JP2023061693A - Operation method of pure water production system - Google Patents

Operation method of pure water production system Download PDF

Info

Publication number
JP2023061693A
JP2023061693A JP2021171785A JP2021171785A JP2023061693A JP 2023061693 A JP2023061693 A JP 2023061693A JP 2021171785 A JP2021171785 A JP 2021171785A JP 2021171785 A JP2021171785 A JP 2021171785A JP 2023061693 A JP2023061693 A JP 2023061693A
Authority
JP
Japan
Prior art keywords
water
pure water
tank
heat exchanger
pure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021171785A
Other languages
Japanese (ja)
Inventor
晃弘 藤本
Akihiro Fujimoto
嵩 楠本
Takashi Kusumoto
圭佑 新田
Keisuke Nitta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2021171785A priority Critical patent/JP2023061693A/en
Publication of JP2023061693A publication Critical patent/JP2023061693A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an operation method of a pure water production system capable of producing pure water at a prescribed temperature in a method of producing pure water by a pure water production system equipped with a chiller system.SOLUTION: In an operation method of a pure water production system, raw water is RO treated by an RO device 6 to obtain permeated water (intermediate water). The intermediate water is cooled by a heat exchanger 11 through an intermediate tank 8. Then it is treated by an ion exchanger 13 to obtain pure water, and pure water at a prescribed temperature is discharged from a pure water tank 15 through a pipe 17. When the temperature of the pure water exceeds a prescribed temperature, a part of the pure water is returned to a raw water tank 1 and tap water is supplied to the intermediate tank 8.SELECTED DRAWING: Figure 1

Description

本発明は、純水製造システムの運転方法に係り、特に所定温度の純水を生産するようにチラーシステムを備えた純水製造システムの運転方法に関する。 The present invention relates to a method of operating a pure water production system, and more particularly to a method of operating a pure water production system having a chiller system to produce pure water at a predetermined temperature.

半導体製造工程等の排水を原水として用い、純水を製造するシステムが用いられている(特許文献1)。この純水製造システムは、原水をRO(逆浸透)処理するRO装置と、RO装置の透過水をイオン交換処理するイオン交換装置等を備えている。 A system for producing pure water using waste water from a semiconductor manufacturing process or the like as raw water is used (Patent Document 1). This pure water production system includes an RO device for RO (reverse osmosis) treatment of raw water, an ion exchange device for ion exchange treatment of permeated water of the RO device, and the like.

特開2019-177326号公報JP 2019-177326 A

本発明は、チラーシステムを備えた純水製造システムにより純水を製造する方法において、所定温度の純水を製造することができる純水製造システムの運転方法を提供することを課題とする。 An object of the present invention is to provide a method of operating a pure water production system that is capable of producing pure water at a predetermined temperature in a method of producing pure water using a pure water production system equipped with a chiller system.

本発明の純水製造システムの運転方法の要旨は、次の通りである。 The gist of the operating method of the pure water production system of the present invention is as follows.

[1] 原水槽と、
該原水槽からの水をRO処理するRO装置と、
該RO装置の透過水(以下、中間水という。)を受け入れる中間槽と、
該中間槽からの中間水と熱交換する第1熱交換器と、
該第1熱交換器で熱交換した中間水が通水されるイオン交換装置と、
該イオン交換装置を通過した純水を受け入れる純水槽と、
該純水槽から純水を取り出す純水取り出し手段と、
該純水取り出し手段で取り出した純水の一部を前記原水槽又は中間槽に返送する純水返送手段と、
前記RO装置の濃縮水を受け入れる受け入れ手段と、
該受け入れ手段からの水が循環通水される第2熱交換器と、
前記第1熱交換器からの熱を該第2熱交換器に移動させる、ヒートポンプを有したチラーシステムと
を有する純水製造システムの運転方法であって、
前記純水槽又は前記純水取り出し手段で取り出した純水の温度が規定温度よりも上昇したときに、前記純水返送手段により一部の純水を前記原水槽に返送することを特徴とする純水製造システムの運転方法。
[1] A raw water tank;
an RO device for RO treating water from the raw water tank;
an intermediate tank for receiving permeated water (hereinafter referred to as intermediate water) of the RO device;
a first heat exchanger that exchanges heat with intermediate water from the intermediate tank;
an ion exchange device through which intermediate water heat-exchanged in the first heat exchanger is passed;
a pure water tank that receives pure water that has passed through the ion exchange device;
a pure water extracting means for extracting pure water from the pure water tank;
a pure water return means for returning part of the pure water taken out by the pure water take-out means to the raw water tank or the intermediate tank;
receiving means for receiving concentrated water from the RO device;
a second heat exchanger through which water from the receiving means is circulated;
and a chiller system having a heat pump for transferring heat from the first heat exchanger to the second heat exchanger, comprising:
The pure water return means returns part of the pure water to the raw water tank when the temperature of the pure water taken out by the pure water tank or the pure water taking-out means rises above a specified temperature. How to operate a water production system.

[2] 前記純水返送手段により一部の純水を原水槽に返送すると共に、前記中間槽に工業用水を供給する[1]の純水製造システムの運転方法。 [2] The method of operating the pure water production system of [1], wherein part of the pure water is returned to the raw water tank by the pure water return means, and industrial water is supplied to the intermediate tank.

[3] 前記中和槽への工業用水の供給に合わせて前記イオン交換装置の運転条件を調整する[2]の純水製造システムの運転方法。 [3] The operating method of the pure water production system of [2], wherein the operating conditions of the ion exchanger are adjusted in accordance with the supply of industrial water to the neutralization tank.

[4] 前記受け入れ手段に高温排水が流入することにより、受け入れ手段の水温が所定温度よりも高くなったときに該受け入れ手段に工業用水を供給する[1]~[3]のいずれかの純水製造システムの運転方法。 [4] The method of any one of [1] to [3] for supplying industrial water to the receiving means when the water temperature of the receiving means rises above a predetermined temperature due to the high-temperature waste water flowing into the receiving means. How to operate a water production system.

[5] 原水槽と、
該原水槽からの水をRO処理するRO装置と、
該RO装置の透過水(以下、中間水という。)を受け入れる中間槽と、
該中間槽からの中間水と熱交換する第1熱交換器と、
該第1熱交換器で熱交換した中間水が通水されるイオン交換装置と、
該イオン交換装置を通過した純水を受け入れる純水槽と、
該純水槽から純水を取り出す純水取り出し手段と、
該純水取り出し手段で取り出した純水の一部を前記原水槽又は中間槽に返送する純水返送手段と、
前記RO装置の濃縮水を受け入れる受け入れ手段と、
該受け入れ手段からの水が循環通水される第2熱交換器と、
前記第1熱交換器からの熱を該第2熱交換器に移動させる、ヒートポンプを有したチラーシステムと
を有する純水製造システムの運転方法であって、
前記受け入れ手段に高温排水が流入することにより、受け入れ手段の水温が所定温度よりも高くなったときに該受け入れ手段に工業用水を供給することを特徴とする純水製造システムの運転方法。
[5] A raw water tank;
an RO device for RO treating water from the raw water tank;
an intermediate tank for receiving permeated water (hereinafter referred to as intermediate water) of the RO device;
a first heat exchanger that exchanges heat with intermediate water from the intermediate tank;
an ion exchange device through which intermediate water heat-exchanged in the first heat exchanger is passed;
a pure water tank that receives pure water that has passed through the ion exchange device;
a pure water extracting means for extracting pure water from the pure water tank;
a pure water return means for returning part of the pure water taken out by the pure water take-out means to the raw water tank or the intermediate tank;
receiving means for receiving concentrated water from the RO device;
a second heat exchanger through which water from the receiving means is circulated;
a chiller system having a heat pump for transferring heat from the first heat exchanger to the second heat exchanger, and
A method of operating a pure water production system, wherein industrial water is supplied to said receiving means when the water temperature of said receiving means becomes higher than a predetermined temperature due to the high-temperature waste water flowing into said receiving means.

[6] 原水槽と、
該原水槽からの水をRO処理するRO装置と、
該RO装置の透過水(以下、中間水という。)を受け入れる中間槽と、
該中間槽からの中間水と熱交換する第1熱交換器と、
該第1熱交換器で熱交換した中間水が通水されるイオン交換装置と、
該イオン交換装置を通過した純水を受け入れる純水槽と、
該純水槽から純水を取り出す純水取り出し手段と、
該純水取り出し手段で取り出した純水の一部を前記原水槽又は中間槽に返送する純水返送手段と、
前記RO装置の濃縮水を受け入れる受け入れ手段と、
該受け入れ手段からの水が循環通水される第2熱交換器と、
前記第1熱交換器からの熱を該第2熱交換器に移動させる、ヒートポンプを有したチラーシステムと
を有する純水製造システムの運転方法であって、
該ヒートポンプの凝縮器と前記第2熱交換器とを循環する媒体の温度が所定温度よりも高くなったときに該受け入れ手段に工業用水を供給することを特徴とする純水製造システムの運転方法。
[6] A raw water tank;
an RO device for RO treating water from the raw water tank;
an intermediate tank for receiving permeated water (hereinafter referred to as intermediate water) of the RO device;
a first heat exchanger that exchanges heat with intermediate water from the intermediate tank;
an ion exchange device through which intermediate water heat-exchanged in the first heat exchanger is passed;
a pure water tank that receives pure water that has passed through the ion exchange device;
a pure water extracting means for extracting pure water from the pure water tank;
a pure water return means for returning part of the pure water taken out by the pure water take-out means to the raw water tank or the intermediate tank;
receiving means for receiving concentrated water from the RO device;
a second heat exchanger through which water from the receiving means is circulated;
and a chiller system having a heat pump for transferring heat from the first heat exchanger to the second heat exchanger, comprising:
A method of operating a pure water production system, comprising supplying industrial water to the receiving means when the temperature of a medium circulating through the condenser of the heat pump and the second heat exchanger becomes higher than a predetermined temperature. .

[7] 前記受け入れ手段に供給する工業用水は井水である[4]~[6]のいずれかの純水製造システムの運転方法。 [7] The method of operating a pure water production system according to any one of [4] to [6], wherein the industrial water supplied to the receiving means is well water.

[8] 前記受け入れ手段は、中和槽と、該中和槽からの水が流入する貯留槽と、該貯留槽から水を流出させる流出手段とを有しており、
前記RO装置の濃縮水及び前記高温排水は該中和槽に導入される[4]~[7]のいずれかの純水製造システムの運転方法。
[8] The receiving means has a neutralization tank, a storage tank into which water flows from the neutralization tank, and an outflow means for discharging water from the storage tank,
The method of operating a pure water production system according to any one of [4] to [7], wherein the concentrated water from the RO device and the high-temperature waste water are introduced into the neutralization tank.

[9] 前記第2熱交換器に、該貯留槽内の水が循環通水される[8]の純水製造システムの運転方法。 [9] The method of operating a pure water production system according to [8], wherein the water in the reservoir is circulated through the second heat exchanger.

[10] 前記高温排水はボイラドレン水である[4]~[9]のいずれかの純水製造システムの運転方法。 [10] The method of operating a pure water production system according to any one of [4] to [9], wherein the high-temperature waste water is boiler drain water.

本発明によると、原水槽と、該原水槽からの水をRO処理するRO装置と、該RO装置の透過水を受け入れる中間槽と、該中間槽からの中間水と熱交換する第1熱交換器と、該第1熱交換器で熱交換した中間水が通水されるイオン交換装置と、該イオン交換装置を通過した純水を受け入れる純水槽と、該純水槽から純水を取り出す純水取り出し手段と、
該純水取り出し手段で取り出した純水の一部を前記原水槽又は中間槽に返送する純水返送手段と、前記RO装置の濃縮水を受け入れる受け入れ手段と、該受け入れ手段からの水が循環通水される第2熱交換器と、前記第1熱交換器からの熱を該第2熱交換器に移動させる、ヒートポンプを有したチラーシステムとを有する純水製造システムにおいて、純水送水を止めることなく所定温度の純水を製造することができる。
According to the present invention, a raw water tank, an RO device for RO-treating water from the raw water tank, an intermediate tank for receiving permeated water of the RO device, and a first heat exchanger for exchanging heat with the intermediate water from the intermediate tank an ion exchange device through which intermediate water heat-exchanged by the first heat exchanger is passed; a pure water tank for receiving pure water that has passed through the ion exchange device; and pure water for taking out pure water from the pure water tank. a means for retrieving;
A pure water return means for returning part of the pure water taken out by the pure water take-out means to the raw water tank or the intermediate tank, a receiving means for receiving concentrated water from the RO device, and water from the receiving means circulating through In a pure water production system having a second heat exchanger that is cooled and a chiller system having a heat pump that transfers heat from the first heat exchanger to the second heat exchanger, the pure water supply is stopped. It is possible to produce pure water at a predetermined temperature.

純水製造システムの構成図である。1 is a configuration diagram of a pure water production system; FIG.

以下、図面を参照して実施の形態について説明する。 Embodiments will be described below with reference to the drawings.

原水(この実施の形態では、工場排水又はその処理水。ただし、これに限定されない。)は、原水槽1に導入され、ポンプ2及び配管3を介して膜濾過装置4に送水され、膜濾過される。膜濾過装置4としては、この実施の形態ではMF装置が用いられているが、原水中の懸濁物質等を除去できるものであればよく、MF装置に限定されず、また膜濾過装置以外の濾過装置を採用してもよい。 Raw water (in this embodiment, factory waste water or its treated water, but not limited to this) is introduced into the raw water tank 1, sent to the membrane filtration device 4 via the pump 2 and the pipe 3, and then sent to the membrane filtration device. be done. As the membrane filtration device 4, an MF device is used in this embodiment, but it is not limited to the MF device as long as it can remove suspended solids and the like in the raw water. A filtering device may be employed.

膜濾過装置4で濾過された濾過水は、配管5からRO装置6に送水され、RO処理水(透過水)が配管7を介して中間槽8に送水され、貯留される。 Filtrated water filtered by the membrane filtration device 4 is sent from the pipe 5 to the RO device 6, and RO-treated water (permeated water) is sent to the intermediate tank 8 via the pipe 7 and stored therein.

中間槽8内のRO処理水は、ポンプ9及び配管10を介して第1熱交換器11に送水され、熱交換して所定温度とされた後、配管12を介してイオン交換装置13に送水される。イオン交換装置13にてイオン交換処理されることにより生じた純水は、配管14を介して純水槽15に導入され、貯留される。純水槽15内の純水は、ポンプ16及び配管17によって取り出され、純水需要先へ送水される。 The RO-treated water in the intermediate tank 8 is sent to the first heat exchanger 11 through the pump 9 and the pipe 10, heat exchanged to a predetermined temperature, and then sent to the ion exchange device 13 through the pipe 12. be done. The pure water produced by the ion exchange treatment in the ion exchange device 13 is introduced into the pure water tank 15 through the pipe 14 and stored therein. The pure water in the pure water tank 15 is taken out by the pump 16 and the piping 17 and sent to the pure water demand destination.

イオン交換装置13としては、2床3塔式、3床4塔式など各種構成のものを用いることができる。 As the ion exchange device 13, devices having various configurations such as a two-bed three-tower type and a three-bed four-tower type can be used.

配管17からは純水返送用配管18が分岐している。該配管18の下流側は配管19,21に分岐しており、純水が配管19、弁20を介して中間槽8に導入可能とされると共に、配管21、弁22を介して原水槽1に導入可能とされている。 A pure water return pipe 18 branches off from the pipe 17 . The downstream side of the pipe 18 is branched into pipes 19 and 21, and pure water can be introduced into the intermediate tank 8 via the pipe 19 and the valve 20, and the raw water tank 1 via the pipe 21 and the valve 22. can be introduced into

中間槽8には、配管23及び弁24を介して工水(工業用水、井水、水道水など)が導入可能とされている。 Industrial water (industrial water, well water, tap water, etc.) can be introduced into the intermediate tank 8 via a pipe 23 and a valve 24 .

RO装置6のブライン(濃縮水)は、配管30を介して中和槽40に導入される。中和槽40には、配管31及び弁32を介して工水(この実施の形態では井水)が導入可能とされている。配管23で供給される工水と配管31で供給される工水とは、同一種類であってもよく、異種類であってもよい。 Brine (concentrated water) of the RO device 6 is introduced into the neutralization tank 40 through the pipe 30 . Industrial water (well water in this embodiment) can be introduced into the neutralization tank 40 through a pipe 31 and a valve 32 . The engineering water supplied through the pipe 23 and the engineering water supplied through the pipe 31 may be of the same type or of different types.

中和槽40には蒸気の凝縮水であるボイラドレン水がドレンタンク及びドレンポンプ(図示略)から配管33を介して導入可能とされている。また、イオン交換装置13の再生排水が配管34を介してプレ中和槽35に導入され、該プレ中和槽35で中和された後、中和槽40に導入可能とされている。なお、プレ中和槽35を省略し、イオン交換装置13の再生排水を配管34から直接に中和槽40に導入してもよい。 Boiler drain water, which is condensed water of steam, can be introduced into the neutralization tank 40 through a pipe 33 from a drain tank and a drain pump (not shown). Regenerated waste water from the ion exchange device 13 is introduced into the pre-neutralization tank 35 through the pipe 34 , neutralized in the pre-neutralization tank 35 , and then introduced into the neutralization tank 40 . Alternatively, the pre-neutralization tank 35 may be omitted, and the regeneration wastewater from the ion exchange device 13 may be directly introduced into the neutralization tank 40 through the pipe 34 .

中和槽40において酸又はアルカリ等の中和剤が添加されて中和された中和水が、配管41を介して貯留槽42に導入される。貯留槽42内の水は、ポンプ45、配管46を介して第2熱交換器47に導入され、熱交換器47で熱交換した後、配管48を介して貯留槽42に戻る。 Neutralized water neutralized by adding a neutralizing agent such as acid or alkali in the neutralization tank 40 is introduced into the storage tank 42 through the pipe 41 . The water in the storage tank 42 is introduced into the second heat exchanger 47 via the pump 45 and the pipe 46 , heat-exchanged in the heat exchanger 47 , and then returned to the storage tank 42 via the pipe 48 .

なお、貯留槽42内の水位が所定範囲となるように、ポンプ43及び配管44を介して貯留槽42内の水が排出される。 The water in the reservoir 42 is discharged through the pump 43 and the pipe 44 so that the water level in the reservoir 42 falls within a predetermined range.

第2熱交換器47は、前記第1熱交換器11に低温水を循環させるためのチラーシステム(ヒートポンプ利用熱移動システム)49の一部を構成している。チラーシステム49の水冷チラー50は、蒸発器51からの代替フロン等の熱媒体をコンプレッサ52で圧縮して凝縮器53に導入し、凝縮器53からの凝縮熱媒体を膨張弁54を介して蒸発器51に導入するように構成されたヒートポンプである。 The second heat exchanger 47 constitutes a part of a chiller system (heat pump-based heat transfer system) 49 for circulating low-temperature water to the first heat exchanger 11 . The water-cooled chiller 50 of the chiller system 49 compresses a heat medium such as alternative freon from the evaporator 51 with a compressor 52 and introduces it into the condenser 53, and evaporates the condensed heat medium from the condenser 53 through the expansion valve 54. A heat pump configured to introduce heat into vessel 51 .

凝縮器53に第2熱交換器47からの第2媒体水が配管57を介して導入され、凝縮器53で加熱された第2媒体水がポンプ55及び配管56を介して熱交換器47に循環される。 The second medium water from the second heat exchanger 47 is introduced into the condenser 53 through the pipe 57, and the second medium water heated in the condenser 53 is supplied to the heat exchanger 47 through the pump 55 and the pipe 56. circulated.

一方、蒸発器51に通水されることにより低温となった第1媒体水が、配管60を介して第1熱交換器11に送水され、貯留槽8からの水(中間水)と熱交換して昇温した後、ポンプ61及び配管62を経て蒸発器51に循環される。 On the other hand, the first medium water, which has been reduced in temperature by passing through the evaporator 51, is sent to the first heat exchanger 11 through the pipe 60, and heat exchanges with the water (intermediate water) from the storage tank 8. After the temperature rises, it is circulated to the evaporator 51 via the pump 61 and the pipe 62 .

この実施の形態では、配管17,56及び中和槽40に温度センサT17,T56,T40が設けられているが、実際には他の箇所にも温度センサが設置されている。温度センサT17は、純水槽15に設置されてもよい。 In this embodiment, temperature sensors T17, T56, and T40 are provided in the pipes 17, 56 and the neutralization tank 40, but actually temperature sensors are also provided in other locations. The temperature sensor T<b>17 may be installed in the pure water tank 15 .

このように構成された純水製造システムにおいては、定常運転中には、上記の通り、原水がRO装置6でRO処理されて透過水(中間水)となり、該中間水が中間槽8を経て第1熱交換器11で降温した後、イオン交換装置13で処理されて純水となり、純水槽15から配管17を経て所定温度の純水が取り出される。定常時には、弁20,22は閉となっているが、弁20については小開度とし、少量の純水を配管18,19を介して中間槽8に返送してもよい。定常時には、弁24,32は閉となっている。 In the pure water production system configured in this way, during steady operation, as described above, raw water is subjected to RO treatment by the RO device 6 to become permeated water (intermediate water), and the intermediate water passes through the intermediate tank 8. After the temperature is lowered by the first heat exchanger 11 , the water is processed by the ion exchange device 13 to become pure water. Although the valves 20 and 22 are closed during normal operation, the valve 20 may be slightly opened to return a small amount of pure water to the intermediate tank 8 through the pipes 18 and 19 . The valves 24 and 32 are closed during normal operation.

また、定常運転中には、RO装置6のブラインが中和槽40から貯留槽42を経て系外に排出される。第1熱交換器11において中間水から奪われた熱は、チラーシステム49を経て、第2熱交換器47において、貯留槽42からの循環水に授与(伝熱)され、温排水の形態となって配管44から系外に排出される。定常運転状態では、第1熱交換器11から第2熱交換器47への熱移動量は十分であり、純水槽15内の純水温度は平常温度(例えば23℃±1℃)に維持される。 Further, during steady operation, the brine of the RO device 6 is discharged from the neutralization tank 40 through the storage tank 42 to the outside of the system. The heat taken from the intermediate water in the first heat exchanger 11 passes through the chiller system 49 and is given (heat transferred) to the circulating water from the storage tank 42 in the second heat exchanger 47, and is in the form of hot water discharge. As a result, it is discharged from the pipe 44 to the outside of the system. In steady operation, the amount of heat transferred from the first heat exchanger 11 to the second heat exchanger 47 is sufficient, and the pure water temperature in the pure water tank 15 is maintained at normal temperature (for example, 23° C.±1° C.). be.

この純水製造システムにおいて、種々の原因により純水の水温が定常温度よりも上昇する事態が生じたときの対処法を次に説明する。 In this pure water production system, measures to be taken when the temperature of the pure water rises above the steady-state temperature due to various causes will be described below.

[原水温度や外気温の著しい上昇に起因して純水の水温が上昇する場合]
原水温度や外気温の著しい上昇に起因して純水の水温(温度センサT17の検出温度)が第1規定温度(例えば23.5℃)よりも高くなった場合には、弁22を開(小開)とし、配管17から純水の一部を原水槽1に返送する。これにより、RO装置6からのブライン量が増加し、貯留槽42の水温が低下し、貯留槽42から第2熱交換器47に循環される水温も低下し、チラーシステム49を介して第1熱交換器11から第2熱交換器47に十分な量の熱が移動し、第1熱交換器11で中間水を十分に降温させることができるようになり、純水温度(温度センサT17検出温度)が低下する。
[When the pure water temperature rises due to a significant rise in raw water temperature or outside air temperature]
When the pure water temperature (the temperature detected by the temperature sensor T17) becomes higher than the first specified temperature (for example, 23.5° C.) due to a significant rise in raw water temperature or outside air temperature, the valve 22 is opened ( ), and part of the pure water is returned to the raw water tank 1 from the pipe 17. As a result, the amount of brine from the RO device 6 increases, the water temperature in the storage tank 42 decreases, the temperature of the water circulated from the storage tank 42 to the second heat exchanger 47 also decreases, and the first A sufficient amount of heat is transferred from the heat exchanger 11 to the second heat exchanger 47, the first heat exchanger 11 can sufficiently lower the temperature of the intermediate water, and the pure water temperature (temperature sensor T17 detects temperature) decreases.

このように、純水の一部を返送しても純水温度が低下しないときには、純水の返送量を増加させる。純水温度が第1規定温度よりも高い第2規定温度(例えば24.0℃)に達したときには、弁24を開とし、中間槽8に井水等の工水を供給し、中間水の温度を低下させる。これにより、純水温度(温度センサT17の検出温度)が低下する。 In this way, when the pure water temperature does not decrease even if part of the pure water is returned, the amount of the pure water to be returned is increased. When the pure water temperature reaches a second specified temperature (for example, 24.0° C.) higher than the first specified temperature, the valve 24 is opened, industrial water such as well water is supplied to the intermediate tank 8, and the intermediate water is Lower the temperature. As a result, the pure water temperature (the temperature detected by the temperature sensor T17) is lowered.

なお、純水温度が上昇しないときでも、中間槽8内の水位が規定水位よりも低下したときには、弁24を開とし、中間槽8へ工水を供給してもよい。 Even when the pure water temperature does not rise, the valve 24 may be opened to supply industrial water to the intermediate tank 8 when the water level in the intermediate tank 8 falls below the specified water level.

また、何らかの原因で原水槽1の水位が低下した場合にも、弁24を開とし、中間槽8に工水を供給してもよい。 Also, when the water level in the raw water tank 1 drops for some reason, the valve 24 may be opened to supply industrial water to the intermediate tank 8 .

なお、工水のイオン濃度はRO装置6からのRO透過水のイオン濃度よりも高い。そのため、中間槽8に工水を供給して運転する場合には、イオン交換装置13の通水条件(イオン交換樹脂の再生時期)を調節することが好ましく、工水の供給量に応じてイオン交換樹脂の再生時期を自動制御するプログラムを導入することが好ましい。 Incidentally, the ion concentration of the industrial water is higher than that of the RO permeated water from the RO device 6 . Therefore, when operating by supplying industrial water to the intermediate tank 8, it is preferable to adjust the water flow condition of the ion exchange device 13 (the timing of regeneration of the ion exchange resin). It is preferable to introduce a program for automatically controlling the regeneration timing of the exchange resin.

[中和槽40へのボイラドレン水の流入に起因して純水の水温が上昇する場合]
ボイラドレン水はROブラインよりも高温である。そのため、ドレンポンプが作動して、中和槽40にボイラドレン水が導入されると、中間槽40からの貯留槽42への流入水温が上昇する。これによって貯留槽42内の貯留水の水温が高くなり、貯留槽42から第2熱交換器47に循環される水温が高くなり、配管56を流れる媒体水の温度(温度センサT56の検出温度)が高くなり、その結果、チラーシステム49を経由して第1熱交換器11から第2熱交換器47へ移動する熱量が減少し、第1熱交換器11で中間水を十分に降温させることができなくなり、生産される純水の水温が上昇することがある。
[Case where temperature of pure water rises due to inflow of boiler drain water into neutralization tank 40]
Boiler drain water is hotter than RO brine. Therefore, when the drain pump is activated and the boiler drain water is introduced into the neutralization tank 40, the temperature of the inflow water from the intermediate tank 40 to the storage tank 42 rises. As a result, the temperature of the water stored in the storage tank 42 increases, the temperature of the water circulated from the storage tank 42 to the second heat exchanger 47 increases, and the temperature of the medium water flowing through the pipe 56 (the temperature detected by the temperature sensor T56) increases. As a result, the amount of heat transferred from the first heat exchanger 11 to the second heat exchanger 47 via the chiller system 49 is reduced, and the intermediate water is sufficiently cooled in the first heat exchanger 11. is not possible, and the temperature of the pure water produced may rise.

そこで、このように中和槽40にボイラドレン水が流入して中和槽40の水温(温度センサT40の検出温度)が所定温度よりも上昇する場合は、弁32を開とし、工水(この実施の形態では井水)を中和槽40に導入し、中和槽40から貯留槽42への流入水温を平常温度とする。これにより、チラーシステム49を介して第1熱交換器11から第2熱交換器47に十分な量の熱が移動し、第1熱交換器11で中間水が十分に降温するようになり、定常温度の純水が生産される。 Therefore, when the boiler drain water flows into the neutralization tank 40 and the water temperature of the neutralization tank 40 (the temperature detected by the temperature sensor T40) rises above a predetermined temperature, the valve 32 is opened and the industrial water (this In the embodiment, well water) is introduced into the neutralization tank 40, and the temperature of the inflow water from the neutralization tank 40 to the storage tank 42 is set to normal temperature. As a result, a sufficient amount of heat is transferred from the first heat exchanger 11 to the second heat exchanger 47 via the chiller system 49, and the temperature of the intermediate water is sufficiently lowered in the first heat exchanger 11. Constant temperature pure water is produced.

[その他の原因により配管56の媒体水温度(温度センサT56検出温度)が上昇する場合]
中和槽40にボイラドレン水が流入すること以外の何らかの原因によって、温度センサT56が検出する媒体水温度が規定温度よりも上昇することがある。このような場合にも、弁32を開とし、工水を中和槽40に導入し、中和槽40から貯留槽42への流入水温を平常温度とする。これにより、チラーシステム49を介して第1熱交換器11から第2熱交換器47に十分な量の熱が移動し、第1熱交換器11で中間水が十分に降温するようになり、定常温度の純水が生産される。
[When the temperature of the medium water in the pipe 56 (the temperature detected by the temperature sensor T56) rises due to other causes]
The medium water temperature detected by the temperature sensor T56 may rise above the specified temperature for some reason other than the boiler drain water flowing into the neutralization tank 40 . Even in such a case, the valve 32 is opened, industrial water is introduced into the neutralization tank 40, and the temperature of the inflow water from the neutralization tank 40 to the storage tank 42 is brought to the normal temperature. As a result, a sufficient amount of heat is transferred from the first heat exchanger 11 to the second heat exchanger 47 via the chiller system 49, and the temperature of the intermediate water is sufficiently lowered in the first heat exchanger 11. Constant temperature pure water is produced.

上記実施の形態において、純水需要先への純水供給が一時的に不要になった場合、配管17からの純水の全量を原水槽1に返送する。この場合、RO装置6への給水水質が良好となり、ROブライン量が減少するので、弁32を開とし、中和槽40に配管31から工水を補給することが好ましい。 In the above-described embodiment, when the supply of pure water to the pure water demander becomes temporarily unnecessary, the entire amount of pure water from the pipe 17 is returned to the raw water tank 1 . In this case, the quality of feed water to the RO device 6 is improved and the amount of RO brine is reduced.

上記実施の形態は本発明の一例であり、本発明は上記以外の形態とされてもよい。例えば、上記実施の形態では中和槽40がボイラドレン水を受け入れるようになっているが、ボイラドレン水以外の高温水を受け入れるものであってもよい。 The above-described embodiment is an example of the present invention, and the present invention may be in a form other than the above. For example, although the neutralization tank 40 receives boiler drain water in the above embodiment, it may receive high-temperature water other than boiler drain water.

1 原水槽
4 膜濾過装置
6 RO装置
8 中間槽
11 第1熱交換器
13 イオン交換装置
15 純水槽
40 中和槽
42 貯留槽
47 第2熱交換器
49 チラーシステム
50 水冷チラー
1 Raw Water Tank 4 Membrane Filtration Device 6 RO Device 8 Intermediate Tank 11 First Heat Exchanger 13 Ion Exchanger 15 Pure Water Tank 40 Neutralization Tank 42 Storage Tank 47 Second Heat Exchanger 49 Chiller System 50 Water Cooling Chiller

Claims (10)

原水槽と、
該原水槽からの水をRO処理するRO装置と、
該RO装置の透過水(以下、中間水という。)を受け入れる中間槽と、
該中間槽からの中間水と熱交換する第1熱交換器と、
該第1熱交換器で熱交換した中間水が通水されるイオン交換装置と、
該イオン交換装置を通過した純水を受け入れる純水槽と、
該純水槽から純水を取り出す純水取り出し手段と、
該純水取り出し手段で取り出した純水の一部を前記原水槽又は中間槽に返送する純水返送手段と、
前記RO装置の濃縮水を受け入れる受け入れ手段と、
該受け入れ手段からの水が循環通水される第2熱交換器と、
前記第1熱交換器からの熱を該第2熱交換器に移動させる、ヒートポンプを有したチラーシステムと
を有する純水製造システムの運転方法であって、
前記純水槽又は前記純水取り出し手段で取り出した純水の温度が規定温度よりも上昇したときに、前記純水返送手段により一部の純水を前記原水槽に返送することを特徴とする純水製造システムの運転方法。
a raw water tank;
an RO device for RO treating water from the raw water tank;
an intermediate tank for receiving permeated water (hereinafter referred to as intermediate water) of the RO device;
a first heat exchanger that exchanges heat with intermediate water from the intermediate tank;
an ion exchange device through which intermediate water heat-exchanged in the first heat exchanger is passed;
a pure water tank that receives pure water that has passed through the ion exchange device;
a pure water extracting means for extracting pure water from the pure water tank;
a pure water return means for returning part of the pure water taken out by the pure water take-out means to the raw water tank or the intermediate tank;
receiving means for receiving concentrated water from the RO device;
a second heat exchanger through which water from the receiving means is circulated;
and a chiller system having a heat pump for transferring heat from the first heat exchanger to the second heat exchanger, comprising:
When the temperature of the pure water taken out by the pure water tank or the pure water taking-out means rises above a specified temperature, the pure water return means returns part of the pure water to the raw water tank. How to operate a water production system.
前記純水返送手段により一部の純水を原水槽に返送すると共に、前記中間槽に工業用水を供給する請求項1の純水製造システムの運転方法。 2. A method of operating a pure water production system according to claim 1, wherein part of the pure water is returned to the raw water tank by said pure water return means, and industrial water is supplied to said intermediate tank. 前記中和槽への工業用水の供給に合わせて前記イオン交換装置の運転条件を調整する請求項2の純水製造システムの運転方法。 3. A method of operating a pure water production system according to claim 2, wherein operating conditions of said ion exchange device are adjusted in accordance with supply of industrial water to said neutralization tank. 前記受け入れ手段に高温排水が流入することにより、受け入れ手段の水温が所定温度よりも高くなったときに該受け入れ手段に工業用水を供給する請求項1~3のいずれかの純水製造システムの運転方法。 The operation of the pure water production system according to any one of claims 1 to 3, wherein industrial water is supplied to the receiving means when the water temperature of the receiving means rises above a predetermined temperature due to the high-temperature wastewater flowing into the receiving means. Method. 原水槽と、
該原水槽からの水をRO処理するRO装置と、
該RO装置の透過水(以下、中間水という。)を受け入れる中間槽と、
該中間槽からの中間水と熱交換する第1熱交換器と、
該第1熱交換器で熱交換した中間水が通水されるイオン交換装置と、
該イオン交換装置を通過した純水を受け入れる純水槽と、
該純水槽から純水を取り出す純水取り出し手段と、
該純水取り出し手段で取り出した純水の一部を前記原水槽又は中間槽に返送する純水返送手段と、
前記RO装置の濃縮水を受け入れる受け入れ手段と、
該受け入れ手段からの水が循環通水される第2熱交換器と、
前記第1熱交換器からの熱を該第2熱交換器に移動させる、ヒートポンプを有したチラーシステムと
を有する純水製造システムの運転方法であって、
前記受け入れ手段の水温が所定温度よりも高くなったときに該受け入れ手段に工業用水を供給することを特徴とする純水製造システムの運転方法。
a raw water tank;
an RO device for RO treating water from the raw water tank;
an intermediate tank for receiving permeated water (hereinafter referred to as intermediate water) of the RO device;
a first heat exchanger that exchanges heat with intermediate water from the intermediate tank;
an ion exchange device through which intermediate water heat-exchanged in the first heat exchanger is passed;
a pure water tank that receives pure water that has passed through the ion exchange device;
a pure water extracting means for extracting pure water from the pure water tank;
a pure water return means for returning part of the pure water taken out by the pure water take-out means to the raw water tank or the intermediate tank;
receiving means for receiving concentrated water from the RO device;
a second heat exchanger through which water from the receiving means is circulated;
and a chiller system having a heat pump for transferring heat from the first heat exchanger to the second heat exchanger, comprising:
A method of operating a pure water production system, wherein industrial water is supplied to said receiving means when the water temperature of said receiving means exceeds a predetermined temperature.
原水槽と、
該原水槽からの水をRO処理するRO装置と、
該RO装置の透過水(以下、中間水という。)を受け入れる中間槽と、
該中間槽からの中間水と熱交換する第1熱交換器と、
該第1熱交換器で熱交換した中間水が通水されるイオン交換装置と、
該イオン交換装置を通過した純水を受け入れる純水槽と、
該純水槽から純水を取り出す純水取り出し手段と、
該純水取り出し手段で取り出した純水の一部を前記原水槽又は中間槽に返送する純水返送手段と、
前記RO装置の濃縮水を受け入れる受け入れ手段と、
該受け入れ手段からの水が循環通水される第2熱交換器と、
前記第1熱交換器からの熱を該第2熱交換器に移動させる、ヒートポンプを有したチラーシステムと
を有する純水製造システムの運転方法であって、
該ヒートポンプの凝縮器と前記第2熱交換器とを循環する媒体の温度が所定温度よりも高くなったときに該受け入れ手段に工業用水を供給することを特徴とする純水製造システムの運転方法。
a raw water tank;
an RO device for RO treating water from the raw water tank;
an intermediate tank for receiving permeated water (hereinafter referred to as intermediate water) of the RO device;
a first heat exchanger that exchanges heat with intermediate water from the intermediate tank;
an ion exchange device through which intermediate water heat-exchanged in the first heat exchanger is passed;
a pure water tank that receives pure water that has passed through the ion exchange device;
a pure water extracting means for extracting pure water from the pure water tank;
a pure water return means for returning part of the pure water taken out by the pure water take-out means to the raw water tank or the intermediate tank;
receiving means for receiving concentrated water from the RO device;
a second heat exchanger through which water from the receiving means is circulated;
and a chiller system having a heat pump for transferring heat from the first heat exchanger to the second heat exchanger, comprising:
A method of operating a pure water production system, comprising supplying industrial water to the receiving means when the temperature of a medium circulating through the condenser of the heat pump and the second heat exchanger becomes higher than a predetermined temperature. .
前記受け入れ手段に供給する工業用水は井水である請求項4~6のいずれかの純水製造システムの運転方法。 The operating method of a pure water production system according to any one of claims 4 to 6, wherein the industrial water supplied to said receiving means is well water. 前記受け入れ手段は、中和槽と、該中和槽からの水が流入する貯留槽と、該貯留槽から水を流出させる流出手段とを有しており、
前記RO装置の濃縮水及び前記高温排水は該中和槽に導入される請求項4~7のいずれかの純水製造システムの運転方法。
The receiving means has a neutralization tank, a storage tank into which water flows from the neutralization tank, and an outflow means for discharging water from the storage tank,
The method of operating a pure water production system according to any one of claims 4 to 7, wherein the concentrated water and the high-temperature waste water from the RO device are introduced into the neutralization tank.
前記第2熱交換器に、該貯留槽内の水が循環通水される請求項8の純水製造システムの運転方法。 9. The method of operating a pure water production system according to claim 8, wherein the water in the storage tank is circulated through the second heat exchanger. 前記高温排水はボイラドレン水である請求項4~9のいずれかの純水製造システムの運転方法。
The method of operating a pure water production system according to any one of claims 4 to 9, wherein said high-temperature waste water is boiler drain water.
JP2021171785A 2021-10-20 2021-10-20 Operation method of pure water production system Pending JP2023061693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021171785A JP2023061693A (en) 2021-10-20 2021-10-20 Operation method of pure water production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021171785A JP2023061693A (en) 2021-10-20 2021-10-20 Operation method of pure water production system

Publications (1)

Publication Number Publication Date
JP2023061693A true JP2023061693A (en) 2023-05-02

Family

ID=86249702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021171785A Pending JP2023061693A (en) 2021-10-20 2021-10-20 Operation method of pure water production system

Country Status (1)

Country Link
JP (1) JP2023061693A (en)

Similar Documents

Publication Publication Date Title
TWI687374B (en) Ultrapure water manufacturing device
JP6386338B2 (en) Ammonia-containing wastewater treatment apparatus and treatment method
JP6350719B2 (en) Ultrapure water production equipment
TWI691687B (en) Ultrapure water manufacturing device
TWI805722B (en) Exhaust heat recovery and reuse system for water treatment facility in semiconductor manufacturing facility
JP2011245413A (en) Water treatment system and water treatment method
JP5743490B2 (en) Water treatment system and water treatment method
JP2023061693A (en) Operation method of pure water production system
JP2019152411A (en) Heating method of ultrapure water
JP2013213660A (en) Steam plant and method for operating the same
JP6532494B2 (en) Reverse osmosis processing method and apparatus
JP6350718B2 (en) Ultrapure water production equipment
JP7263730B2 (en) Boiler water treatment equipment and treatment method
JP2006159003A (en) Heating and cooling method and apparatus for ultrapure water
JP2018153799A (en) Reverse osmosis treatment method and device
JP2008151440A (en) Boiler system
JP2009183800A (en) Pure water production method and device
EP1751487B1 (en) Cooling method for natural gas conversion complex
JP2015009204A (en) Effluent treatment apparatus and effluent treatment method
JP6709036B2 (en) Hot water recovery system
JP4919155B2 (en) Water treatment system
JP2006226697A (en) Cooling controller, cooling control method and plant using cooling controller
JP2020133952A (en) Method of producing hot water and recycling waste hot water
JP2024055349A (en) Seawater desalination system and seawater desalination method
JP2019162600A (en) Reverse osmosis processing method and apparatus