JP2005052793A - Purified water feed device having thermoelectric cogeneration apparatus - Google Patents

Purified water feed device having thermoelectric cogeneration apparatus Download PDF

Info

Publication number
JP2005052793A
JP2005052793A JP2003288588A JP2003288588A JP2005052793A JP 2005052793 A JP2005052793 A JP 2005052793A JP 2003288588 A JP2003288588 A JP 2003288588A JP 2003288588 A JP2003288588 A JP 2003288588A JP 2005052793 A JP2005052793 A JP 2005052793A
Authority
JP
Japan
Prior art keywords
water
raw water
heat
purified water
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003288588A
Other languages
Japanese (ja)
Inventor
Masami Nakakubo
正己 中久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN COST PLANNING KK
Original Assignee
JAPAN COST PLANNING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN COST PLANNING KK filed Critical JAPAN COST PLANNING KK
Priority to JP2003288588A priority Critical patent/JP2005052793A/en
Publication of JP2005052793A publication Critical patent/JP2005052793A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Reciprocating Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a purified water feed device capable of producing purified water while suppressing its operating cost. <P>SOLUTION: A pressure feed pump 32 for feeding raw water to a water purification apparatus 30 having a reverse osmosis membrane 31 under pressure is driven by the electric power generated by a thermoelectric cogeneration apparatus 20, and raw water fed to the water purification apparatus 30 is heated to a prescribed temperature by waste heat from the thermoelectric cogeneration apparatus 20. The warm water purified by the water purification apparatus 30 exchanges heat with raw water before heating to preheat the raw water, and simultaneously to obtain purified normal temperature water. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、熱電併給装置を有し、生活排水や地下水等を浄化する浄化水供給装置に関する。   The present invention relates to a purified water supply device that has a combined heat and power supply device and purifies domestic wastewater, groundwater, and the like.

従来、多くの水を使用する工場やホテル、学校、病院、オフィスビル等の施設では、外部から買い入れる水道水等の上水(市水)を抑えるため、生活排水や地下水等の原水を再利用可能な浄化水に浄化する浄化水装置が利用される場合がある。このような浄化水装置としては、逆浸透膜(RO膜)を利用した浄化水装置が広く利用されている。   Conventionally, facilities such as factories, hotels, schools, hospitals, and office buildings that use a lot of water recycle raw water such as domestic wastewater and groundwater in order to reduce tap water (city water) purchased from outside. A purified water device that purifies the available purified water may be used. As such a purified water device, a purified water device using a reverse osmosis membrane (RO membrane) is widely used.

しかしながら、逆浸透膜を利用した浄化水装置は、原水を逆浸透膜に高圧で送り込む高圧ポンプ等を使用するため、多くの電力を必要とし、運転費用がかさむという難点があった。   However, the purified water device using a reverse osmosis membrane uses a high-pressure pump or the like that feeds raw water to the reverse osmosis membrane at a high pressure, and thus requires a lot of electric power and has a problem of increasing operating costs.

本発明は、運転費用を抑えながら浄化水を生成することができる浄化水供給装置を提供することを目的とする。   An object of this invention is to provide the purified water supply apparatus which can produce | generate purified water, suppressing operating cost.

本発明は、以下の手段を提供する。   The present invention provides the following means.

(1)逆浸透膜を有する浄化水装置と、前記浄化水装置に原水を供給する原水経路と、前記原水経路の原水を前記逆浸透膜に加圧供給する加圧供給ポンプと、熱と電力を同時に生成する熱電併給装置と、前記熱電併給装置が生成する熱により、前記原水経路の原水を所定温度の温水に加熱する原水加熱手段と、前記熱電併給装置が生成する電力を前記加圧供給ポンプに供給する内部電力供給経路と、を備えたことを特徴とする熱電併給装置を有する浄化水供給装置。   (1) A purified water device having a reverse osmosis membrane, a raw water path for supplying raw water to the purified water device, a pressure supply pump for pressurizing and supplying raw water in the raw water path to the reverse osmosis membrane, heat and electric power A heat and power supply device that simultaneously generates raw water heating means for heating raw water in the raw water path to warm water of a predetermined temperature by heat generated by the heat and power supply device, and electric power generated by the heat and power supply device. A purified water supply device having a combined heat and power supply device, comprising an internal power supply path for supplying the pump.

(2)前記原水加熱手段は、前記熱電併給装置を循環する熱媒体の熱により、前記原水経路の原水を加熱する熱交換器と、前記熱媒体を前記熱交換器に送り込む熱媒体循環ポンプと、前記熱交換器において加熱された原水の温度を検出する原水温度検出器と、前記原水の温度に応じて該温度が前記所定温度となるように前記熱媒体循環ポンプを駆動制御する熱媒体循環ポンプ制御手段と、を備えたことを特徴とする前項1に記載の熱電併給装置を有する浄化水供給装置。   (2) The raw water heating means includes a heat exchanger that heats raw water in the raw water path by heat of a heat medium circulating in the combined heat and power supply device, and a heat medium circulation pump that sends the heat medium to the heat exchanger. A raw water temperature detector for detecting the temperature of the raw water heated in the heat exchanger, and a heat medium circulation for driving and controlling the heat medium circulation pump so that the temperature becomes the predetermined temperature according to the temperature of the raw water A purified water supply apparatus having the combined heat and power supply apparatus according to the preceding item 1, characterized by comprising a pump control means.

(3)前記内部電力供給経路は、前記熱電併給装置が生成する電力を前記熱媒体循環ポンプおよび前記熱媒体循環ポンプ制御手段にも供給するように構成されたことを特徴とする前項2に記載の熱電併給装置を有する浄化水供給装置。   (3) The internal power supply path is configured to supply the electric power generated by the cogeneration device also to the heat medium circulation pump and the heat medium circulation pump control means. Purified water supply device having a combined heat and power supply device.

(4)前記浄化水装置により浄化された浄化水の熱により、前記熱電併給装置によって所定温度の温水に加熱される前の原水を予熱する浄化水熱交換器を備えたことを特徴とする前項1〜3のいずれかに記載の熱電併給装置を有する浄化水供給装置。   (4) The preceding item characterized by comprising a purified water heat exchanger for preheating raw water before being heated to warm water of a predetermined temperature by the combined heat and power device by the heat of purified water purified by the purified water device The purified water supply apparatus which has a combined heat and power supply apparatus in any one of 1-3.

(5)前記熱電併給装置によって所定温度の温水に加熱される前の原水を、前記浄化水熱交換器に送り込む原水取込ポンプを備え、前記内部電力供給経路は、前記熱電併給装置が生成する電力を前記原水取込ポンプにも供給するように構成されたことを特徴とする前項4に記載の熱電併給装置を有する浄化水供給装置。   (5) A raw water intake pump that feeds raw water before being heated to warm water of a predetermined temperature by the combined heat and power supply device to the purified water heat exchanger, and the internal power supply path is generated by the combined heat and power supply device. 5. The purified water supply apparatus having the combined heat and power supply apparatus according to the item 4, wherein electric power is also supplied to the raw water intake pump.

(6)当該浄化水供給装置が設置された施設の外部から当該施設内の電気機器に電力を受電する受電経路に接続され、前記熱電併給装置が生成する電力を前記電気機器に供給する送電経路と、前記送電経路を遮断する遮断装置と、を備えたことを特徴とする前項1〜5のいずれかに記載の熱電併給装置を有する浄化水供給装置。   (6) A power transmission path that is connected to a power receiving path for receiving power from the outside of the facility where the purified water supply apparatus is installed to the electrical equipment in the facility, and that supplies the power generated by the combined heat and power supply apparatus to the electrical equipment And a shutoff device that shuts off the power transmission path. 6. A purified water supply device having the combined heat and power supply device according to any one of 1 to 5 above.

前項1にかかる熱電併給装置を有する浄化水供給装置によれば、熱電併給装置が生成する熱によって浄化水装置に供給する原水を加熱して逆浸透膜の浸透速度の向上を図り、かつ、浄化水装置の運転に必要な電力もこの熱電併給装置から確保するため、運転費用を抑えながら浄化水を生成することができる。また、熱電併給装置を運転するための燃料さえ確保すれば、この浄化水供給装置を独立して運転することができるため、たとえば災害時等においても、電力、上水等のインフラや他の装置等に依存することなく浄化水を供給することができる。   According to the purified water supply device having the combined heat and power device according to the preceding paragraph 1, the raw water supplied to the purified water device is heated by the heat generated by the combined heat and power device to improve the permeation rate of the reverse osmosis membrane, and the purification Since the electric power necessary for the operation of the water device is also secured from the combined heat and power supply device, purified water can be generated while reducing operating costs. In addition, since the purified water supply device can be operated independently as long as the fuel for operating the combined heat and power supply is secured, for example, in the event of a disaster, infrastructure such as electric power and drinking water, and other devices Purified water can be supplied without depending on the above.

前項2にかかる熱電併給装置を有する浄化水供給装置によれば、浄化水装置に供給される原水の温度を逆浸透膜にとって最適な温度に正確に制御して、浄化水装置を効率的に運転することができる。   According to the purified water supply apparatus having the combined heat and power supply apparatus according to the preceding item 2, the temperature of the raw water supplied to the purified water apparatus is accurately controlled to an optimum temperature for the reverse osmosis membrane, and the purified water apparatus is efficiently operated. can do.

前項3にかかる熱電併給装置を有する浄化水供給装置によれば、原水加熱手段の運転に必要な電力も熱電併給装置から確保して運転費用を抑えることができるとともに、浄化水供給装置の高い独立性も確保することができる。   According to the purified water supply apparatus having the combined heat and power supply apparatus according to the preceding item 3, it is possible to secure the electric power necessary for the operation of the raw water heating means from the combined heat and power supply apparatus, and to reduce the operating cost, and the purified water supply apparatus is highly independent. Sex can be secured.

前項4にかかる熱電併給装置を有する浄化水供給装置によれば、浄化水装置により浄化された浄化水が加熱前の原水によって冷却されるため、浄化水を温水以外の用途に供することができる。また、同時に原水が予熱されるため、熱エネルギーの有効利用を図ることができる。   According to the purified water supply apparatus having the combined heat and power supply apparatus according to the preceding item 4, the purified water purified by the purified water apparatus is cooled by the raw water before heating, so that the purified water can be used for purposes other than hot water. Moreover, since raw | natural water is preheated simultaneously, the effective utilization of a thermal energy can be aimed at.

前項5にかかる熱電併給装置を有する浄化水供給装置によれば、原水取込ポンプの運転に必要な電力も熱電併給装置から確保して運転費用を抑えることができるとともに、浄化水供給装置の高い独立性も確保することができる。   According to the purified water supply apparatus having the combined heat and power supply apparatus according to the preceding item 5, it is possible to secure electric power necessary for the operation of the raw water intake pump from the combined heat and power supply apparatus and to reduce the operating cost, and the high purified water supply apparatus is high. Independence can also be ensured.

前項6にかかる熱電併給装置を有する浄化水供給装置によれば、熱電併給装置が生成する電力のうち浄化水供給装置内で利用しない余剰電力を他の電気機器に供給して効率的な利用を図りながら、施設の外部が停電した場合などの非常時には、当該浄化水供給装置を施設の受電経路と切り離して、安全に独立させて運転することができる。   According to the purified water supply apparatus having the combined heat and power supply apparatus according to the preceding item 6, surplus power that is not used in the purified water supply apparatus among the electric power generated by the combined heat and power supply apparatus is supplied to other electrical devices for efficient use. In the event of an emergency such as when a power failure occurs outside the facility, the purified water supply device can be separated from the power receiving path of the facility and operated independently and safely.

以下、本発明にかかる熱電併給装置を有する浄化水供給装置について説明する。   Hereinafter, the purified water supply apparatus which has the cogeneration apparatus concerning this invention is demonstrated.

図1は、本発明にかかる熱電併給装置を有する浄化水供給装置を模式的に示す全体構成図である。   FIG. 1 is an overall configuration diagram schematically showing a purified water supply device having a combined heat and power supply device according to the present invention.

図1に示すように、熱電併給装置を有する浄化水供給装置11は、外部から電力を受電する施設10内に設けられている。施設10が外部から受電する受電経路12は、浄化水供給装置11や、他の電気機器19…に電力を供給可能になっている。この受電経路12には、外部が停電等の場合に、施設10を外部から電気的に切り離す遮断装置13が設けられている。   As shown in FIG. 1, a purified water supply device 11 having a combined heat and power supply device is provided in a facility 10 that receives power from the outside. The power receiving path 12 through which the facility 10 receives power from the outside can supply power to the purified water supply device 11 and other electric devices 19. The power receiving path 12 is provided with a shut-off device 13 that electrically disconnects the facility 10 from the outside in the event of a power outage or the like.

浄化水供給装置11は、熱電併給装置20と、浄化水装置30と、原水経路40と、原水加熱手段50と、上水受入経路60と、内部電力供給経路70と、を備えている。   The purified water supply device 11 includes a combined heat and power supply device 20, a purified water device 30, a raw water path 40, a raw water heating means 50, a clean water receiving path 60, and an internal power supply path 70.

熱電併給装置20は、熱と電力を同時に生成するものである。この熱電併給装置20は、発電機と、発電機における排熱を外部に取り出して利用することができる装置構成を備えており、一般にコージェネレーションシステムと呼ばれている。この発電機としては、たとえば、ガスエンジン、ガスタービン、ディーゼルエンジン、燃料電池等を挙げることができる。   The cogeneration apparatus 20 generates heat and electric power at the same time. The combined heat and power supply device 20 includes a generator and a device configuration that can extract and use exhaust heat from the generator to the outside, and is generally called a cogeneration system. Examples of the generator include a gas engine, a gas turbine, a diesel engine, and a fuel cell.

この実施形態では、施設10の外部から燃料供給経路21を介して、中圧天然ガス等の燃料の供給を受けるガスエンジンを採用している。また、発生する熱は、エチレングリコール等の不凍液からなる熱媒体が装置20の内外を循環するように配設した熱媒体循環経路22によって、熱電併給装置20外に取り出される。そして、後述する原水加熱手段50の熱交換器51により、浄化水装置30に供給される原水の加熱に供される。   In this embodiment, a gas engine that receives supply of fuel such as medium-pressure natural gas from the outside of the facility 10 via the fuel supply path 21 is employed. The generated heat is taken out of the combined heat and power supply device 20 by a heat medium circulation path 22 arranged so that a heat medium made of an antifreeze such as ethylene glycol circulates inside and outside the device 20. And it is provided to the heating of the raw | natural water supplied to the purified water apparatus 30 with the heat exchanger 51 of the raw | natural water heating means 50 mentioned later.

この熱電併給装置20によって生成される発電電力は、内部電力供給経路70の発電電力経路71に送られ、浄化水供給装置11内の各機器に供給される。また、この熱電併給装置20自身を運転するために必要な補助電力もまた、この内部電力供給経路70の内部電力分配経路72から供給されるようになっている。   The generated power generated by the cogeneration apparatus 20 is sent to the generated power path 71 of the internal power supply path 70 and supplied to each device in the purified water supply apparatus 11. Further, auxiliary power necessary for operating the combined heat and power supply apparatus 20 itself is also supplied from the internal power distribution path 72 of the internal power supply path 70.

浄化水装置30は、原水経路40から供給される生活排水や地下水等の原水を浄化して浄化水を生成するものである。   The purified water device 30 purifies raw water such as domestic wastewater and groundwater supplied from the raw water path 40 to generate purified water.

原水経路40は、井戸や排水経路等の原水源41から得る原水を原水槽42に一時貯留してから、後述する2つの熱交換器44,51等を経て浄化水装置30に供給するように構成されている。   The raw water path 40 temporarily stores raw water obtained from a raw water source 41 such as a well or a drainage path in the raw water tank 42 and then supplies the raw water to the purified water device 30 via two heat exchangers 44 and 51 described later. It is configured.

浄化水装置30は、原水中に含まれているイオン、有機物、微小粒子、微生物粒子等の不純物を除去する逆浸透膜31と、この逆浸透膜31に原水を加圧供給する加圧供給ポンプ32とを備えている。この加圧供給ポンプ32の駆動電力は、内部電力供給経路70の内部駆動電力分配経路72から供給されるようになっている。このように加圧供給ポンプ32の駆動電力を浄化水供給装置11内の熱電併給装置20から確保するため、浄化水供給装置11全体としての運転費用を抑えることができる。   The purified water device 30 includes a reverse osmosis membrane 31 that removes impurities such as ions, organic substances, fine particles, and microbial particles contained in the raw water, and a pressure supply pump that supplies the reverse osmosis membrane 31 with pressurized raw water under pressure. 32. The driving power of the pressure supply pump 32 is supplied from the internal driving power distribution path 72 of the internal power supply path 70. As described above, since the driving power of the pressurized supply pump 32 is secured from the combined heat and power supply device 20 in the purified water supply device 11, the operation cost of the purified water supply device 11 as a whole can be suppressed.

逆浸透膜31は、一般にその特性上、常温水(冷水)よりも加熱した温水のほうが浸透速度が向上し、高い浄化水生成効率が得られることが知られている。具体的には、たとえば特定の逆浸透膜31を用いた場合、原水を約38℃に加熱すると、最も高い浄化処理効率が得られる。   It is known that the reverse osmosis membrane 31 generally has higher permeation speed and higher purified water production efficiency than heated water at normal temperature (cold water) due to its characteristics. Specifically, for example, when a specific reverse osmosis membrane 31 is used, when the raw water is heated to about 38 ° C., the highest purification treatment efficiency is obtained.

この浄化水供給装置11では、浄化水装置30に供給される原水が浄化水装置30(逆浸透膜31)における浄化処理効率の最も高い所定温度になるように、予め原水を加熱するようになっている。   In this purified water supply device 11, the raw water is heated in advance so that the raw water supplied to the purified water device 30 reaches a predetermined temperature with the highest purification treatment efficiency in the purified water device 30 (reverse osmosis membrane 31). ing.

原水加熱手段50は、熱電併給装置20が生成する熱によって原水経路40の原水を所定温度に加熱するものである。この原水加熱手段50は、熱交換器51と、熱媒体循環ポンプ52と原水温度検出器53と、熱媒体循環ポンプ制御手段54と、を備えている。   The raw water heating means 50 heats the raw water in the raw water passage 40 to a predetermined temperature by the heat generated by the combined heat and power supply device 20. The raw water heating means 50 includes a heat exchanger 51, a heat medium circulation pump 52, a raw water temperature detector 53, and a heat medium circulation pump control means 54.

熱交換器51は、熱電併給装置20の熱媒体循環経路22を循環する熱媒体の熱により、原水経路40の原水を加熱する。たとえば、熱電併給装置20から送られる80℃の熱媒体と原水経路40上の18〜36℃の原水とで熱交換が行われ、60℃の熱媒体と38℃の加熱原水とが得られる。   The heat exchanger 51 heats the raw water in the raw water path 40 by the heat of the heat medium circulating in the heat medium circulation path 22 of the cogeneration apparatus 20. For example, heat exchange is performed between the heat medium at 80 ° C. sent from the cogeneration apparatus 20 and the raw water at 18 to 36 ° C. on the raw water path 40 to obtain a heat medium at 60 ° C. and heated raw water at 38 ° C.

熱媒体循環ポンプ52は、熱媒体循環経路22上の熱媒体の流量を調整しながら熱媒体を熱交換器51に送り込むものである。この熱媒体循環ポンプ52の駆動電力も、内部電力供給経路70の内部駆動電力分配経路72から供給されるようになっている。   The heat medium circulation pump 52 feeds the heat medium to the heat exchanger 51 while adjusting the flow rate of the heat medium on the heat medium circulation path 22. The drive power for the heat medium circulation pump 52 is also supplied from the internal drive power distribution path 72 of the internal power supply path 70.

原水温度検出器53は、原水経路40の熱交換器51より下流側55に設けられ、熱交換器51において加熱された原水の温度を検出する。   The raw water temperature detector 53 is provided on the downstream side 55 of the heat exchanger 51 in the raw water path 40 and detects the temperature of the raw water heated in the heat exchanger 51.

熱媒体循環ポンプ制御手段54は、CPUと、RAM、ROM等の記憶手段とを備えたコンピュータから構成され、原水温度検出器53によって検出された原水の温度に応じて、該温度が前記所定温度となるように熱媒体循環ポンプ52をインバータ制御する。この熱媒体循環ポンプ制御手段54の駆動電力も、内部電力供給経路70の内部駆動電力分配経路72から供給されるようになっている。   The heat medium circulation pump control means 54 is composed of a computer having a CPU and storage means such as a RAM and a ROM, and the temperature is the predetermined temperature according to the temperature of the raw water detected by the raw water temperature detector 53. The heat medium circulation pump 52 is inverter-controlled so that The drive power of the heat medium circulation pump control means 54 is also supplied from the internal drive power distribution path 72 of the internal power supply path 70.

このような原水加熱手段50により、浄化水装置30には、常に浄化処理効率が最も高い所定温度の原水が供給され、効率よく浄化水を生成することができる。   By such raw water heating means 50, raw water having a predetermined temperature with the highest purification treatment efficiency is always supplied to the purified water device 30, and purified water can be efficiently generated.

こうして浄化水装置30によって生成される浄化水は、原水と同程度の温度の浄化温水となっている。この浄化水装置30で生成された浄化温水は、浄化水経路33、浄化温水供給経路35を経て、施設10内の温水シャワー等の温水利用設備に送り出され、種々の温水用途に供される。   The purified water thus generated by the purified water device 30 is purified hot water having a temperature similar to that of the raw water. The purified hot water generated by the purified water device 30 is sent to a hot water use facility such as a hot water shower in the facility 10 through the purified water path 33 and the purified hot water supply path 35 and used for various hot water applications.

一方、浄化水装置30によって生成される浄化水を飲用水等の常温水としても利用するため、浄化水経路33には、前述の浄化温水供給経路35を分岐させる流量切替バルブ34が設けられており、浄化温水供給経路35に供給される以外の浄化水(浄化温水)は、浄化水熱交換器44に送られるようになっている。   On the other hand, since the purified water generated by the purified water device 30 is also used as room temperature water such as drinking water, the purified water path 33 is provided with a flow rate switching valve 34 for branching the purified warm water supply path 35 described above. The purified water (purified hot water) other than that supplied to the purified hot water supply path 35 is sent to the purified water heat exchanger 44.

この浄化水熱交換器44は、原水槽42と原水加熱手段50との間の原水経路40上に設けられており、原水経路40上に設けられた原水取込ポンプ43によって、原水加熱手段50によって加熱される前の原水が送り込まれる。この原水取込ポンプ43の駆動電力も、内部電力供給経路70の内部駆動電力分配経路72から供給されるようになっている。   The purified water heat exchanger 44 is provided on the raw water path 40 between the raw water tank 42 and the raw water heating means 50, and the raw water heating means 50 is provided by the raw water intake pump 43 provided on the raw water path 40. The raw water before being heated by is fed. The drive power of the raw water intake pump 43 is also supplied from the internal drive power distribution path 72 of the internal power supply path 70.

浄化水熱交換器44は、こうして送り込まれる原水加熱手段50によって加熱される前の原水を、浄化水装置30により浄化された浄化水(浄化温水)の熱によって予熱する。逆に言えば、この浄化水熱交換器44によると、原水経路40の原水によって、浄化水装置30から得られる浄化温水が冷却されることになる。たとえば、浄化水装置30から送られる38℃の浄化温水と原水経路40上の18℃の原水とで熱交換が行われ、20℃の常温に冷却された浄化常温水と18〜36℃に予熱された予熱原水とが得られる。   The purified water heat exchanger 44 preheats the raw water before being heated by the raw water heating means 50 thus sent by the heat of the purified water (purified hot water) purified by the purified water device 30. In other words, according to the purified water heat exchanger 44, the purified hot water obtained from the purified water device 30 is cooled by the raw water in the raw water path 40. For example, heat exchange is performed between purified hot water of 38 ° C. sent from the purified water device 30 and raw water of 18 ° C. on the raw water path 40, and preheated to purified normal water cooled to a normal temperature of 20 ° C. and 18 to 36 ° C. Preheated raw water is obtained.

このような浄化水熱交換器44により、原水加熱手段50に送り込まれる前の原水が予熱されるため、原水加熱手段50において原水を所定温度まで昇温させる負担を軽減することができるとともに、浄化温水が有している熱エネルギーを有効利用できる。   Such purified water heat exchanger 44 preheats the raw water before being sent to the raw water heating means 50, so that the burden of raising the raw water to a predetermined temperature in the raw water heating means 50 can be reduced, and purification is performed. The thermal energy of hot water can be used effectively.

また、浄化水装置30で浄化された浄化水(浄化温水)が常温に冷却されるため、浄化水を温水以外の用途に供することができる。   Moreover, since the purified water (purified warm water) purified by the purified water device 30 is cooled to room temperature, the purified water can be used for purposes other than warm water.

こうして常温に冷却された浄化水(浄化常温水)は、浄化水水槽36に一時的に貯留され、浄化常温水供給経路37を経て、施設10内の飲用水等の常温水(または冷水)利用設備に送り出され、種々の用途に供される。   The purified water thus cooled to room temperature (purified room temperature water) is temporarily stored in the purified water tank 36, and the room temperature water (or cold water) such as potable water in the facility 10 is used via the purified room temperature water supply path 37. It is sent to the facility and used for various purposes.

また、浄化水水槽36には、施設10の外部から上水受入経路60を経て受け入れられる上水(市水)も貯留できるようになっている。この上水は、浄化水装置30をバックアップして、施設10で必要とされる水量を確実に確保するためのものである。この上水受入経路60には受水槽61が設けられており、上水は受水槽61に一時貯留されてから浄化水水槽36に送られ、浄化水装置30によって生成された浄化水とともに、施設10内の種々の用途に供される。   The purified water tank 36 can also store clean water (city water) that can be received from the outside of the facility 10 via the clean water receiving path 60. This clean water backs up the purified water device 30 to ensure the amount of water required in the facility 10. The water receiving path 60 is provided with a water receiving tank 61, and the water is temporarily stored in the water receiving tank 61 and then sent to the purified water tank 36, along with the purified water generated by the purified water device 30, and the facility 10 for various uses.

内部電力供給経路70は、熱電併給装置20による発電電力を発電電力供給経路71から取り込んで、内部駆動電力分配経路72によって浄化水供給装置11の各部に分配供給するものである。具体的には、この内部電力分配経路72は、熱電併給装置20による発電電力は、加圧供給ポンプ32と、熱媒体循環ポンプ52と、熱媒体循環ポンプ制御手段54と、原水取込ポンプ43とという、この浄化水供給装置11において駆動電力を必要とする装置すべてに接続されている。   The internal power supply path 70 takes in the power generated by the combined heat and power supply apparatus 20 from the generated power supply path 71 and distributes and supplies it to each part of the purified water supply apparatus 11 through the internal drive power distribution path 72. Specifically, in this internal power distribution path 72, the electric power generated by the combined heat and power supply apparatus 20 is the pressurized supply pump 32, the heat medium circulation pump 52, the heat medium circulation pump control means 54, and the raw water intake pump 43. The purified water supply device 11 is connected to all devices that require driving power.

このような内部電力供給経路70により、浄化水供給装置11は、熱電併給装置20を運転するための燃料さえ確保すれば、施設10の内外の他の装置や、電力、上水等のインフラ設備等から独立して運転することができ、たとえば災害時等においても、浄化水を供給することができる。すなわち、この浄化水供給装置11は非常用水源として機能することができる。   With such an internal power supply path 70, the purified water supply device 11 can secure other fuel for operating the combined heat and power supply device 20, other equipment inside and outside the facility 10, and infrastructure equipment such as electric power and water supply. For example, in the event of a disaster, purified water can be supplied. That is, the purified water supply device 11 can function as an emergency water source.

また、内部電力分配経路72は、施設10内の非常用電灯等の非常用設備に電力を供給する非常用電力経路75にも、電力を分配できるようになっている。この非常用電力経路75に接続される非常用設備は、その消費電力が、浄化水供給装置11の各部の駆動に影響を与えない範囲内のものに制限されている。この非常用電力経路75により、この浄化水供給装置11は、災害時等における最低限の非常用電源としても機能することができる。   The internal power distribution path 72 can also distribute power to an emergency power path 75 that supplies power to emergency equipment such as an emergency light in the facility 10. The emergency facilities connected to the emergency power path 75 are limited to those whose power consumption does not affect the drive of each part of the purified water supply device 11. By means of the emergency power path 75, the purified water supply device 11 can function as a minimum emergency power source in the event of a disaster or the like.

また、この内部電力供給経路70は、施設10が外部から受電する受電経路12と接続する送電経路73を有している。この送電経路73は、熱電併給装置20による発電電力のうち、浄化水供給装置11内で利用しない余剰電力を施設10内の他の電気機器19…に供給するものである。また逆に、点検等の諸事情によって熱電併給装置20の駆動を停止している場合には、この送電経路73を介して浄化水供給装置11に外部からの受電電力を供給することも可能である。   The internal power supply path 70 has a power transmission path 73 connected to the power reception path 12 from which the facility 10 receives power from the outside. This power transmission path 73 supplies surplus power that is not used in the purified water supply device 11 among the power generated by the combined heat and power supply device 20 to the other electrical devices 19 in the facility 10. Conversely, when driving of the combined heat and power supply device 20 is stopped due to various circumstances such as inspection, it is possible to supply received power from the outside to the purified water supply device 11 through the power transmission path 73. is there.

このような送電経路73により、熱電併給装置20による発電電力の効率的な利用を図りながら、浄化水供給装置11の電力源に冗長性を確保して、安定した運転を実現することができる。   With such a power transmission path 73, it is possible to ensure redundancy in the power source of the purified water supply device 11 and achieve stable operation while efficiently using generated power by the combined heat and power supply device 20.

また、この送電経路74には、浄化水供給装置11内の発電電力供給経路71および内部駆動電力分配経路72を遮断することなく、送電経路74のみを遮断することができる遮断装置74が設けられている。   Further, the power transmission path 74 is provided with a cutoff device 74 that can block only the power transmission path 74 without blocking the generated power supply path 71 and the internal drive power distribution path 72 in the purified water supply apparatus 11. ing.

このような遮断装置74により、施設10の外部が停電した場合などの非常時には、浄化水供給装置11を施設10の受電経路12から遮断して、浄化水供給装置11を施設10の外部や施設内の電気機器19…等から切り離し、安全に独立させて運転することができる。   In the event of an emergency such as when the outside of the facility 10 is interrupted by such a shut-off device 74, the purified water supply device 11 is shut off from the power receiving path 12 of the facility 10 so that the purified water supply device 11 is connected to the outside of the facility 10 It can be separated from the electrical devices 19 and so on, and can be operated independently and safely.

なお、このような施設10の外部が停電した非常時には、送電経路73の遮断装置74だけでなく、施設10の受電経路12も遮断装置13によって外部から切り離し、両遮断装置13,74が遮断されている場合にのみ、熱電併給装置20の運転を可能とする安全装置を備えることが望ましい。   Note that, in the event of an emergency where the outside of the facility 10 is out of power, not only the interruption device 74 of the power transmission path 73 but also the power reception path 12 of the facility 10 is disconnected from the outside by the interruption device 13, and both the interruption devices 13, 74 are blocked. It is desirable to provide a safety device that enables operation of the combined heat and power unit 20 only when

以上、本発明を一実施形態に基づいて説明したが、本発明は上記実施形態に限定されるものではなく、その要旨の範囲内で適宜変更することができる。具体的には、以下のように変更することができる。   As mentioned above, although this invention was demonstrated based on one Embodiment, this invention is not limited to the said embodiment, In the range of the summary, it can change suitably. Specifically, it can be changed as follows.

(1)加圧供給ポンプ32は、浄化水装置30の外側に設置してもよい。   (1) The pressurized supply pump 32 may be installed outside the purified water device 30.

(2)熱交換器51は、熱電併給装置20の内側に取り込まれていてもよい。   (2) The heat exchanger 51 may be incorporated inside the cogeneration apparatus 20.

(3)原水の一部だけを熱電併給装置20の熱によって加熱し、非加熱の原水と適宜混合して所定温度の原水(加熱原水)とし、これを浄化水装置30に送るようにしてもよい。   (3) Only a part of the raw water is heated by the heat of the combined heat and power supply device 20 and appropriately mixed with unheated raw water to obtain raw water at a predetermined temperature (heated raw water), which is sent to the purified water device 30. Good.

(4)浄化水装置30に送り込む原水の温度制御は、熱媒体循環ポンプ52のインバータ制御以外の手段によって行ってもよい。   (4) The temperature control of the raw water fed into the purified water device 30 may be performed by means other than the inverter control of the heat medium circulation pump 52.

(5)熱電併給装置20は、上述した中圧天然ガスに限定されず、種々の燃料を採用することができる。また、所定量の燃料を浄化水供給装置11内に貯留するようにしてもよい。   (5) The cogeneration apparatus 20 is not limited to the above-described medium pressure natural gas, and various fuels can be employed. Further, a predetermined amount of fuel may be stored in the purified water supply device 11.

(6)上記実施形態では、熱電併給装置20の発電電力を浄化水供給装置11内の5つの機器に分配するように構成したが、これら以外にも装置11内の電気駆動の機器があれば、すべてに分配することが望ましい。   (6) In the above embodiment, the configuration is such that the generated power of the combined heat and power supply device 20 is distributed to the five devices in the purified water supply device 11. However, if there are other devices that are electrically driven in the device 11, It is desirable to distribute to all.

(7)熱電併給装置20によって浄化水供給装置11内のすべての駆動電力をまかなわなくても、少なくとも加圧供給ポンプ32に電力供給できればよい。   (7) Even if all the driving power in the purified water supply device 11 is not covered by the combined heat and power supply device 20, it is only necessary to supply power to at least the pressurized supply pump 32.

(8)上記実施形態では、熱電併給装置20が生成する熱を原水の加熱にのみ利用する構成を示したが、余剰分の熱は施設10内の他の設備等に供給するようにしてもよい。   (8) In the above embodiment, the configuration in which the heat generated by the combined heat and power supply device 20 is used only for heating the raw water is shown. However, the surplus heat may be supplied to other equipment in the facility 10. Good.

本発明にかかる熱電併給装置を有する浄化水供給装置を模式的に示す全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram which shows typically the purified water supply apparatus which has a combined heat and power supply apparatus concerning this invention.

符号の説明Explanation of symbols

10 施設
11 浄化水供給装置
12 受電経路
19 施設内電気機器
20 熱電併給装置
30 浄化水装置
31 逆浸透膜
32 加圧供給ポンプ
40 原水経路
43 原水取込ポンプ
44 浄化水熱交換器
50 原水加熱手段
51 熱交換器
52 熱媒体循環ポンプ
53 原水温度検出器
54 熱媒体循環ポンプ制御手段
70 内部電力供給経路
73 送電経路
74 遮断装置

DESCRIPTION OF SYMBOLS 10 Facility 11 Purified water supply apparatus 12 Power receiving path 19 In-facility electrical equipment 20 Thermoelectric supply apparatus 30 Purified water apparatus 31 Reverse osmosis membrane 32 Pressurized supply pump 40 Raw water path 43 Raw water intake pump 44 Purified water heat exchanger 50 Raw water heating means Reference Signs List 51 heat exchanger 52 heat medium circulation pump 53 raw water temperature detector 54 heat medium circulation pump control means 70 internal power supply path 73 power transmission path 74 cutoff device

Claims (6)

逆浸透膜を有する浄化水装置と、
前記浄化水装置に原水を供給する原水経路と、
前記原水経路の原水を前記逆浸透膜に加圧供給する加圧供給ポンプと、
熱と電力を同時に生成する熱電併給装置と、
前記熱電併給装置が生成する熱により、前記原水経路の原水を所定温度の温水に加熱する原水加熱手段と、
前記熱電併給装置が生成する電力を前記加圧供給ポンプに供給する内部電力供給経路と、
を備えたことを特徴とする熱電併給装置を有する浄化水供給装置。
A purified water device having a reverse osmosis membrane;
A raw water path for supplying raw water to the purified water device;
A pressure supply pump that pressurizes and supplies the raw water of the raw water path to the reverse osmosis membrane;
A combined heat and power device that simultaneously generates heat and power;
Raw water heating means for heating raw water in the raw water path to warm water of a predetermined temperature by heat generated by the combined heat and power supply device,
An internal power supply path for supplying power generated by the cogeneration device to the pressure supply pump;
A purified water supply device having a combined heat and power supply device.
前記原水加熱手段は、
前記熱電併給装置を循環する熱媒体の熱により、前記原水経路の原水を加熱する熱交換器と、
前記熱媒体を前記熱交換器に送り込む熱媒体循環ポンプと、
前記熱交換器において加熱された原水の温度を検出する原水温度検出器と、
前記原水の温度に応じて該温度が前記所定温度となるように前記熱媒体循環ポンプを駆動制御する熱媒体循環ポンプ制御手段と、
を備えたことを特徴とする請求項1に記載の熱電併給装置を有する浄化水供給装置。
The raw water heating means
A heat exchanger that heats raw water in the raw water path by heat of a heat medium circulating in the combined heat and power supply device;
A heat medium circulation pump for sending the heat medium to the heat exchanger;
Raw water temperature detector for detecting the temperature of raw water heated in the heat exchanger;
A heat medium circulation pump control means for driving and controlling the heat medium circulation pump so that the temperature becomes the predetermined temperature according to the temperature of the raw water;
The purified water supply apparatus which has a combined heat and power supply apparatus of Claim 1 characterized by the above-mentioned.
前記内部電力供給経路は、前記熱電併給装置が生成する電力を前記熱媒体循環ポンプおよび前記熱媒体循環ポンプ制御手段にも供給するように構成されたことを特徴とする請求項2に記載の熱電併給装置を有する浄化水供給装置。   3. The thermoelectric power supply according to claim 2, wherein the internal power supply path is configured to supply the power generated by the combined heat and power supply device to the heat medium circulation pump and the heat medium circulation pump control unit. A purified water supply device having a co-feeding device. 前記浄化水装置により浄化された浄化水の熱により、前記熱電併給装置によって所定温度の温水に加熱される前の原水を予熱する浄化水熱交換器を備えたことを特徴とする請求項1〜3のいずれかに記載の熱電併給装置を有する浄化水供給装置。   2. A purified water heat exchanger for preheating raw water before being heated to warm water of a predetermined temperature by the combined heat and power device by heat of purified water purified by the purified water device. A purified water supply device comprising the combined heat and power supply device according to claim 3. 前記熱電併給装置によって所定温度の温水に加熱される前の原水を、前記浄化水熱交換器に送り込む原水取込ポンプを備え、
前記内部電力供給経路は、前記熱電併給装置が生成する電力を前記原水取込ポンプにも供給するように構成されたことを特徴とする請求項4に記載の熱電併給装置を有する浄化水供給装置。
A raw water intake pump that feeds raw water before being heated to warm water at a predetermined temperature by the combined heat and power supply device to the purified water heat exchanger,
5. The purified water supply device having a combined heat and power device according to claim 4, wherein the internal power supply path is configured to supply the power generated by the combined heat and power supply device to the raw water intake pump. .
当該浄化水供給装置が設置された施設の外部から当該施設内の電気機器に電力を受電する受電経路に接続され、前記熱電併給装置が生成する電力を前記電気機器に供給する送電経路と、
前記送電経路を遮断する遮断装置と、
を備えたことを特徴とする請求項1〜5のいずれかに記載の熱電併給装置を有する浄化水供給装置。

A power transmission path that is connected to a power receiving path that receives power from the outside of the facility where the purified water supply apparatus is installed to the electrical equipment in the facility, and that supplies the power generated by the cogeneration device;
A blocking device for blocking the power transmission path;
The purified water supply apparatus which has a combined heat and power supply apparatus in any one of Claims 1-5 characterized by the above-mentioned.

JP2003288588A 2003-08-07 2003-08-07 Purified water feed device having thermoelectric cogeneration apparatus Pending JP2005052793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003288588A JP2005052793A (en) 2003-08-07 2003-08-07 Purified water feed device having thermoelectric cogeneration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003288588A JP2005052793A (en) 2003-08-07 2003-08-07 Purified water feed device having thermoelectric cogeneration apparatus

Publications (1)

Publication Number Publication Date
JP2005052793A true JP2005052793A (en) 2005-03-03

Family

ID=34367191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003288588A Pending JP2005052793A (en) 2003-08-07 2003-08-07 Purified water feed device having thermoelectric cogeneration apparatus

Country Status (1)

Country Link
JP (1) JP2005052793A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009183800A (en) * 2008-02-01 2009-08-20 Panasonic Corp Pure water production method and device
US8221628B2 (en) 2010-04-08 2012-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system to recover waste heat to preheat feed water for a reverse osmosis unit
US8505324B2 (en) 2010-10-25 2013-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Independent free cooling system
JP2015117909A (en) * 2013-12-19 2015-06-25 高砂熱学工業株式会社 Drainage water utilization system and drainage water utilization method
US9314742B2 (en) 2010-03-31 2016-04-19 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system for reverse osmosis predictive maintenance using normalization data
JP2018141610A (en) * 2017-02-28 2018-09-13 高砂熱学工業株式会社 Cooling system and cooling method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443304A (en) * 1987-08-06 1989-02-15 Maruyama Mfg Co Method for heating feed water in reverse osmosis process
JPH06254553A (en) * 1993-03-08 1994-09-13 Shinko Electric Co Ltd Apparatus for producing pure water
JPH10118635A (en) * 1996-10-21 1998-05-12 Ebara Corp Water purifying apparatus
JPH1169634A (en) * 1997-08-28 1999-03-09 Tokyo Gas Co Ltd Received power controlling device
JP2001259613A (en) * 2000-03-23 2001-09-25 Kurita Water Ind Ltd Equipment for disaster and fresh water generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443304A (en) * 1987-08-06 1989-02-15 Maruyama Mfg Co Method for heating feed water in reverse osmosis process
JPH06254553A (en) * 1993-03-08 1994-09-13 Shinko Electric Co Ltd Apparatus for producing pure water
JPH10118635A (en) * 1996-10-21 1998-05-12 Ebara Corp Water purifying apparatus
JPH1169634A (en) * 1997-08-28 1999-03-09 Tokyo Gas Co Ltd Received power controlling device
JP2001259613A (en) * 2000-03-23 2001-09-25 Kurita Water Ind Ltd Equipment for disaster and fresh water generator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009183800A (en) * 2008-02-01 2009-08-20 Panasonic Corp Pure water production method and device
US9314742B2 (en) 2010-03-31 2016-04-19 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system for reverse osmosis predictive maintenance using normalization data
US8221628B2 (en) 2010-04-08 2012-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system to recover waste heat to preheat feed water for a reverse osmosis unit
US8505324B2 (en) 2010-10-25 2013-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Independent free cooling system
JP2015117909A (en) * 2013-12-19 2015-06-25 高砂熱学工業株式会社 Drainage water utilization system and drainage water utilization method
JP2018141610A (en) * 2017-02-28 2018-09-13 高砂熱学工業株式会社 Cooling system and cooling method

Similar Documents

Publication Publication Date Title
AU2013320791B2 (en) Structure for controlling temperature of hot- water supply from waste heat recovery system using three-way valve or mixing valve, and structure for controlling temperature of hot- water supply from waste heat recovery system using heat exchanger in hot- water tank
AU2016328618B2 (en) Combined heat and power system with electrical and thermal energy storage
KR101577125B1 (en) Water treatment system and water treatment method
CN106536419A (en) Waste heat water purifier and cooling system
JP2005052793A (en) Purified water feed device having thermoelectric cogeneration apparatus
JPH06254553A (en) Apparatus for producing pure water
EP2529445B1 (en) Multipurpose hydrogen generator system
JP2011177600A (en) Seawater desalination system
JP3640410B2 (en) Power generation and desalination equipment using seawater temperature difference
US20170081210A1 (en) Solar wastewater disinfection system and method
JP6642254B2 (en) Water heating system
CN217737316U (en) District heating system
JP2007132555A (en) Solar energy assisted system
CN105612315A (en) Pumping apparatus
JP2020143653A (en) Power generation and water treatment system
KR102343475B1 (en) District Heating system using Sewage heat
CN102410671B (en) A kind of heat pump that utilizes hot waste water source
JP3211168U (en) Building cogeneration system
CN110683702A (en) Quality-divided water supply system
KR20170021142A (en) An apparatus for feeding hot potable water using waste heat from thermal oil collecting heat from exhaust gas of engine and a method for feeding hot potable water using thereof
CN114890596A (en) Method and system for adjusting externally supplied steam of thermal power plant
JP2020143880A (en) Power generation system
CN102901204A (en) Convenient energy-saving water heater
JP2004333038A (en) Hot water supply system
RU5841U1 (en) BOILER INSTALLATION

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080415