JP5101322B2 - Pure water production method and apparatus - Google Patents

Pure water production method and apparatus Download PDF

Info

Publication number
JP5101322B2
JP5101322B2 JP2008022977A JP2008022977A JP5101322B2 JP 5101322 B2 JP5101322 B2 JP 5101322B2 JP 2008022977 A JP2008022977 A JP 2008022977A JP 2008022977 A JP2008022977 A JP 2008022977A JP 5101322 B2 JP5101322 B2 JP 5101322B2
Authority
JP
Japan
Prior art keywords
water
raw water
heat
temperature
receiving tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008022977A
Other languages
Japanese (ja)
Other versions
JP2009183800A (en
Inventor
和範 田中
崇宏 相賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008022977A priority Critical patent/JP5101322B2/en
Publication of JP2009183800A publication Critical patent/JP2009183800A/en
Application granted granted Critical
Publication of JP5101322B2 publication Critical patent/JP5101322B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、原水を逆浸透膜分離装置に通して純水を製造する純水製造方法及び装置に関するものである。   The present invention relates to a pure water production method and apparatus for producing pure water by passing raw water through a reverse osmosis membrane separation device.

従来、逆浸透膜分離装置(以下、RO装置と記す)を用いて純水を製造する純水製造装置としては、図2に示すように、原水槽201の20℃〜25℃の原水を、熱回収用熱交換器202に通すことで30℃〜35℃に予熱してから加熱用熱交換器203に通して40℃〜45℃に加温し、供給ポンプ204にて逆浸透膜にて純水の分離処理を行うRO装置205に供給し、RO装置205で処理した処理水を脱気装置206で脱気処理した後、上記熱回収用熱交換器202に通すことで熱回収して30℃〜35℃の処理水とし、イオン交換設備207にてイオン交換して処理水(純水)を製造するようにしたものが知られている(例えば、特許文献1参照)。処理水は、例えば、リソグラフィー工法でのフォトレジストの現像液を作成するための希釈水等として随時に取り出して使用される。   Conventionally, as a pure water production apparatus for producing pure water using a reverse osmosis membrane separation apparatus (hereinafter referred to as RO apparatus), as shown in FIG. It is preheated to 30 ° C. to 35 ° C. by passing through the heat recovery heat exchanger 202, then heated to 40 ° C. to 45 ° C. through the heating heat exchanger 203, and is supplied to the reverse osmosis membrane by the supply pump 204. It is supplied to the RO device 205 that performs the separation process of pure water, and the treated water treated by the RO device 205 is degassed by the deaeration device 206 and then passed through the heat recovery heat exchanger 202 to recover the heat. Known is treated water at 30 ° C. to 35 ° C. and ion exchange equipment 207 is used for ion exchange to produce treated water (pure water) (see, for example, Patent Document 1). The treated water is taken out from time to time and used as, for example, dilution water for preparing a photoresist developer by a lithography method.

この純水製造装置は、原水の温度を加熱用熱交換器203で40℃〜45℃と比較的高くすることにより、RO装置205でのスライム汚染による透過水量の低下を防止するとともに、熱効率の向上とイオン交換樹脂の熱劣化の防止を図るようにしている。
特開平10−309575号公報
In this pure water production apparatus, the temperature of the raw water is made relatively high at 40 ° C. to 45 ° C. by the heat exchanger 203 for heating, thereby preventing a decrease in the amount of permeate due to slime contamination in the RO device 205 and improving the thermal efficiency. Improvements and prevention of thermal deterioration of the ion exchange resin are attempted.
JP-A-10-309575

しかしながら、特許文献1に記載の純水製造装置においては、RO装置205に入る原水の温度が40℃〜45℃と高いので、上記のようにスライム汚染を防止できるが、逆浸透膜の標準設計温度は25℃であり、水温が変われば当然のように透過水量、水質等が変動する。また、膜の許容温度は一般に45℃と言われているが、劣化の観点から30℃程度以下に抑えるのが良いとされているのに加えて、処理水の温度を精度良く一定に安定させることができないという問題がある。   However, in the pure water production apparatus described in Patent Document 1, since the temperature of raw water entering the RO apparatus 205 is as high as 40 ° C to 45 ° C, slime contamination can be prevented as described above, but the standard design of a reverse osmosis membrane The temperature is 25 ° C., and if the water temperature changes, the amount of permeated water, water quality, etc. naturally vary. In addition, the allowable temperature of the membrane is generally said to be 45 ° C, but in addition to being considered to be suppressed to about 30 ° C or less from the viewpoint of deterioration, the temperature of the treated water is stabilized stably with high accuracy. There is a problem that can not be.

また、原水の温度を40℃〜45℃にする加熱用熱交換器203の熱源におけるエネルギー消費量が大きいという問題がある。   Moreover, there is a problem that the energy consumption in the heat source of the heat exchanger 203 for heating that makes the temperature of the raw water 40 to 45 ° C. is large.

また、イオン交換設備207により原水中のイオン成分は除去できるものの、原水に溶存する二酸化炭素及び酸素の除去が不十分であるため、リソグラフィー工法でのフォトレジストの現像液を作成するための希釈水として用いた場合、炭酸塩が生じてフォトレジストの現像不良を招く場合があるという問題がある。   Further, although ion components in the raw water can be removed by the ion exchange equipment 207, since the removal of carbon dioxide and oxygen dissolved in the raw water is insufficient, dilution water for creating a photoresist developer in the lithography method is used. When used as a carbonic acid, there is a problem that carbonates are formed, which may lead to poor development of the photoresist.

本発明は、上記従来の問題点に鑑み、製造した処理水(純水)の温度を精度良く一定に安定化することができ、しかも、工場等の空調機用冷凍装置、空気圧縮装置、ボイラー装置等の廃熱を利用することで、エネルギー消費量が小さい純水製造方法及び装置を提供することを目的とする。さらに、原水に溶存する二酸化炭素及び酸素を除去することができる純水製造方法及び装置を提供することを目的とする。   In view of the above-mentioned conventional problems, the present invention can stabilize the temperature of the produced treated water (pure water) accurately and uniformly, and can also be used for a refrigerating apparatus for an air conditioner such as a factory, an air compressor, and a boiler. It aims at providing the pure water manufacturing method and apparatus with small energy consumption by utilizing waste heat, such as an apparatus. Furthermore, it aims at providing the pure water manufacturing method and apparatus which can remove the carbon dioxide and oxygen which are melt | dissolved in raw | natural water.

本発明の純水製造方法は、複数の熱交換器を通して温度制御した原水をRO装置に通して純水を製造する純水製造方法であって、原水槽及び受水槽内の原水の温度、ならびに受水槽内の原水の水位を検出し、その検出温度および検出水位に応じて、複数の熱交換器の熱出力および受水槽への原水の送給量を制御して受水槽内の原水の温度および水位を所定値に制御し、受水槽から逆浸透膜分離装置に原水を送給するものである。 The pure water production method of the present invention is a pure water production method for producing pure water by passing raw water whose temperature is controlled through a plurality of heat exchangers through an RO device, the temperature of the raw water in the raw water tank and the water receiving tank , and The water level of the raw water in the water receiving tank is detected by detecting the water level in the water receiving tank and controlling the heat output of multiple heat exchangers and the amount of raw water supplied to the water receiving tank according to the detected temperature and the detected water level. In addition, the water level is controlled to a predetermined value, and raw water is supplied from the water receiving tank to the reverse osmosis membrane separation device.

この構成によると、複数の熱交換器の前段に設けた原水槽内及びRO装置の前段に設けた受水槽内の原水温度に応じて、複数の熱交換器の熱出力を制御して受水槽内の原水の温度を所定値に制御することで、RO装置の効率を最適に保ち、透過水(処理水)量・水質などを安定化させると共に、RO装置にて製造された処理水(純水)の温度を精度良く一定に安定化することができる。   According to this configuration, the water receiving tank is configured to control the heat output of the plurality of heat exchangers according to the raw water temperature in the raw water tank provided in the previous stage of the plurality of heat exchangers and in the water receiving tank provided in the previous stage of the RO device. By controlling the temperature of the raw water to a predetermined value, the efficiency of the RO device is kept optimal, the amount of permeated water (treated water) and water quality are stabilized, and the treated water produced by the RO device (pure water) It is possible to stabilize the temperature of water) accurately and constantly.

また、複数の熱交換器に、RO装置のブライン廃熱、冷凍廃熱、コンプレッサー廃熱及びボイラー廃熱のうちの少なくとも一つを供給するようにすると、専ら原水を制御するための熱源を設ける場合と比較して、エネルギー消費量を削減することで省エネルギー化を図ることができ、地球温暖化の原因の一つである二酸化炭素の発生量削減にも寄与することができる。   Further, if at least one of the brine waste heat, the refrigeration waste heat, the compressor waste heat and the boiler waste heat of the RO device is supplied to the plurality of heat exchangers, a heat source exclusively for controlling the raw water is provided. Compared to the case, energy saving can be achieved by reducing the energy consumption, which can contribute to the reduction of the amount of carbon dioxide that is one of the causes of global warming.

また、本発明の純水製造装置は、複数の熱交換器を通して温度制御した原水をRO装置に通して純水を製造する純水製造装置であって、原水槽と、熱媒体の供給量を調整する調整弁が夫々設けられた複数の熱交換器と、受水槽と、RO装置とをこの順に接続し、原水槽の原水を複数の熱交換器を介して受水槽に送給する供給ポンプを設け、原水槽内の原水の温度を検出する第1水温センサと、受水槽内の原水の温度を検出する第2水温センサとに応じて複数の熱交換器の調整弁を制御する制御部を設け、この制御部は受水槽内の原水の水位を検出する水位センサに応じて受水槽への供給ポンプによる原水の送給量を制御するものである。 The pure water production apparatus of the present invention is a pure water production apparatus for producing pure water by passing raw water whose temperature is controlled through a plurality of heat exchangers through an RO device, and the supply amount of the raw water tank and the heat medium is reduced. A supply pump that connects a plurality of heat exchangers each provided with a regulating valve to be adjusted, a water receiving tank, and an RO device in this order, and feeds raw water from the raw water tank to the water receiving tank via the plurality of heat exchangers And a controller that controls the adjustment valves of the plurality of heat exchangers according to a first water temperature sensor that detects the temperature of the raw water in the raw water tank and a second water temperature sensor that detects the temperature of the raw water in the water receiving tank The control unit controls the feed amount of the raw water by the supply pump to the water receiving tank in accordance with a water level sensor that detects the water level of the raw water in the water receiving tank .

この構成によると、制御部にて複数の熱交換器の調整弁を制御して上記純水製造方法を実施することで、RO装置の効率を最適に保ち、透過水(処理水)量・水質などを安定化させると共に、逆浸透膜分離装置にて製造された処理水(純水)の温度を精度良く一定に安定化することができる。   According to this configuration, the control unit controls the control valves of a plurality of heat exchangers and performs the pure water manufacturing method, so that the efficiency of the RO device is maintained optimally, and the amount of permeate (treated water) and water quality are maintained. And the temperature of the treated water (pure water) produced by the reverse osmosis membrane separation device can be stabilized with high accuracy and constant.

また、複数の熱交換器に、RO装置のブライン廃熱、冷凍廃熱、コンプレッサー廃熱及びボイラー廃熱(蒸気)で加熱された熱媒体のうちの少なくとも一つを供給することで、専ら原水を制御するための熱源(ヒーター、ボイラー等)を設ける場合と比較して、エネルギー消費量を削減することができる。   Moreover, by supplying at least one of the heat medium heated by the brine waste heat, the refrigeration waste heat, the compressor waste heat and the boiler waste heat (steam) of the RO device to the plurality of heat exchangers, the raw water is exclusively used. Compared with the case where a heat source (heater, boiler, etc.) is provided for controlling the energy consumption, the energy consumption can be reduced.

また、複数の熱交換器の下流側に、ボイラー廃熱を熱源として原水を脱気する脱気装置を設けたことで、新たに熱源を設けることなく、エネルギー消費量を削減しながら、原水に溶存する二酸化炭素及び酸素を除去することができる。   In addition, by providing a deaeration device that degass raw water using boiler waste heat as a heat source on the downstream side of multiple heat exchangers, while reducing energy consumption without newly providing a heat source, Dissolved carbon dioxide and oxygen can be removed.

本発明の純水製造方法及び装置によれば、複数の熱交換器の前段に設けた原水槽内及びRO装置の前段に設けた受水槽内の原水温度に応じて、工場等の空調機用冷凍装置、空気圧縮装置、ボイラー装置等の廃熱を利用して複数の熱交換器で熱交換させて、受水槽内の原水の温度を所定値に制御することで、RO装置の効率を最適に保ち、透過水(処理水)量・水質などを安定化させると共に、RO装置にて製造された処理水(純水)の温度を精度良く一定に安定化することができる。
また制御部が、検出水位に応じてインバータを作動制御し、供給ポンプを駆動することで、受水槽ヘの原水の送給量が制御され、受水槽の原水の水位を常に一定に維持することができる。
さらに、廃熱を利用した複数の熱交換器の熱出力を、インバータに対する作動制御値に応じて適宜調整することができる。
また受水槽内の原水は、その水位及び温度が高精度に一定に制御されており、その受水槽内の原水が、RO装置に取り出されて逆浸透膜にて純水が分離処理され、その処理水(純水)を、例えばリソグラフィー工法におけるフォトレジストの現像液を作成するための希釈水等として使用するためリソグラフィー工程等に送給することができる。
According to the pure water production method and apparatus of the present invention, depending on the raw water temperature in the raw water tank provided in the previous stage of the plurality of heat exchangers and in the water receiving tank provided in the previous stage of the RO device, for an air conditioner such as a factory. Optimizing the efficiency of RO equipment by controlling the temperature of raw water in the water receiving tank to a predetermined value by exchanging heat with multiple heat exchangers using waste heat from refrigeration equipment, air compression equipment, boiler equipment, etc. The amount of permeated water (treated water) and water quality can be stabilized, and the temperature of treated water (pure water) produced by the RO device can be stabilized with high accuracy and constant.
In addition, the control unit controls the operation of the inverter according to the detected water level and drives the supply pump to control the amount of raw water supplied to the water receiving tank so that the water level in the water receiving tank is always maintained constant. Can do.
Furthermore, the heat outputs of a plurality of heat exchangers using waste heat can be adjusted as appropriate according to the operation control value for the inverter.
In addition, the raw water in the water receiving tank has its water level and temperature controlled to be constant with high accuracy, and the raw water in the water receiving tank is taken out by the RO device and pure water is separated by the reverse osmosis membrane. The treated water (pure water) can be supplied to a lithography process or the like for use as, for example, dilution water for preparing a photoresist developer in a lithography method.

以下、本発明の純水製造方法及び装置の一実施形態について、図1を参照して説明する。   Hereinafter, an embodiment of the pure water production method and apparatus of the present invention will be described with reference to FIG.

図1において、本実施形態の純水製造装置は、原水槽1から原水を取り出して前処理槽2にて逆浸透膜ヘのスライムの付着を防止するため等の所要の前処理を行い、前処理後の原水を供給ポンプ3にて第1乃至第4加熱用熱交換器41、42、43、44に順次通した後、脱気装置5に通し、所定の温度に加温された原水をRO装置7の前段に設けた受水槽6を介してRO装置7に供給し、RO装置7の逆浸透膜にて純水の分離処理を行い、処理後の処理水(純水)をリソグラフィー工程等に送給するように構成されている。   In FIG. 1, the pure water production apparatus of the present embodiment performs a necessary pretreatment such as removing raw water from the raw water tank 1 and preventing the slime from adhering to the reverse osmosis membrane in the pretreatment tank 2. The treated raw water is sequentially passed through the first to fourth heating heat exchangers 41, 42, 43, and 44 by the supply pump 3, and then passed through the deaeration device 5 to supply the raw water heated to a predetermined temperature. It supplies to the RO apparatus 7 through the water receiving tank 6 provided in the front | former stage of RO apparatus 7, performs the separation process of a pure water in the reverse osmosis membrane of the RO apparatus 7, and processes the processed water (pure water) after a process to lithography It is comprised so that it may send to etc.

原水槽1には、原水の水温を検出する第1水温センサ11が配設され、検出した第1水温検出信号t1が制御部20に入力されている。また、受水槽6には、原水の水温を検出する第2水温センサ12と原水の水位を検出する水位センサ13とが配設され、検出した第2水温検出信号t2及び水位検出信号hが制御部20に入力されている。また、使用水量信号wも制御部20に入力される。この使用水量信号wは、リソグラフィー工程等の利用側への流出流量を流量センサ(図示せず)にて検出することができる。   The raw water tank 1 is provided with a first water temperature sensor 11 that detects the water temperature of the raw water, and the detected first water temperature detection signal t <b> 1 is input to the control unit 20. Further, the water receiving tank 6 is provided with a second water temperature sensor 12 for detecting the water temperature of the raw water and a water level sensor 13 for detecting the water level of the raw water, and the detected second water temperature detection signal t2 and the water level detection signal h are controlled. Is input to the unit 20. In addition, a use water amount signal w is also input to the control unit 20. The use water amount signal w can be detected by a flow rate sensor (not shown) of the outflow rate to the use side in the lithography process or the like.

制御部20は、供給ポンプ3を駆動するインバータ31に制御信号i1を出力し、供給ポンプ3を作動制御するように構成されている。   The control unit 20 is configured to output a control signal i1 to an inverter 31 that drives the supply pump 3, and to control the operation of the supply pump 3.

第1加熱用熱交換器41は、RO装置7の逆浸透膜の洗浄に用いられるブライン(洗浄水)の廃熱によって原水を加熱するものであり、RO装置7からブラインが供給されるブライン配管111に接続されている。ブライン配管111には、ブラインの流量を調整して第1加熱用熱交換器41の熱出力を調整する調整弁121が介設されている。調整弁121には、弁体を駆動する弁制御部131が接続されている。RO装置7から供給されるブラインの温度は、例えば25℃である。   The first heating heat exchanger 41 heats raw water with waste heat of brine (washing water) used for cleaning the reverse osmosis membrane of the RO device 7, and is a brine pipe to which brine is supplied from the RO device 7. 111 is connected. The brine pipe 111 is provided with an adjustment valve 121 that adjusts the flow rate of the brine to adjust the heat output of the first heating heat exchanger 41. A valve control unit 131 that drives the valve body is connected to the adjustment valve 121. The temperature of the brine supplied from the RO device 7 is 25 ° C., for example.

第2加熱用熱交換器42は、このRO装置7が設置された工場に存在する冷凍装置101の廃熱によって原水を加熱するものであり、冷凍装置101の廃熱を受け取った熱媒体が供給される熱媒体配管112に接続されている。第2加熱用熱交換器42に導かれる熱媒体は、冷凍装置101の冷凍サイクルの蒸発器によって加熱された熱媒体である。熱媒体配管112には、熱媒体の流量を調整して第2加熱用熱交換器42の熱出力を調整する調整弁122が介設されており、調整弁122には、弁体を駆動する弁制御部132が接続されている。冷凍装置101から供給される熱媒体の温度は、例えば28℃である。熱媒体としては、冷装置101からの加熱された廃水、工水、井水、市水、冷媒等を用いることができる。 The second heating heat exchanger 42 heats the raw water with the waste heat of the refrigeration apparatus 101 existing in the factory where the RO device 7 is installed, and is supplied by the heat medium that has received the waste heat of the refrigeration apparatus 101. It is connected to the heat medium piping 112 to be performed. The heat medium guided to the second heating heat exchanger 42 is a heat medium heated by the evaporator of the refrigeration cycle of the refrigeration apparatus 101. The heat medium pipe 112 is provided with an adjustment valve 122 that adjusts the heat output of the second heat exchanger 42 by adjusting the flow rate of the heat medium, and drives the valve body to the adjustment valve 122. A valve control unit 132 is connected. The temperature of the heat medium supplied from the refrigeration apparatus 101 is 28 ° C., for example. As the heat medium, it is possible to use heated waste water from refrigeration apparatus 101, industrial water, well water, city water, a refrigerant or the like.

第3加熱用熱交換器43は、このRO装置7が設置された工場に存在するコンプレッサー装置102の廃熱によって原水を加熱するものであり、コンプレッサー装置102の廃熱を受け取った熱媒体が供給される熱媒体配管113に接続されている。熱媒体配管113には、熱媒体の流量を調整して第3加熱用熱交換器43の熱出力を調整する調整弁123が介設されており、調整弁123には、弁体を駆動する弁制御部133が接続されている。コンプレッサー装置102から供給される熱媒体の温度は、例えば32℃である。熱媒体としては、コンプレッサー装置102からの加熱された廃水、工水、井水、市水、冷媒等を用いることができる。   The third heating heat exchanger 43 heats the raw water by the waste heat of the compressor device 102 existing in the factory where the RO device 7 is installed, and is supplied by the heat medium that has received the waste heat of the compressor device 102. Is connected to the heat medium pipe 113. The heat medium pipe 113 is provided with an adjustment valve 123 that adjusts the flow rate of the heat medium to adjust the heat output of the third heating heat exchanger 43, and drives the valve body to the adjustment valve 123. A valve control unit 133 is connected. The temperature of the heat medium supplied from the compressor device 102 is 32 ° C., for example. As the heat medium, heated waste water, industrial water, well water, city water, refrigerant, or the like from the compressor device 102 can be used.

第4加熱用熱交換器44は、RO装置7前段での原水の温度が所定の温度以下である場合に、RO装置7が設置された工場に存在するボイラー装置103によって原水を加熱するものであり、ボイラー装置103の廃熱を受け取った熱媒体が供給される熱媒体配管114に接続されている。熱媒体配管114には、熱媒体の流量を調整して第4加熱用熱交換器44の熱出力を調整する調整弁124が介設されており、調整弁124には、弁体を駆動する弁制御部134が接続されている。ボイラー装置103から供給される熱媒体の温度は、例えば120℃である。熱媒体としては、ボイラー装置103からの加熱された工水、井水、市水、冷媒等を用いることができる。また、熱媒体に代えて、ボイラー装置の余剰スチームを第4加熱用熱交換器44に供給してもよい。   The fourth heating heat exchanger 44 heats the raw water by the boiler device 103 existing in the factory where the RO device 7 is installed when the temperature of the raw water in the previous stage of the RO device 7 is equal to or lower than a predetermined temperature. Yes, it is connected to a heat medium pipe 114 to which a heat medium that has received waste heat from the boiler device 103 is supplied. The heat medium pipe 114 is provided with an adjusting valve 124 for adjusting the heat output of the fourth heating heat exchanger 44 by adjusting the flow rate of the heat medium. The adjusting valve 124 drives a valve body. A valve control unit 134 is connected. The temperature of the heat medium supplied from the boiler device 103 is 120 ° C., for example. As the heat medium, heated industrial water, well water, city water, refrigerant, or the like from the boiler device 103 can be used. Further, instead of the heat medium, excess steam of the boiler device may be supplied to the fourth heating heat exchanger 44.

また、脱気装置5は、原水に溶存する二酸化炭素及び酸素を脱気するものであり、RO装置7の寿命を延ばすため、予めRO装置7の前段に脱気装置5を設けることで、原水に溶存する二酸化炭素及び酸素を所定の溶存濃度以下に脱気することができる。   The deaeration device 5 degasses carbon dioxide and oxygen dissolved in the raw water. To extend the life of the RO device 7, the deaeration device 5 is provided in front of the RO device 7 in advance. Carbon dioxide and oxygen dissolved in the water can be deaerated to a predetermined dissolved concentration or less.

制御部20は、第1乃至第4加熱用熱交換器41、42、43、44の弁制御部131、132、133、134に制御信号v1、v2、v3、v4を出力し、第1乃至第4加熱用熱交換器41、42、43、44の熱出力を夫々制御するように構成されている。   The control unit 20 outputs control signals v1, v2, v3, v4 to the valve control units 131, 132, 133, 134 of the first to fourth heating heat exchangers 41, 42, 43, 44, and the first to fourth heating exchangers 41, 42, 43, 44. The fourth heating heat exchangers 41, 42, 43, and 44 are configured to control heat outputs.

以上の構成において、原水槽1内の原水が、前処理槽2で所要の前処理が行われた後、供給ポンプ3にて第1乃至第4加熱用熱交換器41、42、43、44に送給されて加温され、脱気装置5に供給されて溶存二酸化炭素及び溶存酸素が脱気され、受水槽6に送給される。受水槽6では、貯留されている原水の水位が水位センサ13にて検出され、その水位検出信号hが制御部20に入力される。制御部20は、水位検出信号hに基づいてインバータ31を作動制御し、供給ポンプ3を駆動することで、上記受水槽6ヘの原水の送給量が制御され、受水槽6の水位が常に一定に維持される。   In the above configuration, the raw water in the raw water tank 1 is subjected to the necessary pretreatment in the pretreatment tank 2, and then the first to fourth heating heat exchangers 41, 42, 43, 44 are supplied by the supply pump 3. To the deaerator 5, the dissolved carbon dioxide and dissolved oxygen are degassed and fed to the water receiving tank 6. In the water receiving tank 6, the water level of the stored raw water is detected by the water level sensor 13, and the water level detection signal h is input to the control unit 20. The control unit 20 controls the operation of the inverter 31 based on the water level detection signal h, and drives the supply pump 3 to control the amount of raw water supplied to the water receiving tank 6 so that the water level of the water receiving tank 6 is always maintained. Maintained constant.

また、原水槽1の原水の水温が第1水温センサ11で検出され、その第1水温検出信号t1が制御部20に入力される。また、受水槽6の原水の水温が第2水温センサ12で検出され、その第2水温検出信号t2が制御部20に入力される。これらの水温検出信号t1、t2に基づいて、制御部20は、弁制御部131、132、133、134、135を作動制御する。   Further, the temperature of the raw water in the raw water tank 1 is detected by the first water temperature sensor 11, and the first water temperature detection signal t 1 is input to the control unit 20. Further, the water temperature of the raw water in the water receiving tank 6 is detected by the second water temperature sensor 12, and the second water temperature detection signal t <b> 2 is input to the control unit 20. Based on these water temperature detection signals t1, t2, the control unit 20 controls the operation of the valve control units 131, 132, 133, 134, 135.

例えば、冬季において、原水槽1の原水の水温が5℃、受水槽6の原水の水温が25℃であることが検出されると、制御部20は、全ての弁制御部131、132、133、134に弁体の全開を指令する制御信号v1、v2、v3、v4を出力し、第1乃至第4加熱用熱交換器41、42、43、44への熱媒体の供給量を最大にする。これにより、第1乃至第4加熱用熱交換器41、42、43、44の熱出力が最大となり、第1加熱用熱交換器41で加熱された原水の温度が6.5℃となり、さらに第2加熱用熱交換器42で加熱された原水の温度が14℃となり、さらに第3加熱用熱交換器43で加熱された原水の温度が25℃となり、さらに第4加熱用熱交換器44では補助的に原水の温度が25℃を維持するように構成されており、これにより、受水槽6を経たRO装置7の入口での原水の温度が25℃±0.5℃となる。 For example, in the winter season , when it is detected that the temperature of the raw water in the raw water tank 1 is 5 ° C. and the temperature of the raw water in the water receiving tank 6 is 25 ° C. , the controller 20 controls all the valve controllers 131, 132, 133. , 134 to output control signals v1, v2, v3, v4 for commanding the full opening of the valve body to maximize the supply amount of the heat medium to the first to fourth heating heat exchangers 41, 42, 43, 44. To do. As a result, the heat output of the first to fourth heating heat exchangers 41, 42, 43, 44 is maximized, the temperature of the raw water heated by the first heating heat exchanger 41 is 6.5 ° C., and The temperature of the raw water heated by the second heating heat exchanger 42 becomes 14 ° C., the temperature of the raw water heated by the third heating heat exchanger 43 becomes 25 ° C., and the fourth heating heat exchanger 44. Then, the temperature of the raw water is supplementarily maintained at 25 ° C., so that the temperature of the raw water at the inlet of the RO device 7 that has passed through the water receiving tank 6 becomes 25 ° C. ± 0.5 ° C.

また、例えば、春季又は秋季において、原水槽1の原水の水温が15℃、受水槽6の原水の水温が25℃であることが検出されると、制御部20は、第1、第2及び第4加熱用熱交換器41、42、44の弁制御部131、132、134に弁体の全閉を指令する制御信号v1、v2、v4を出力する一方、第3加熱用熱交換器43の弁制御部133に弁体の全開を指令する制御信号v3を出力する。こうして、第1、第2及び第4加熱用熱交換器41、42、44の熱出力を停止する一方、第3加熱用熱交換器43の熱出力を最大にする。これにより、第3加熱用熱交換器43で加熱された原水の温度が25℃となり、受水槽6を経たRO装置7の入口での原水の温度が25℃±0.5℃となる。 Further, for example, when it is detected that the water temperature of the raw water in the raw water tank 1 is 15 ° C. and the water temperature of the raw water in the water receiving tank 6 is 25 ° C. in spring or autumn, the control unit 20 performs the first, second and The control signals v1, v2, and v4 for instructing the valve control units 131, 132, and 134 of the fourth heating heat exchangers 41, 42, and 44 to be fully closed are output, while the third heating heat exchanger 43 is output. A control signal v3 for instructing the valve control unit 133 to fully open the valve body is output. Thus, the heat output of the first, second, and fourth heating heat exchangers 41, 42, 44 is stopped, while the heat output of the third heating heat exchanger 43 is maximized. Thereby, the temperature of the raw water heated with the 3rd heating heat exchanger 43 will be 25 degreeC, and the temperature of the raw water at the entrance of RO apparatus 7 which passed through the water receiving tank 6 will be 25 degreeC +/- 0.5 degreeC.

また、例えば、夏季において、原水槽1の原水の水温が29℃、受水槽6の原水の水温が29℃であることが検出されると、制御部20は、全ての弁制御部131、132、133、134に弁体の全閉を指令する制御信号v1、v2、v3、v4を出力し、第1乃至第4加熱用熱交換器41、42、43、44への熱媒体の供給量を停止する。これにより、第1乃至第4加熱用熱交換器41、42、43、44の熱出力が零となり、第1乃至第4加熱用熱交換器41、42、43、44での熱交換を不要とする。 For example, in the summer, when it is detected that the temperature of the raw water in the raw water tank 1 is 29 ° C. and the temperature of the raw water in the water receiving tank 6 is 29 ° C. , the controller 20 controls all the valve controllers 131 and 132. The control signals v1, v2, v3, v4 for instructing the valve body to fully close to 133, 134 are output, and the supply amount of the heat medium to the first to fourth heating heat exchangers 41, 42, 43, 44 To stop. As a result, the heat output of the first to fourth heating heat exchangers 41, 42, 43, and 44 becomes zero, and the heat exchange in the first to fourth heating heat exchangers 41, 42, 43, and 44 is unnecessary. And

以上のように、制御部20により、原水槽1の水温および受水槽6の水温に応じて第1乃至第4加熱用熱交換器41、42、43、44の熱出力を制御することにより、原水の温度を安定して所定の温度に制御することにより、所定の温度に加温された原水をRO装置7の前段に配設された受水槽6を介してRO装置7に供給することができる。なお、第1乃至第4加熱用熱交換器41、42、43、44の熱出力は、使用水量信号w又はインバータ31に対する作動制御値に応じて適宜調整してもよい。 As described above, by controlling the heat output of the first to fourth heating heat exchangers 41, 42, 43, and 44 according to the water temperature of the raw water tank 1 and the water temperature of the water receiving tank 6 by the control unit 20, By stably controlling the temperature of the raw water to a predetermined temperature, the raw water heated to the predetermined temperature can be supplied to the RO device 7 via the water receiving tank 6 disposed in the preceding stage of the RO device 7. it can. Note that the heat outputs of the first to fourth heating heat exchangers 41, 42, 43, 44 may be appropriately adjusted according to the water usage signal w or the operation control value for the inverter 31.

このように、第1加熱用熱交換器41の熱出力にRO装置7のブラインの廃熱を利用し、第2加熱用熱交換器42の熱出力に冷凍装置101の廃熱を利用し、第3加熱用熱交換器43の熱出力にコンプレッサー装置102の廃熱を利用し、予備的に第4加熱用熱交換器44の熱出力を利用することにより、熱出力を専用の熱機器で生成する場合と比較して、大幅なエネルギー消費量を削減することができる。表1は、本実施形態の純水製造装置が動作する際、各廃熱を使用する廃熱使用エネルギーと、原水の加熱に必要な必要エネルギーとを併せて示した表である。表1には、定常時と、回収NG時とにおける使用エネルギー及び必要エネルギーを示している。ここで、定常時とは、原水の加熱に必要な量の加温された工水等の排水を回収できる場合をいう。また、回収NG時とは、原水の加熱に必要な量の加温された工水等の排水を回収できない場合をいう。   Thus, the waste heat of the brine of the RO device 7 is used for the heat output of the first heating heat exchanger 41, the waste heat of the refrigeration device 101 is used for the heat output of the second heating heat exchanger 42, By using the waste heat of the compressor device 102 as the heat output of the third heating heat exchanger 43 and preliminarily using the heat output of the fourth heating heat exchanger 44, the heat output is obtained by a dedicated heat device. Compared with the case where it produces | generates, a significant energy consumption can be reduced. Table 1 is a table showing the waste heat use energy that uses each waste heat and the necessary energy required for heating the raw water when the pure water production apparatus of this embodiment operates. Table 1 shows the energy used and the required energy during normal operation and during recovery NG. Here, the steady state refers to a case where wastewater such as heated industrial water in an amount necessary for heating raw water can be recovered. Moreover, at the time of collection | recovery NG, it means the case where the waste_water | drain, such as the heated industrial water of the quantity required for the heating of raw | natural water, cannot be collect | recovered.

Figure 0005101322
Figure 0005101322

表1から明らかなように、定常時と回収NG時のいずれにおいても、ROブライン廃熱、冷凍装置廃熱、コンプレッサー廃熱及びボイラー廃熱により、原水の加熱に必要な全てのエネルギーを賄うことができる。例えばコンプレッサーの廃熱を利用する場合、必要エネルギーを都市ガス及び電力で得る場合と比較して、1年間で2,318tの二酸化炭素の排出を削減することができる。また、冷凍装置としてターボ冷凍装置の廃熱を利用する場合、必要エネルギーを都市ガス及び電力で得る場合と比較して、1年間で700tの二酸化炭素の排出を削減することができる。すなわち、コンプレッサーの廃熱とターボ冷凍装置の廃熱との利用により、約3,000tの二酸化炭素の排出を削減でき、その結果、1.3%の省エネルギー効果を奏することができる。   As is clear from Table 1, both the energy required for heating raw water is provided by RO brine waste heat, refrigeration equipment waste heat, compressor waste heat, and boiler waste heat both during steady state and during recovery NG. Can do. For example, when the waste heat of the compressor is used, 2,318 tons of carbon dioxide emissions can be reduced in one year as compared with the case where the necessary energy is obtained from city gas and electric power. Further, when the waste heat of the turbo refrigeration apparatus is used as the refrigeration apparatus, it is possible to reduce 700 tons of carbon dioxide emissions in one year compared to the case where the necessary energy is obtained with city gas and electric power. That is, by using the waste heat of the compressor and the waste heat of the turbo refrigeration apparatus, about 3,000 tons of carbon dioxide emissions can be reduced, and as a result, an energy saving effect of 1.3% can be achieved.

脱気装置5で溶存二酸化炭素及び酸素が除去され、25℃に加温された原水は、受水槽6に送給される。こうして、受水槽6内の原水の温度が25℃±0.5℃の所定温度に精度良く維持される。   The raw water heated to 25 ° C. after the dissolved carbon dioxide and oxygen are removed by the deaerator 5 is fed to the water receiving tank 6. Thus, the temperature of the raw water in the water receiving tank 6 is accurately maintained at a predetermined temperature of 25 ° C. ± 0.5 ° C.

このように受水槽6内の原水は、その水位及び温度が高精度に一定に制御されており、その受水槽6内の原水が、R装置7に取り出されて逆浸透膜にて純水が分離処理され、その処理水(純水)は、例えばリソグラフィー工法におけるフォトレジストの現像液を作成するための希釈水等として使用するためリソグラフィー工程等に送給される。その際に、処理水(純水)の温度が高精度に一定に管理されているので、上記現像液などの濃度を精度良く一定に管理することができ、効率的にて精度の良い処理を行うことができる。また、処理水(純水)の溶存二酸化炭素及び溶存炭素が高度に除去されているので、炭酸塩に起因するフォトレジストの現像不良を生じることなく、フォトレジストを高精度に現像して高品質の処理を行うことができる。 Pure water raw water thus receiving tank 6, the water level and temperature are controlled to be constant with high precision, the raw water in the receiving tank 6 is at the reverse osmosis membrane is taken out to the R O 7 The treated water (pure water) is supplied to a lithography process or the like for use as, for example, dilution water for preparing a photoresist developer in a lithography method. At that time, since the temperature of the treated water (pure water) is controlled with high accuracy and constant, the concentration of the developer and the like can be controlled with high accuracy and constant, and efficient and accurate processing can be performed. It can be carried out. In addition, since the dissolved carbon dioxide and dissolved carbon in the treated water (pure water) are highly removed, the photoresist is developed with high accuracy without causing defective development of the photoresist due to the carbonate. Can be processed.

なお、純水製造装置には、脱気装置5は必ずしも設置しなくてもよく、この場合、第4加熱用熱交換器44からの原水を受水槽6に直接流入させるように構成すればよい。この場合において、制御部20により、第1水温検出信号t1及び第2水温検出信号t2に対応して第1乃至第4加熱用熱交換器41、42、43、44の熱出力を制御し、受水槽6内の原水の温度を所定値になるように制御すればよい。   Note that the deaeration device 5 does not necessarily have to be installed in the pure water production device, and in this case, the raw water from the fourth heating heat exchanger 44 may be configured to directly flow into the water receiving tank 6. . In this case, the control unit 20 controls the heat output of the first to fourth heating heat exchangers 41, 42, 43, 44 in response to the first water temperature detection signal t1 and the second water temperature detection signal t2, What is necessary is just to control the temperature of the raw | natural water in the water receiving tank 6 so that it may become a predetermined value.

また、純水製造装置には、第1乃至第4加熱用熱交換器41、42、43、44を必ずしも全て設置しなくてもよく、原水を加熱する熱交換器の数は、必要エネルギーに応じて適宜変更することができる。また、冷凍装置101、コンプレッサー装置102及びボイラー装置103の全ての廃熱を利用しなくてもよく、冷凍装置101、コンプレッサー装置102及びボイラー装置103の少なくとも一つの廃熱を利用してもよい。また、他の熱機器の廃熱を利用してもよい。   In addition, the first to fourth heating heat exchangers 41, 42, 43, and 44 are not necessarily installed in the pure water production apparatus, and the number of heat exchangers for heating the raw water is required energy. It can be changed accordingly. Moreover, it is not necessary to use all the waste heat of the refrigeration apparatus 101, the compressor apparatus 102, and the boiler apparatus 103, and at least one waste heat of the refrigeration apparatus 101, the compressor apparatus 102, and the boiler apparatus 103 may be used. Moreover, you may utilize the waste heat of another thermal apparatus.

本発明の純水製造方法及び装置は、複数の熱交換器の前段に設けた原水槽内及びRO装置の前段に設けた受水槽内の原水温度に応じて、複数の熱交換器の熱出力を制御して受水槽内の原水の温度を所定値に制御することで、RO装置の効率を最適に保ち、透過水(処理水)量・水質などを安定化させると共に、RO装置にて製造された処理水(純水)の温度を精度良く一定に安定化することができる。   The pure water production method and apparatus according to the present invention includes the heat output of a plurality of heat exchangers according to the raw water temperature in the raw water tank provided in the previous stage of the plurality of heat exchangers and in the water receiving tank provided in the previous stage of the RO device. By controlling the temperature of the raw water in the water receiving tank to a predetermined value, the efficiency of the RO device is kept optimal, the amount of permeate (treated water) and water quality are stabilized, and the RO device is manufactured. The temperature of the treated water (pure water) can be stabilized with high accuracy and constant.

本発明の一実施形態の純水製造装置の概略構成図。The schematic block diagram of the pure water manufacturing apparatus of one Embodiment of this invention. 従来例の純水製造装置の概略構成図。The schematic block diagram of the pure water manufacturing apparatus of a prior art example.

符号の説明Explanation of symbols

1 原水層
6 受水槽
7 RO装置(逆浸透膜分離装置)
11 第1水温センサ
12 第2水温センサ
20 制御部
41 第1加熱用熱交換器
42 第2加熱用熱交換器
43 第3加熱用熱交換器
44 第4加熱用熱交換器
1 Raw water layer 6 Receiving tank 7 RO device (reverse osmosis membrane separation device)
DESCRIPTION OF SYMBOLS 11 1st water temperature sensor 12 2nd water temperature sensor 20 Control part 41 Heat exchanger for 1st heating 42 Heat exchanger for 2nd heating 43 Heat exchanger for 3rd heating 44 Heat exchanger for 4th heating

Claims (4)

複数の熱交換器を通して温度制御した原水を逆浸透膜分離装置に通して純水を製造する純水製造方法であって、原水槽及び受水槽内の原水の温度、ならびに受水槽内の原水の水位を検出し、その検出温度および検出水位に応じて、複数の熱交換器の熱出力および受水槽への原水の送給量を制御して受水槽内の原水の温度および水位を所定値に制御し、受水槽から逆浸透膜分離装置に原水を送給することを特徴とする純水製造方法。 A pure water production method for producing pure water by passing raw water whose temperature is controlled through a plurality of heat exchangers through a reverse osmosis membrane separation device, the temperature of the raw water in the raw water tank and the water receiving tank, and the raw water in the water receiving tank The water level is detected, and the temperature and water level of the raw water in the water receiving tank are set to predetermined values by controlling the heat output of multiple heat exchangers and the amount of raw water supplied to the water receiving tank according to the detected temperature and the detected water level. A method for producing pure water, comprising controlling and feeding raw water from a water receiving tank to a reverse osmosis membrane separation device. 複数の熱交換器に、逆浸透膜分離装置のブライン廃熱、冷凍廃熱、コンプレッサー廃熱及びボイラー廃熱のうちの少なくとも一つを供給することを特徴とする請求項1記載の純水製造方法。   2. The pure water production according to claim 1, wherein at least one of brine waste heat, refrigeration waste heat, compressor waste heat and boiler waste heat of the reverse osmosis membrane separator is supplied to the plurality of heat exchangers. Method. 複数の熱交換器を通して温度制御した原水を逆浸透膜分離装置に通して純水を製造する純水製造装置であって、原水槽と、熱媒体の供給量を調整する調整弁が夫々設けられた複数の熱交換器と、受水槽と、逆浸透膜分離装置とをこの順に接続し、原水槽の原水を複数の熱交換器を介して受水槽に送給する供給ポンプを設け、原水槽内の原水の温度を検出する第1水温センサと、受水槽内の原水の温度を検出する第2水温センサとに応じて複数の熱交換器の調整弁を制御する制御部を設け、この制御部は受水槽内の原水の水位を検出する水位センサに応じて受水槽への供給ポンプによる原水の送給量を制御することを特徴とする純水製造装置。 A pure water production apparatus for producing pure water by passing raw water whose temperature is controlled through a plurality of heat exchangers through a reverse osmosis membrane separation apparatus, each comprising a raw water tank and an adjustment valve for adjusting the supply amount of the heat medium. A plurality of heat exchangers, a water receiving tank, and a reverse osmosis membrane separator are connected in this order, and a supply pump for supplying raw water from the raw water tank to the water receiving tank through the plurality of heat exchangers is provided. a first temperature sensor for detecting the temperature of the raw water inside, a control unit for controlling the control valve of the plurality of heat exchangers in accordance with the second water temperature sensor for detecting the temperature of the raw water in the water tank is provided, the control The unit controls the amount of raw water supplied by a supply pump to the water receiving tank according to a water level sensor that detects the water level of the raw water in the water receiving tank . 複数の熱交換器に、逆浸透膜分離装置のブライン廃熱、冷凍廃熱、コンプレッサー廃熱及びボイラー廃熱で加熱された熱媒体のうちの少なくとも一つを供給することを特徴とする請求項3記載の純水製造装置。   The heat exchanger is supplied with at least one of a heat medium heated by brine waste heat, refrigeration waste heat, compressor waste heat, and boiler waste heat of a reverse osmosis membrane separator. 3. The pure water production apparatus according to 3.
JP2008022977A 2008-02-01 2008-02-01 Pure water production method and apparatus Active JP5101322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008022977A JP5101322B2 (en) 2008-02-01 2008-02-01 Pure water production method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008022977A JP5101322B2 (en) 2008-02-01 2008-02-01 Pure water production method and apparatus

Publications (2)

Publication Number Publication Date
JP2009183800A JP2009183800A (en) 2009-08-20
JP5101322B2 true JP5101322B2 (en) 2012-12-19

Family

ID=41067636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008022977A Active JP5101322B2 (en) 2008-02-01 2008-02-01 Pure water production method and apparatus

Country Status (1)

Country Link
JP (1) JP5101322B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172188A (en) * 2013-03-19 2013-06-26 庄夕山 Drinking fountain without waste water

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016107178A (en) * 2014-12-02 2016-06-20 三浦工業株式会社 Water treatment system
JP6995924B2 (en) * 2020-04-28 2022-01-17 ダイセン・メンブレン・システムズ株式会社 Wastewater treatment system and its operation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634808A (en) * 1986-06-24 1988-01-09 Takuma Co Ltd Reverse-osmosis membrane device system
JPS6443304A (en) * 1987-08-06 1989-02-15 Maruyama Mfg Co Method for heating feed water in reverse osmosis process
JPH06254553A (en) * 1993-03-08 1994-09-13 Shinko Electric Co Ltd Apparatus for producing pure water
JP2001212438A (en) * 2000-02-02 2001-08-07 Japan Organo Co Ltd Filter device and operation method for filter device
JP2005052793A (en) * 2003-08-07 2005-03-03 Japan Cost Planning:Kk Purified water feed device having thermoelectric cogeneration apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172188A (en) * 2013-03-19 2013-06-26 庄夕山 Drinking fountain without waste water

Also Published As

Publication number Publication date
JP2009183800A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP5575015B2 (en) Fresh water production system
JP2008188540A (en) Operation method of membrane filter system
JP5101322B2 (en) Pure water production method and apparatus
JP5953726B2 (en) Ultrapure water production method and apparatus
JP6149992B1 (en) Ultrapure water production equipment
US20170313610A1 (en) Multi-stage submerged membrane distillation water treatment apparatus and a resource recovery method using same
JP4817046B2 (en) Operation method of membrane filtration system
WO2019171632A1 (en) Method for heating ultra-pure water
JP2009192193A (en) Boiler system
JP5325431B2 (en) Waste heat recovery equipment for refrigeration equipment
JP5708111B2 (en) Water treatment system flushing method, program, controller, and water treatment system
Ncube et al. Modeling, simulation and optimization of a reverse osmosis desalination plant
JP6907745B2 (en) Membrane separation device
JP6266257B2 (en) Desalination apparatus and desalination method
JP2008212834A (en) Pure water production method and device
JP2011147894A (en) Seawater desalination apparatus
JP5903948B2 (en) Water treatment system
JP7263730B2 (en) Boiler water treatment equipment and treatment method
JP2020199436A (en) Ultrapure water production device, and ultrapure water production method
JP5903947B2 (en) Water treatment system
TWI830883B (en) Pure water production device and pure water production method
JP6939121B2 (en) Membrane separation device
AU2011364139B2 (en) Exhaust gas treatment system and exhaust gas treatment method
KR20170057491A (en) Desalination system using controlled forward osmosis and reverse osmosis
JP6447663B2 (en) Boiler water treatment apparatus and treatment method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090522

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5101322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150