as part, silica concentration of the heat source fluid in the heat-source fluid outlet of the evaporator before Symbol heat pump silica source fluid that is passed through the evaporator of the heat pump so that the scale deposition density less than, reverse osmosis treatment apparatus which is characterized in that a means for adjusting at least one of the recovery and the temperature of the raw water of the reverse osmosis unit.
JP2017051091A 2017-03-16 2017-03-16 Reverse osmosis processing method and apparatus Active JP6532494B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017051091A JP6532494B2 (en) 2017-03-16 2017-03-16 Reverse osmosis processing method and apparatus
PCT/JP2017/032491 WO2018168012A1 (en) 2017-03-16 2017-09-08 Reverse osmosis treatment method and device
TW106132174A TW201834737A (en) 2017-03-16 2017-09-20 Reverse osmosis treatment method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017051091A JP6532494B2 (en) 2017-03-16 2017-03-16 Reverse osmosis processing method and apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018001748A Division JP2018153799A (en) 2018-01-10 2018-01-10 Reverse osmosis treatment method and device

Publications (2)

Publication Number Publication Date
JP2018153732A JP2018153732A (en) 2018-10-04
JP6532494B2 true JP6532494B2 (en) 2019-06-19

Family

ID=63521986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017051091A Active JP6532494B2 (en) 2017-03-16 2017-03-16 Reverse osmosis processing method and apparatus

Country Status (3)

Country Link
JP (1) JP6532494B2 (en)
TW (1) TW201834737A (en)
WO (1) WO2018168012A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112384479B (en) * 2018-07-06 2022-03-18 栗田工业株式会社 Reverse osmosis treatment method and system
CN115676975B (en) * 2022-11-29 2024-03-22 厚德食品股份有限公司 Water storage system for pure water machine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634808A (en) * 1986-06-24 1988-01-09 Takuma Co Ltd Reverse-osmosis membrane device system
JPS6443304A (en) * 1987-08-06 1989-02-15 Maruyama Mfg Co Method for heating feed water in reverse osmosis process
JP4193234B2 (en) * 1998-08-17 2008-12-10 栗田工業株式会社 Pure water production method
JP2007307561A (en) * 2007-07-27 2007-11-29 Kurita Water Ind Ltd High-purity water producing apparatus and method
JP2011033250A (en) * 2009-07-31 2011-02-17 Sanyo Electric Co Ltd Water heater
JP5308977B2 (en) * 2009-09-28 2013-10-09 サンデン株式会社 Hot water system
JP2011133121A (en) * 2009-12-22 2011-07-07 Sanyo Electric Co Ltd Heat pump water heater
JP5743490B2 (en) * 2010-10-27 2015-07-01 オルガノ株式会社 Water treatment system and water treatment method
JP5757110B2 (en) * 2011-03-09 2015-07-29 三浦工業株式会社 Water treatment method and water treatment system
CN103370279B (en) * 2012-02-15 2015-11-25 三菱重工业株式会社 Seawater desalination system
JP2014200696A (en) * 2013-04-01 2014-10-27 パナソニック株式会社 Hot water supply apparatus
JP6207381B2 (en) * 2013-12-24 2017-10-04 東芝キヤリア株式会社 Water heater
JP6229589B2 (en) * 2014-04-25 2017-11-15 三菱電機株式会社 Heat pump water heater

Also Published As

Publication number Publication date
WO2018168012A1 (en) 2018-09-20
TW201834737A (en) 2018-10-01
JP2018153732A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP6350719B2 (en) Ultrapure water production equipment
TWI687374B (en) Ultrapure water manufacturing device
TWI691687B (en) Ultrapure water manufacturing device
JP6532494B2 (en) Reverse osmosis processing method and apparatus
JP2015174018A (en) Scale inhibition method and scale inhibitor
TW201447184A (en) Method of removing scale for steam generation equipment
JP5953726B2 (en) Ultrapure water production method and apparatus
WO2006104181A1 (en) Boiler apparatus
JP2013213660A (en) Steam plant and method for operating the same
TWI723224B (en) Operation management method of reverse osmosis membrane device and reverse osmosis membrane treatment system
JP2018153799A (en) Reverse osmosis treatment method and device
JP2010155182A (en) Water treatment apparatus
JP6590016B2 (en) Reverse osmosis processing method and apparatus
JP6549015B2 (en) Water treatment method and water treatment apparatus
JP7449107B2 (en) Water treatment method and water treatment equipment
JP2013204956A (en) Operation method for pure water cooling device
JP2009183800A (en) Pure water production method and device
WO2023032566A1 (en) Water treatment method and water treatment apparatus
JP2018043228A (en) Ultrapure water manufacturing device
JP7530639B2 (en) Cooling water purification device that can be connected to a cooling tower
JP7379827B2 (en) Hot water production and waste hot water reuse methods
JP2023061693A (en) Operation method of pure water production system
JP7379828B2 (en) Hot water production and waste hot water reuse methods
JP3729260B2 (en) Water treatment method using reverse osmosis membrane
JP2011218311A (en) Water supply device for ion exchange apparatus and steam turbine plant with the same, and method for supplying water of ion exchange apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180220

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190521

R150 Certificate of patent or registration of utility model

Ref document number: 6532494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250