WO2019171632A1 - Method for heating ultra-pure water - Google Patents

Method for heating ultra-pure water Download PDF

Info

Publication number
WO2019171632A1
WO2019171632A1 PCT/JP2018/033812 JP2018033812W WO2019171632A1 WO 2019171632 A1 WO2019171632 A1 WO 2019171632A1 JP 2018033812 W JP2018033812 W JP 2018033812W WO 2019171632 A1 WO2019171632 A1 WO 2019171632A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrapure water
water
heat exchanger
amount
way valve
Prior art date
Application number
PCT/JP2018/033812
Other languages
French (fr)
Japanese (ja)
Inventor
重希 堀井
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2019171632A1 publication Critical patent/WO2019171632A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters

Definitions

  • the present invention relates to a method for heating ultrapure water, and more particularly, to a method for heating ultrapure water for heating ultrapure water from a secondary pure water production apparatus with a heat exchanger and supplying it to a use point as warm ultrapure water.
  • the ultrapure water used as the semiconductor cleaning water is, as shown in FIG. 2, a pretreatment system 50, a primary pure water production apparatus 60, and a secondary pure water production apparatus (often referred to as a subsystem) 70. It is manufactured by treating raw water (industrial water, city water, well water, etc.) with an ultrapure water manufacturing apparatus composed of (Patent Document 1).
  • Patent Document 1 the role of each system is as follows.
  • pretreatment system 50 comprising agglomeration, pressurized flotation (precipitation), filtration (membrane filtration) apparatus, etc. (in this conventional example, agglomeration filtration apparatus), suspended substances and colloidal substances in raw water are removed.
  • agglomeration filtration apparatus in this conventional example, agglomeration filtration apparatus, suspended substances and colloidal substances in raw water are removed.
  • the reverse osmosis membrane treatment device 62 removes salts and removes ionic and colloidal TOC.
  • the ion exchange devices 63 and 63B remove salts and inorganic carbon (IC) and remove TOC components adsorbed or ion exchanged by an ion exchange resin. In the deaerator 64, inorganic carbon (IC) and dissolved oxygen are removed.
  • the primary pure water produced by the primary pure water production apparatus 60 is sent to the secondary pure water production apparatus 70 via the pipe 69.
  • the secondary pure water production apparatus 70 includes a sub-tank (sometimes referred to as a pure water tank) 71, a pump 72, a heat exchanger 73, a low-pressure ultraviolet oxidation apparatus (UV apparatus) 74, an ion exchange apparatus 75, and a limiter.
  • An outer filtration membrane (UF membrane) separation device 76 is provided.
  • the heat exchanger 73 is for temperature control of secondary pure water. In general, the supply temperature of secondary pure water (room temperature ultrapure water) is 23 to 25 ° C., and a heat exchanger 73 is a cooler for controlling the temperature range. Cold water is used as a cooling source for the cooler.
  • the TOC is decomposed to an organic acid and further to CO 2 by 185 nm ultraviolet rays emitted from a low-pressure ultraviolet lamp.
  • Organic substances and CO 2 produced by the decomposition are removed by the ion exchange device 75 in the subsequent stage.
  • the ultrafiltration membrane separation device 76 the fine particles are removed, and the outflow particles from the ion exchange resin are also removed.
  • the treated water of the ion exchanger 75 is heated by ultrapure water (room temperature ultrapure water) sent from the ultrafiltration membrane separator 76 to the use point 90 via the pipe 81 and heat exchangers 85 and 86. And ultrapure water (warm ultrapure water) sent to the use point 90 via the ultrafiltration membrane separator 87 and the pipe 88.
  • ultrapure water room temperature ultrapure water
  • the ultrapure water from the secondary pure water production apparatus 70 is heated to about 65 to 75 ° C. by the front side heat exchanger 85 and the rear side heat exchanger 86 and supplied to the use point 90.
  • the warm return water from this use point 90 is circulated through the pipe 91 to the heat source side of the pre-stage side heat exchanger 85.
  • the return water that has passed through the heat source side of the pre-stage side heat exchanger 85 has been cooled to about 30 to 40 ° C. and is returned to the sub tank 71 via the pipe 92.
  • the rear stage heat exchanger 86 uses steam as a heat source.
  • FIG. 3 is a system diagram showing an example of a conventional ultrapure water heating apparatus.
  • Primary pure water is introduced into the subsystem 4 via the pipe 1, the sub tank 2, and the pipe 3, and the temperature is adjusted by a heat exchanger at the rear stage of the sub tank to produce ultra pure water of about 25 ° C.
  • the produced ultrapure water flows in the order of the pipe 5, the first heat exchanger 6, the pipe 9 and the second heat exchanger 10, and is heated to about 45 to 70 ° C. by the heat exchanger 6. It is heated to about 75 ° C., and is sent to the use point through the pipe 11 as warm ultrapure water.
  • a UF membrane separation device 11A is installed immediately before the use point.
  • the return temperature ultrapure water (return water) of about 75 ° C. from the use point is introduced into the heat source fluid flow path of the heat exchanger 6 through the pipe 7.
  • the return temperature ultrapure water is heat-exchanged with the ultrapure water from the subsystem 4 by the heat exchanger 6 and cooled to about 30 ° C., and then sent to the subtank 2 through the pipe 8.
  • the first medium water (water as the heat transfer medium) heated by the heat pump 20 and the steam heat exchanger 15 is circulated through the heat source fluid flow path of the heat exchanger 10. That is, the first medium water of about 65 ° C. flowing out from the heat exchanger 10 is heated to about 75 ° C. by the condenser 23 of the heat pump 20 in the first circulation flow path, and then heated to about 80 ° C. by the steam heat exchanger 15. Heat to flow into heat exchanger 10.
  • the heat pump 20 compresses the heat medium such as CFC substitute from the evaporator 21 by the pump 22 and introduces it into the condenser 23, and introduces the heat medium from the condenser 23 into the evaporator 21 through the expansion valve 24. It is configured.
  • the first medium water from the heat exchanger 10 is introduced into the condenser 23 of the first circulation channel (high temperature side channel) through the pipe 12, and the first medium water heated by the condenser 23 passes through the pipe 14. Then, the water is fed to the heat exchanger 15. A part of the first medium water from the heat exchanger 15 is returned to the pipe 12 via the bypass pipe 19. Thereby, the water temperature of the first medium water introduced into the condenser 23 becomes about 70 ° C.
  • the bypass pipe 19 is provided with a flow rate adjustment valve (not shown).
  • the piping 12 is provided with a circulation pump (not shown).
  • a flow path including a pipe 25 and a pipe 27 is provided.
  • Heat pump heat source water at about 30 ° C. is introduced into the heat source fluid flow path of the evaporator 21, and heat exchange with the heat medium of the heat pump 20 is performed to lower the temperature to about 25 ° C., and then is sent to another process via the pipe 25. .
  • the input power of the heat pump compressor is adjusted so that the outlet temperature of the first medium water becomes a constant temperature.
  • a plurality of heat pumps may be used, and the number control may be performed according to the heat load.
  • the amount of the first medium water to be bypassed from the pipe 14 to the pipe 12 via the bypass pipe 19 is a three-way valve (not shown) provided at the branch from the pipe 14 to the bypass pipe 19. ).
  • the amount of bypass water is increased, the amount of heat given to the ultrapure water in the heat exchanger 10 is reduced, and when the amount of bypass water is reduced, the amount of heat applied in the heat exchanger 10 is increased. Therefore, when the temperature of the ultrapure water flowing into the heat exchanger 10 from the pipe 9 changes due to the change in the amount of return-pure ultrapure water from the pipe 7, the first medium water amount to be bypassed to the pipe 19 is controlled. Thus, the temperature of the warm ultrapure water fed from the pipe 11 to the use point is maintained constant (75 ° C. in the above case).
  • the amount of warm ultrapure water used at the point of use may fluctuate greatly every few seconds.
  • the flow rate of “warm ultrapure water return” in FIG. 3 varies.
  • the amount of heat recovery in the heat exchanger 6 varies, and the temperature of the ultrapure water flowing from the pipe 9 into the heat exchanger 10 also varies.
  • the temperature of ultrapure water at the inlet of the heat exchanger 10 is lowered.
  • the amount of bypass water to the pipe 19 is decreased and the flow rate is increased.
  • the three-way valve is adjusted so that the amount of bypass water to the pipe 19 becomes zero, the amount of water to the heat exchanger 10 cannot be increased any more, and the temperature of the warm ultrapure water sent from the pipe 11 to the use point Cannot be maintained at the target temperature.
  • the temperature of the ultra-pure water at the use point must be controlled within a strict range of plus or minus 1 ° C, the fact that the control temperature of the ultra-pure water cannot be maintained may cause a major problem in the use of the ultra-pure water at the use point. There is.
  • the first medium water amount (high-temperature circulating water amount) circulating through the pipe 14, the pipe 12, and the bypass pipe 19 has been set to a sufficient amount.
  • the maximum value of warm ultrapure water usage estimated from past results even if the warm ultrapure water usage rapidly increases to such maximum value, it becomes possible to control the temperature of the ultrapure water delivered to the use point As such, a sufficient amount of bypass circulation water was set.
  • the temperature of the ultrapure water supplied to the use point is maintained constant even if the use amount of the ultrapure water at the use point is remarkably increased.
  • a normal state when the amount of warm ultrapure water used is near the average value, there is a problem that the amount of bypass water is large and the operation cost is high. That is, in the normal state, since the return temperature ultrapure water is large, the temperature of the ultrapure water flowing from the pipe 9 into the heat exchanger 10 does not decrease so much, and therefore the required amount of heating by the high-temperature circulating water (first medium water) is also low. Since it was not large, the operation was continued while the flow rate of the first medium water bypassed to the pipe 19 was large.
  • the present invention solves such problems and avoids the risk that the temperature of ultra-pure water cannot be maintained due to a rapid increase in the amount of use of hot ultra-pure water at the point of use, while reducing the amount of hot circulating water and reducing the bypass flow rate. It aims at providing the heating method of a pure water.
  • the ultrapure water heating method of the present invention includes a first heat exchanger that heats ultrapure water from an ultrapure water production apparatus using return water from a use point as a heat source, and the first heat exchanger.
  • a heating unit that further heats the heated ultrapure water and supplies the heated ultrapure water to a use point, wherein the heating unit is heated by the first heat exchanger;
  • a second heat exchanger through which the ultrapure water is passed through the heated fluid passage, and a circulation passage for circulating and circulating the medium water as the heat transfer medium in the heat source fluid passage of the second heat exchanger
  • the amount of ultrapure water used at the point of use in a method of heating ultrapure water by a heating device comprising a heater for heating the medium water flowing through the circulation channel and a pump provided in the circulation channel The pump is controlled accordingly.
  • a bypass flow path that bypasses the second heat exchanger is provided in the medium water circulation flow path, and depending on the amount of ultrapure water used at a use point, Control the bypass flow rate.
  • a three-way valve for controlling the bypass flow rate is provided, and the opening degree of the three-way valve is controlled according to the amount of ultrapure water used at the use point.
  • a three-way valve for controlling the bypass flow rate is provided, and a three-way valve opening after 1 to 5 minutes is predicted from an actual measured value of the operation data.
  • the amount of hot circulating water is controlled so that it is almost constant.
  • a multiple regression model or an artificial intelligence model having a “predicted value of the three-way valve opening” as an objective variable is constructed, and the current operation data measured value is included in the model. Is input, the “predicted value of the three-way valve opening” is obtained.
  • the explanatory variables of the multiple regression model or the artificial intelligence model include at least the “current value of the three-way valve opening” and the “ultra pure water outlet temperature of the first heat exchanger”.
  • the present invention by reducing the amount of hot circulating water and reducing the bypass flow rate, i) Reduce the power consumption of the circulating water pump; ii) When there is a heat pump in the circulation process of the high-temperature circulating water, the heat pump inlet temperature decreases and the temperature difference between the high-temperature circulating water and the heat pump heat source water decreases, so the COP (coefficient of performance) of the heat pump is improved. be able to; iii) When there are both heat pumps and steam heat exchangers in the circulation process of high-temperature circulating water, it is possible to reduce the amount of steam used in the steam heat exchanger and increase the heating rate by the heat pump with a low unit price per supply heat quantity. it can; The effect is obtained.
  • FIG. 1 is a system diagram showing an ultrapure water heating apparatus according to an embodiment.
  • Primary pure water is introduced into the subsystem 4 via the pipe 1, the sub tank 2, and the pipe 3, and the temperature is adjusted by a heat exchanger included in the subsystem to produce ultra pure water of about 25 ° C.
  • the produced ultrapure water flows in the order of the pipe 5, the first heat exchanger 6, the pipe 9 and the second heat exchanger 10, and is heated to about 45 to 70 ° C. by the heat exchanger 6. It is heated to about 75 ° C., and is sent to the use point through the pipe 11 as warm ultrapure water.
  • a UF membrane separation device (not shown) is installed immediately before the use point.
  • the return temperature ultrapure water (return water) of about 75 ° C. from the use point is introduced into the heat source fluid flow path of the heat exchanger 6 through the pipe 7.
  • the return temperature ultrapure water is heat-exchanged with the ultrapure water from the subsystem 4 by the heat exchanger 6 and cooled to about 30 ° C., and then sent to the subtank 2 through the pipe 8.
  • the medium water heated by the heater 40 such as a heat pump or a steam heat exchanger (water as a heat transfer medium) is circulated through the heat source fluid flow path of the heat exchanger 10. That is, about 50 to 70 ° C. medium water flowing out from the heat exchanger 10 is introduced into the heater 40 by the pipe 45, the pump 46 and the pipe 47 and heated to about 80 ° C., and then the pipe 42, the three-way valve 43 and the pipe are heated. It flows into the heat exchanger 10 through 44.
  • a part of the medium water from the heater 40 is returned from the three-way valve 43 to the pipe 45 via the bypass pipe 48.
  • the temperature sensor 50 is provided in the pipe 11, and the measured temperature is input to the control device 51, and the three-way valve 43 and the pump 46 are controlled by the control device 51. From the three-way valve 43, a signal indicating the current opening degree (an opening degree of flowing medium water from the pipe 42 to the pipe 44) is input to the control apparatus 51.
  • the medium water circulating water amount is adjusted so that the opening degree of the three-way valve 43 (an opening degree for flowing the medium water from the pipe 42 to the pipe 44) becomes a constant value. If the opening degree of the three-way valve 43 is expressed by 0% to 100%, it is preferable to increase / decrease the motor rotation speed of the pump 46 and automatically adjust the medium water circulation water amount so that the opening degree becomes 75% to 80%, for example. .
  • an inverter attached to the pump adjusts the motor rotation speed by increasing or decreasing the voltage and frequency.
  • a method may be used in which a signal related to the current three-way valve opening is input to the control device 51, calculation processing is performed by the control device 51, the result is sent to an inverter attached to the pump 46, and the inverter adjusts the voltage and frequency of the motor. .
  • a method may be used in which a relational expression between the opening degree of the three-way valve 43 and the inverter output value is derived in advance and the inverter output value is adjusted based on the relational expression.
  • the future means one to five minutes after the present time.
  • the three-way valve opening after 2 minutes is the objective variable, “the current three-way valve opening”, “ultra-pure water flowing from the pipe 9 to the heat exchanger 10”
  • the temperature of the ultrapure water detected by the temperature sensor 50 after 2 minutes is maintained at 75 ° C.
  • the high-temperature circulating water amount (pump 46 discharge amount) based on the predicted value of “the three-way valve opening after 2 minutes”, it is possible to respond more rapidly to the sudden increase in the amount of hot ultrapure water used. For example, when the predicted value of the three-way valve opening after 2 minutes exceeds 80%, the motor speed of the pump 46 is increased so that the opening is within the range of 75 to 80%.
  • An artificial intelligence model or the like may be used instead of the multiple regression model.
  • the amount of bypass water can be reduced and the production cost of the ultra-pure water can be reduced.
  • the temperature of ultrapure water flowing from the pipe 9 to the heat exchanger 10 decreases, and the opening of the three-way valve 43 starts to increase correspondingly.
  • the circulating water amount of the medium water can be automatically increased, and the risk of deviating from the control target value of the warm ultrapure water temperature can be avoided.
  • the high-temperature circulating water volume can be adjusted even faster than adjusting the high-temperature circulating water volume only by the valve opening, and the risk of deviating from the control target value of the warm ultrapure water temperature can be avoided more reliably.
  • both a heat pump using refrigeration waste water as a heat source and a steam heat exchanger using steam as a heat source are used so that circulating water flows in the order of pump 47 ⁇ heat pump ⁇ steam heat exchanger.
  • the input power of the heat pump is adjusted so that the heat pump outlet temperature is constant. Further, the amount of steam is supplied so that the outlet temperature in the steam heat exchanger (that is, the temperature of the medium water flowing in the pipe 42) is constant.
  • thermo pump outlet temperature of the present invention (heat pump outlet temperature of the comparative example)
  • steam heat exchanger outlet temperature of the present invention (steam heat exchanger outlet temperature of the comparative example).
  • the output value of the inverter attached to the pump 46 is adjusted so that the opening of the three-way valve 43 is normally 75 to 80% (that is, the bypass water amount is 20 to 25%).
  • the average value of the medium water circulating water amount is reduced by about 40% compared to the conventional case. Accordingly, the power consumption of the circulating water pump is reduced, and the heating rate by the heat pump with a low unit price per heat quantity is increased. As a result, the overall operation cost can be reduced by about 15%.
  • the amount of ultrapure water used at the point of use is remarkably increased, the amount of returned ultrapure water from the pipe 7 is remarkably reduced, and the temperature of the ultrapure water flowing into the heat exchanger 10 is considerably low (for example, even when the temperature becomes 40 to 45 ° C. or lower), a sufficiently large amount of high-temperature medium water is allowed to flow through the heat exchanger 10 so that 75 ° C. hot ultrapure water can be sent from the pipe 11 to the use point 90.
  • the amount of medium water bypassed from the pipe 14 to the pipe 19 is increased in normal times and the amount of ultrapure water used at the use point 90 is significantly increased, it is necessary to secure the amount of medium water from the pipe 14 to the heat exchanger 10 was there.
  • the amount of bypass medium water is kept small, for example, 20 to 25% in normal times, and when an increase in the amount of supply medium water to the heat exchanger 10 is predicted (that is, the degree of opening of the three-way valve 43).
  • the amount of tapping water from the heater 40 is increased.
  • the amount of high-temperature medium water supplied from the heater 40 (the amount of tapping water) at normal times can be considerably reduced as compared with the conventional case.
  • the controller 51 controls the opening degree of the three-way valve 43 and the motor speed of the pump 46 so that the temperature of the ultrapure water going to the use point 90 via the pipe 11 is always maintained at a constant temperature (75 ° C. in this case).
  • the amount of medium water (high-temperature circulating water amount) supplied to the heat exchanger 10 is controlled by the control.
  • the three-way valve 43 and the bypass pipe 48 may be omitted as long as the warm ultrapure water can be maintained at a constant temperature only by controlling the amount of medium water to the heat exchanger 10 by controlling the pump 46.
  • the supply medium water amount control to the heat exchanger 10 by the bypass water amount control by the three-way valve 43 is quick and easy, and can quickly cope with the load fluctuation of the heat exchanger 10.
  • the opening degree of the three-way valve 43 is increased to 75 to 80%, a significant load increase in the heat exchanger 10 cannot be dealt with by the three-way valve 43 alone. Therefore, as described above, the control of the pump 46 is also used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Secondary pure water from a sub system 4 is heated by a heat exchanger 6, a heat exchanger 10, and a heat exchanger 12 and is sent to a use point. The heat source of the heat exchanger 6 is warm ultra-pure water returned from the use point. Medium water heated by a heater 40 is circulated in the heat exchanger 10. A pump 46 for circulating medium water is subjected to inverter control, and a bypass flow rate is controlled by a three-way valve 43, in accordance with the amount of ultra-pure water used at the use point.

Description

超純水の加熱方法Ultrapure water heating method
 本発明は超純水の加熱方法に係り、特に二次純水製造装置からの超純水を熱交換器で加熱して温超純水としてユースポイントへ供給するための超純水加熱方法に関する。 The present invention relates to a method for heating ultrapure water, and more particularly, to a method for heating ultrapure water for heating ultrapure water from a secondary pure water production apparatus with a heat exchanger and supplying it to a use point as warm ultrapure water.
 半導体洗浄用水として用いられている超純水は、図2に示すように前処理システム50、一次純水製造装置60、二次純水製造装置(サブシステムと称されることも多い。)70から構成される超純水製造装置で原水(工業用水、市水、井水等)を処理することにより製造される(特許文献1)。図2において各システムの役割は次の通りである。 The ultrapure water used as the semiconductor cleaning water is, as shown in FIG. 2, a pretreatment system 50, a primary pure water production apparatus 60, and a secondary pure water production apparatus (often referred to as a subsystem) 70. It is manufactured by treating raw water (industrial water, city water, well water, etc.) with an ultrapure water manufacturing apparatus composed of (Patent Document 1). In FIG. 2, the role of each system is as follows.
 凝集、加圧浮上(沈殿)、濾過(膜濾過)装置など(この従来例では凝集濾過装置)よりなる前処理システム50では、原水中の懸濁物質やコロイド物質の除去を行う。また、この過程では高分子系有機物、疎水性有機物などの除去も可能である。 In the pretreatment system 50 comprising agglomeration, pressurized flotation (precipitation), filtration (membrane filtration) apparatus, etc. (in this conventional example, agglomeration filtration apparatus), suspended substances and colloidal substances in raw water are removed. In this process, it is also possible to remove high molecular organic substances, hydrophobic organic substances, and the like.
 前処理された水のタンク61、熱交換器65、逆浸透膜処理装置(RO装置)62、イオン交換装置(混床式又は4床5塔式など)63、タンク63A、イオン交換装置63B、及び脱気装置64を備える一次純水製造装置60では、原水中のイオンや有機成分の除去を行う。熱交換器65の1次側には、熱源流体として蒸気が供給される。逆浸透膜処理装置62では、塩類を除去すると共に、イオン性、コロイド性のTOCを除去する。イオン交換装置63,63Bでは、塩類、無機系炭素(IC)を除去すると共にイオン交換樹脂によって吸着又はイオン交換されるTOC成分の除去を行う。脱気装置64では無機系炭素(IC)、溶存酸素の除去を行う。 Pre-treated water tank 61, heat exchanger 65, reverse osmosis membrane treatment device (RO device) 62, ion exchange device (mixed bed type or 4 bed 5 tower type etc.) 63, tank 63A, ion exchange device 63B, And in the primary pure water manufacturing apparatus 60 provided with the deaeration apparatus 64, the ion and organic component in raw | natural water are removed. Steam is supplied to the primary side of the heat exchanger 65 as a heat source fluid. The reverse osmosis membrane treatment device 62 removes salts and removes ionic and colloidal TOC. The ion exchange devices 63 and 63B remove salts and inorganic carbon (IC) and remove TOC components adsorbed or ion exchanged by an ion exchange resin. In the deaerator 64, inorganic carbon (IC) and dissolved oxygen are removed.
 一次純水製造装置60で製造された一次純水は、配管69を介して二次純水製造装置70へ送水される。この二次純水製造装置70は、サブタンク(純水タンクと称されることもある。)71、ポンプ72、熱交換器73、低圧紫外線酸化装置(UV装置)74、イオン交換装置75及び限外濾過膜(UF膜)分離装置76を備えている。熱交換器73は、二次純水の温度制御のためのものである。一般に二次純水(常温超純水)の供給温度は23~25℃であり、その温度範囲に制御するため、熱交換器73は冷却器が使用される。冷却器の冷却源として冷水が用いられる。 The primary pure water produced by the primary pure water production apparatus 60 is sent to the secondary pure water production apparatus 70 via the pipe 69. The secondary pure water production apparatus 70 includes a sub-tank (sometimes referred to as a pure water tank) 71, a pump 72, a heat exchanger 73, a low-pressure ultraviolet oxidation apparatus (UV apparatus) 74, an ion exchange apparatus 75, and a limiter. An outer filtration membrane (UF membrane) separation device 76 is provided. The heat exchanger 73 is for temperature control of secondary pure water. In general, the supply temperature of secondary pure water (room temperature ultrapure water) is 23 to 25 ° C., and a heat exchanger 73 is a cooler for controlling the temperature range. Cold water is used as a cooling source for the cooler.
 低圧紫外線酸化装置74では、低圧紫外線ランプより出される185nmの紫外線によりTOCを有機酸、さらにはCOまで分解する。分解により生成した有機物及びCOは後段のイオン交換装置75で除去される。限外濾過膜分離装置76では、微粒子が除去され、イオン交換樹脂からの流出粒子も除去される。 In the low-pressure ultraviolet oxidizer 74, the TOC is decomposed to an organic acid and further to CO 2 by 185 nm ultraviolet rays emitted from a low-pressure ultraviolet lamp. Organic substances and CO 2 produced by the decomposition are removed by the ion exchange device 75 in the subsequent stage. In the ultrafiltration membrane separation device 76, the fine particles are removed, and the outflow particles from the ion exchange resin are also removed.
 イオン交換装置75の処理水は、限外濾過膜分離装置76から配管81を介してユースポイント90に送られる超純水(常温超純水)と、熱交換器85,86で加熱された後、限外濾過膜分離装置87及び配管88を介してユースポイント90に送られる超純水(温超純水)とに分かれる。 The treated water of the ion exchanger 75 is heated by ultrapure water (room temperature ultrapure water) sent from the ultrafiltration membrane separator 76 to the use point 90 via the pipe 81 and heat exchangers 85 and 86. And ultrapure water (warm ultrapure water) sent to the use point 90 via the ultrafiltration membrane separator 87 and the pipe 88.
 後者のラインでは、二次純水製造装置70からの超純水を前段側熱交換器85と後段側熱交換器86とで65~75℃程度に加熱し、ユースポイント90に供給する。このユースポイント90からの温戻り水を配管91を介して前段側熱交換器85の熱源側に流通させる。前段側熱交換器85の熱源側を通過した戻り水は30~40℃程度に降温しており、配管92を介してサブタンク71に戻される。後段側熱交換器86は蒸気を熱源とするものである。 In the latter line, the ultrapure water from the secondary pure water production apparatus 70 is heated to about 65 to 75 ° C. by the front side heat exchanger 85 and the rear side heat exchanger 86 and supplied to the use point 90. The warm return water from this use point 90 is circulated through the pipe 91 to the heat source side of the pre-stage side heat exchanger 85. The return water that has passed through the heat source side of the pre-stage side heat exchanger 85 has been cooled to about 30 to 40 ° C. and is returned to the sub tank 71 via the pipe 92. The rear stage heat exchanger 86 uses steam as a heat source.
 図3は従来の超純水加熱装置の例を示す系統図である。 FIG. 3 is a system diagram showing an example of a conventional ultrapure water heating apparatus.
 一次純水は、配管1、サブタンク2、配管3を介してサブシステム4に導入され、サブタンク後段の熱交換器で温度調整されて、約25℃の超純水が製造される。製造された超純水は、配管5、第1熱交換器6、配管9及び第2熱交換器10の順に流れ、熱交換器6によって約45~70℃に加熱され、熱交換器10によって約75℃に加熱され、温超純水として配管11によりユースポイントへ送水される。配管11には、ユースポイントの直前にUF膜分離装置11Aが設置されている。 Primary pure water is introduced into the subsystem 4 via the pipe 1, the sub tank 2, and the pipe 3, and the temperature is adjusted by a heat exchanger at the rear stage of the sub tank to produce ultra pure water of about 25 ° C. The produced ultrapure water flows in the order of the pipe 5, the first heat exchanger 6, the pipe 9 and the second heat exchanger 10, and is heated to about 45 to 70 ° C. by the heat exchanger 6. It is heated to about 75 ° C., and is sent to the use point through the pipe 11 as warm ultrapure water. In the pipe 11, a UF membrane separation device 11A is installed immediately before the use point.
 熱交換器6の熱源流体流路へは、配管7を介してユースポイントからの約75℃の戻り温超純水(戻り水)が導入される。この戻り温超純水は、熱交換器6でサブシステム4からの超純水と熱交換して約30℃に降温した後、配管8によって、サブタンク2に送られる。 The return temperature ultrapure water (return water) of about 75 ° C. from the use point is introduced into the heat source fluid flow path of the heat exchanger 6 through the pipe 7. The return temperature ultrapure water is heat-exchanged with the ultrapure water from the subsystem 4 by the heat exchanger 6 and cooled to about 30 ° C., and then sent to the subtank 2 through the pipe 8.
 熱交換器10の熱源流体流路には、ヒートポンプ20及び蒸気式熱交換器15によって加熱された第1媒体水(伝熱媒体としての水)が循環流通される。即ち、熱交換器10から流出した約65℃の第1媒体水を第1循環流路のヒートポンプ20の凝縮器23で約75℃に加熱した後、蒸気式熱交換器15で約80℃に加熱して熱交換器10に流入させる。 The first medium water (water as the heat transfer medium) heated by the heat pump 20 and the steam heat exchanger 15 is circulated through the heat source fluid flow path of the heat exchanger 10. That is, the first medium water of about 65 ° C. flowing out from the heat exchanger 10 is heated to about 75 ° C. by the condenser 23 of the heat pump 20 in the first circulation flow path, and then heated to about 80 ° C. by the steam heat exchanger 15. Heat to flow into heat exchanger 10.
 熱交換器15の熱源流体流路には、ボイラ等からの蒸気(水蒸気)が流通される。 Steam (steam) from a boiler or the like is circulated in the heat source fluid flow path of the heat exchanger 15.
 ヒートポンプ20は、蒸発器21からの代替フロン等の熱媒体をポンプ22で圧縮して凝縮器23に導入し、凝縮器23からの熱媒体を膨張弁24を介して蒸発器21に導入するように構成されている。 The heat pump 20 compresses the heat medium such as CFC substitute from the evaporator 21 by the pump 22 and introduces it into the condenser 23, and introduces the heat medium from the condenser 23 into the evaporator 21 through the expansion valve 24. It is configured.
 第1循環流路(高温側流路)の凝縮器23に熱交換器10からの第1媒体水が配管12を介して導入され、凝縮器23で加熱された第1媒体水が配管14を介して熱交換器15に送水される。なお、熱交換器15からの第1媒体水の一部は、バイパス配管19を介して配管12に返送される。これにより、凝縮器23に導入される第1媒体水の水温は約70℃となる。バイパス配管19には、流量調節弁(図示略)が設けられている。 The first medium water from the heat exchanger 10 is introduced into the condenser 23 of the first circulation channel (high temperature side channel) through the pipe 12, and the first medium water heated by the condenser 23 passes through the pipe 14. Then, the water is fed to the heat exchanger 15. A part of the first medium water from the heat exchanger 15 is returned to the pipe 12 via the bypass pipe 19. Thereby, the water temperature of the first medium water introduced into the condenser 23 becomes about 70 ° C. The bypass pipe 19 is provided with a flow rate adjustment valve (not shown).
 配管12に循環用のポンプ(図示略)が設けられている。 The piping 12 is provided with a circulation pump (not shown).
 蒸発器21の熱源流体流路(低温側流路)に第2媒体水(ヒートポンプ熱源水)を通水するために、配管25、配管27よりなる流路が設けられている。 In order to pass the second medium water (heat pump heat source water) through the heat source fluid flow path (low temperature side flow path) of the evaporator 21, a flow path including a pipe 25 and a pipe 27 is provided.
 約30℃のヒートポンプ熱源水が蒸発器21の熱源流体流路に導入され、ヒートポンプ20の熱媒体と熱交換して約25℃に降温した後、配管25を介して他のプロセスへ送水される。 Heat pump heat source water at about 30 ° C. is introduced into the heat source fluid flow path of the evaporator 21, and heat exchange with the heat medium of the heat pump 20 is performed to lower the temperature to about 25 ° C., and then is sent to another process via the pipe 25. .
 ヒートポンプ20の運転方法としては、例えば、第1媒体水の出口温度が一定温度になるように、ヒートポンプ圧縮機の入力電力を調整する。ヒートポンプを複数系列とし、熱負荷に応じて台数制御を行ってもよい。 As an operation method of the heat pump 20, for example, the input power of the heat pump compressor is adjusted so that the outlet temperature of the first medium water becomes a constant temperature. A plurality of heat pumps may be used, and the number control may be performed according to the heat load.
 図3の超純水加熱装置において、バイパス配管19を介して配管14から配管12へバイパスする第1媒体水の水量は、配管14からバイパス配管19への分岐部に設けた三方弁(図示略)により調節することができる。このバイパス水量を多くすると、熱交換器10において超純水に与える熱量が少なくなり、バイパス水量を少なくすると、熱交換器10における与熱量が多くなる。従って、配管7からの戻り温超純水の水量の変動に起因して配管9から熱交換器10に流入する超純水の温度が変動した場合、配管19へバイパスさせる第1媒体水量を制御することにより、配管11からユースポイントへ送水される温超純水の温度が一定(上記の場合75℃)に維持される。 In the ultrapure water heating apparatus of FIG. 3, the amount of the first medium water to be bypassed from the pipe 14 to the pipe 12 via the bypass pipe 19 is a three-way valve (not shown) provided at the branch from the pipe 14 to the bypass pipe 19. ). When the amount of bypass water is increased, the amount of heat given to the ultrapure water in the heat exchanger 10 is reduced, and when the amount of bypass water is reduced, the amount of heat applied in the heat exchanger 10 is increased. Therefore, when the temperature of the ultrapure water flowing into the heat exchanger 10 from the pipe 9 changes due to the change in the amount of return-pure ultrapure water from the pipe 7, the first medium water amount to be bypassed to the pipe 19 is controlled. Thus, the temperature of the warm ultrapure water fed from the pipe 11 to the use point is maintained constant (75 ° C. in the above case).
特許6149993号公報Japanese Patent No. 6149993 特許6149992号公報Japanese Patent No. 6149992
 図3において、配管7からの戻り温超純水の水量が大きく変動し、配管9から熱交換器10へ流入する超純水の温度が大きく変動した場合、配管19へバイパスさせる第1媒体水量の制御だけでは超純水の温度変動に追従できず、ユースポイントへ送水される温超純水の温度が目標温度から逸脱するおそれがある。 In FIG. 3, when the amount of return-pure ultrapure water from the pipe 7 fluctuates greatly and the temperature of the ultrapure water flowing from the pipe 9 into the heat exchanger 10 fluctuates greatly, control of the first medium water amount to be bypassed to the pipe 19 is performed. However, the temperature of the ultrapure water that is sent to the use point may deviate from the target temperature.
 すなわち、ユースポイントで使用される温超純水量は、数秒単位で大きく変動する場合がある。ユースポイントでの温超純水使用量が変動すると、図3における「温超純水戻り」の流量が変動する。これにより、熱交換器6における熱回収量が変動し、配管9から熱交換器10に流入する超純水の温度も変動する。 That is, the amount of warm ultrapure water used at the point of use may fluctuate greatly every few seconds. When the amount of warm ultrapure water used at the use point varies, the flow rate of “warm ultrapure water return” in FIG. 3 varies. Thereby, the amount of heat recovery in the heat exchanger 6 varies, and the temperature of the ultrapure water flowing from the pipe 9 into the heat exchanger 10 also varies.
 例えば、図3のシステムの場合、ユースポイントにおいて温超純水使用量が急増し、その使用量が維持されたとすると、熱交換器10入口の超純水温度が低下することになる。この場合、熱交換器10の超純水出口温度を維持するために、配管19へのバイパス水量を少なくし、流量を増加させる。しかし、配管19へのバイパス水量がゼロになるように三方弁を調整すると、それ以上熱交換器10への水量を増加させることができなくなり、配管11からユースポイントに送水される温超純水の温度を目標温度に維持できなくなる。 For example, in the case of the system shown in FIG. 3, if the amount of warm ultrapure water used is rapidly increased at the use point and the amount used is maintained, the temperature of ultrapure water at the inlet of the heat exchanger 10 is lowered. In this case, in order to maintain the ultrapure water outlet temperature of the heat exchanger 10, the amount of bypass water to the pipe 19 is decreased and the flow rate is increased. However, if the three-way valve is adjusted so that the amount of bypass water to the pipe 19 becomes zero, the amount of water to the heat exchanger 10 cannot be increased any more, and the temperature of the warm ultrapure water sent from the pipe 11 to the use point Cannot be maintained at the target temperature.
 ユースポイントの温超純水温度は、プラスマイナス1℃といった厳密な範囲に制御する必要があるため、温超純水の制御温度を維持できなくなることは、ユースポイントの温超純水利用機器において大きな問題をもたらす可能性がある。 Since the temperature of the ultra-pure water at the use point must be controlled within a strict range of plus or minus 1 ° C, the fact that the control temperature of the ultra-pure water cannot be maintained may cause a major problem in the use of the ultra-pure water at the use point. There is.
 従来、上記の問題を回避するため、配管14、配管12、バイパス配管19を循環する第1媒体水量(高温循環水量)を十分な量としていた。つまり、過去の実績から想定される温超純水使用量の最大値を考え、仮に温超純水使用量がそのような最大値に急増した場合でも、ユースポイントへ送水される温超純水温度を制御可能となるように、十分に余裕をもったバイパス循環水量を設定していた。 Conventionally, in order to avoid the above problem, the first medium water amount (high-temperature circulating water amount) circulating through the pipe 14, the pipe 12, and the bypass pipe 19 has been set to a sufficient amount. In other words, considering the maximum value of warm ultrapure water usage estimated from past results, even if the warm ultrapure water usage rapidly increases to such maximum value, it becomes possible to control the temperature of the ultrapure water delivered to the use point As such, a sufficient amount of bypass circulation water was set.
 このような方法によると、ユースポイントへ送水される温超純水温度は、ユースポイントの超純水使用量が著しく多くなっても一定に維持される。しかしながら、通常の状態(温超純水使用量が平均値付近である場合)では、バイパス水量が徒に多く、運転コストが高くなるという問題があった。すなわち、通常の状態では、戻り温超純水が多いので、配管9から熱交換器10に流入する超純水温度はそれほど低下せず、それゆえに高温循環水(第1媒体水)による必要加熱量も大きくないため、配管19へバイパスする第1媒体水流量が多いまま運転が継続されていた。 According to such a method, the temperature of the ultrapure water supplied to the use point is maintained constant even if the use amount of the ultrapure water at the use point is remarkably increased. However, in a normal state (when the amount of warm ultrapure water used is near the average value), there is a problem that the amount of bypass water is large and the operation cost is high. That is, in the normal state, since the return temperature ultrapure water is large, the temperature of the ultrapure water flowing from the pipe 9 into the heat exchanger 10 does not decrease so much, and therefore the required amount of heating by the high-temperature circulating water (first medium water) is also low. Since it was not large, the operation was continued while the flow rate of the first medium water bypassed to the pipe 19 was large.
 なお、前述の通り、単に高温循環水(第1媒体水)の水量を減らすという対策をとるだけでは、ユースポイントで温超純水使用量が急増したときに温超純水温度を維持できなくなるリスクを回避することができなかった。 As described above, simply taking the measure of reducing the amount of high-temperature circulating water (first medium water) avoids the risk that the temperature of the ultra-pure water cannot be maintained when the use of the ultra-pure water is rapidly increased at the point of use. I couldn't.
 本発明は、このような問題点を解決し、ユースポイントにおける温超純水使用量急増によって温超純水温度を維持できなくなるリスクを回避しながら、高温循環水量を減らし、バイパス流量を減少させることができる超純水の加熱方法を提供することを目的とする。 The present invention solves such problems and avoids the risk that the temperature of ultra-pure water cannot be maintained due to a rapid increase in the amount of use of hot ultra-pure water at the point of use, while reducing the amount of hot circulating water and reducing the bypass flow rate. It aims at providing the heating method of a pure water.
 本発明の超純水加熱方法は、超純水製造装置からの超純水を加熱するための、ユースポイントからの戻り水を熱源とする第1熱交換器と、該第1熱交換器で加熱された超純水をさらに加熱する加熱手段と有し、加熱された超純水をユースポイントに供給する超純水加熱装置であって、前記加熱手段は、前記第1熱交換器で加熱された超純水が被加熱流体流路に通水される第2熱交換器と、該第2熱交換器の熱源流体流路に伝熱媒体としての媒体水を循環流通させる循環流路と、循環流路を流れる媒体水を加熱する加熱器と、該循環流路に設けられたポンプとを備えている加熱装置によって超純水を加熱する方法において、ユースポイントでの超純水使用量に応じて該ポンプを制御する。 The ultrapure water heating method of the present invention includes a first heat exchanger that heats ultrapure water from an ultrapure water production apparatus using return water from a use point as a heat source, and the first heat exchanger. A heating unit that further heats the heated ultrapure water and supplies the heated ultrapure water to a use point, wherein the heating unit is heated by the first heat exchanger; A second heat exchanger through which the ultrapure water is passed through the heated fluid passage, and a circulation passage for circulating and circulating the medium water as the heat transfer medium in the heat source fluid passage of the second heat exchanger The amount of ultrapure water used at the point of use in a method of heating ultrapure water by a heating device comprising a heater for heating the medium water flowing through the circulation channel and a pump provided in the circulation channel The pump is controlled accordingly.
 本発明の一態様では、前記媒体水循環流路に、前記第2熱交換器を迂回するバイパス流路が設けられており、ユースポイントでの超純水使用量に応じて該バイパス流路へのバイパス流量を制御する。 In one aspect of the present invention, a bypass flow path that bypasses the second heat exchanger is provided in the medium water circulation flow path, and depending on the amount of ultrapure water used at a use point, Control the bypass flow rate.
 本発明の一態様では、前記バイパス流量を制御するための三方弁が設けられており、ユースポイントでの超純水使用量に応じて該三方弁の開度を制御する。 In one aspect of the present invention, a three-way valve for controlling the bypass flow rate is provided, and the opening degree of the three-way valve is controlled according to the amount of ultrapure water used at the use point.
 本発明の一態様では、前記バイパス流量を制御するための三方弁が設けられており、現時点の運転データ実測値から1~5分後の三方弁開度を予測し、その開度予測値がほぼ一定になるように、高温循環水量を制御する。 In one aspect of the present invention, a three-way valve for controlling the bypass flow rate is provided, and a three-way valve opening after 1 to 5 minutes is predicted from an actual measured value of the operation data. The amount of hot circulating water is controlled so that it is almost constant.
 本発明の一態様では、過去の運転データを基に、「三方弁開度の予測値」を目的変数とする重回帰モデルまたは人工知能モデルを構築し、そのモデルに、現時点の運転データ実測値を入力することによって、「三方弁開度の予測値」を得る。 In one aspect of the present invention, based on past operation data, a multiple regression model or an artificial intelligence model having a “predicted value of the three-way valve opening” as an objective variable is constructed, and the current operation data measured value is included in the model. Is input, the “predicted value of the three-way valve opening” is obtained.
 本発明の一態様では、重回帰モデルまたは人工知能モデルの説明変数に、少なくとも、「三方弁開度の現在値」および「第1熱交換器の超純水側出口温度」を含む。 In one aspect of the present invention, the explanatory variables of the multiple regression model or the artificial intelligence model include at least the “current value of the three-way valve opening” and the “ultra pure water outlet temperature of the first heat exchanger”.
 本発明によると、高温循環水量を減らし、バイパス流量を減少させることにより、
i) 循環水ポンプの消費電力を減らすことができる;
ii) 高温循環水の循環工程にヒートポンプがある場合、高温循環水のヒートポンプ入口温度が低下し高温循環水とヒートポンプ熱源水との温度差が小さくなるため、ヒートポンプのCOP(成績係数)を向上させることができる;
iii) 高温循環水の循環工程にヒートポンプと蒸気熱交換器の両方がある場合、蒸気熱交換器における蒸気使用量を減らすことでき、供給熱量あたりの単価が小さいヒートポンプによる加熱割合を増加させることができる;
という効果が得られる。
According to the present invention, by reducing the amount of hot circulating water and reducing the bypass flow rate,
i) Reduce the power consumption of the circulating water pump;
ii) When there is a heat pump in the circulation process of the high-temperature circulating water, the heat pump inlet temperature decreases and the temperature difference between the high-temperature circulating water and the heat pump heat source water decreases, so the COP (coefficient of performance) of the heat pump is improved. be able to;
iii) When there are both heat pumps and steam heat exchangers in the circulation process of high-temperature circulating water, it is possible to reduce the amount of steam used in the steam heat exchanger and increase the heating rate by the heat pump with a low unit price per supply heat quantity. it can;
The effect is obtained.
本発明の実施の形態に係る加熱装置の構成図である。It is a block diagram of the heating apparatus which concerns on embodiment of this invention. 従来例の加熱装置の構成図である。It is a block diagram of the heating apparatus of a prior art example. 従来例の加熱装置の構成図である。It is a block diagram of the heating apparatus of a prior art example.
 以下、図1を参照して実施の形態について説明する。なお、以下の説明では水温が例示されているが、一例であり、本発明を限定するものではない。 Hereinafter, an embodiment will be described with reference to FIG. In addition, although the water temperature is illustrated in the following description, it is an example and does not limit this invention.
 図1は実施の形態の超純水加熱装置を示す系統図である。 FIG. 1 is a system diagram showing an ultrapure water heating apparatus according to an embodiment.
 一次純水は、配管1、サブタンク2、配管3を介してサブシステム4に導入され、サブシステムに含まれる熱交換器で温度調整され、約25℃の超純水が製造される。製造された超純水は、配管5、第1熱交換器6、配管9及び第2熱交換器10の順に流れ、熱交換器6によって約45~70℃に加熱され、熱交換器10によって約75℃に加熱され、温超純水として配管11によりユースポイントへ送水される。配管11には、ユースポイントの直前にUF膜分離装置(図示略)が設置されている。 Primary pure water is introduced into the subsystem 4 via the pipe 1, the sub tank 2, and the pipe 3, and the temperature is adjusted by a heat exchanger included in the subsystem to produce ultra pure water of about 25 ° C. The produced ultrapure water flows in the order of the pipe 5, the first heat exchanger 6, the pipe 9 and the second heat exchanger 10, and is heated to about 45 to 70 ° C. by the heat exchanger 6. It is heated to about 75 ° C., and is sent to the use point through the pipe 11 as warm ultrapure water. In the pipe 11, a UF membrane separation device (not shown) is installed immediately before the use point.
 熱交換器6の熱源流体流路へは、配管7を介してユースポイントからの約75℃の戻り温超純水(戻り水)が導入される。この戻り温超純水は、熱交換器6でサブシステム4からの超純水と熱交換して約30℃に降温した後、配管8によって、サブタンク2に送られる。 The return temperature ultrapure water (return water) of about 75 ° C. from the use point is introduced into the heat source fluid flow path of the heat exchanger 6 through the pipe 7. The return temperature ultrapure water is heat-exchanged with the ultrapure water from the subsystem 4 by the heat exchanger 6 and cooled to about 30 ° C., and then sent to the subtank 2 through the pipe 8.
 熱交換器10の熱源流体流路には、ヒートポンプ、蒸気式熱交換器等の加熱器40によって加熱された媒体水(伝熱媒体としての水)が循環流通される。即ち、熱交換器10から流出した約50~70℃の媒体水を配管45、ポンプ46、配管47によって加熱器40に導入し、約80℃に加熱した後、配管42、三方弁43、配管44を介して熱交換器10に流入させる。 The medium water heated by the heater 40 such as a heat pump or a steam heat exchanger (water as a heat transfer medium) is circulated through the heat source fluid flow path of the heat exchanger 10. That is, about 50 to 70 ° C. medium water flowing out from the heat exchanger 10 is introduced into the heater 40 by the pipe 45, the pump 46 and the pipe 47 and heated to about 80 ° C., and then the pipe 42, the three-way valve 43 and the pipe are heated. It flows into the heat exchanger 10 through 44.
 加熱器40からの媒体水の一部は、三方弁43からバイパス配管48を介して配管45に返送される。 A part of the medium water from the heater 40 is returned from the three-way valve 43 to the pipe 45 via the bypass pipe 48.
 配管11に温度センサ50が設けられており、測定温度が制御装置51に入力され、この制御装置51によって三方弁43及びポンプ46が制御される。三方弁43からは制御装置51に現時点での開度(配管42から配管44へ媒体水を流す開度)を示す信号が制御装置51に入力される。 The temperature sensor 50 is provided in the pipe 11, and the measured temperature is input to the control device 51, and the three-way valve 43 and the pump 46 are controlled by the control device 51. From the three-way valve 43, a signal indicating the current opening degree (an opening degree of flowing medium water from the pipe 42 to the pipe 44) is input to the control apparatus 51.
 この実施の形態では、三方弁43の開度(配管42から配管44へ媒体水を流すための開度)が一定値になるように媒体水循環水量を調整する。三方弁43の開度を0%~100%で表すとすると、例えば開度が75~80%になるように、ポンプ46のモーター回転速度を増減し、媒体水循環水量を自動調整するのが好ましい。例えば、ポンプに付属したインバータが、電圧と周波数を増減することよってモーター回転速度を調整する。 In this embodiment, the medium water circulating water amount is adjusted so that the opening degree of the three-way valve 43 (an opening degree for flowing the medium water from the pipe 42 to the pipe 44) becomes a constant value. If the opening degree of the three-way valve 43 is expressed by 0% to 100%, it is preferable to increase / decrease the motor rotation speed of the pump 46 and automatically adjust the medium water circulation water amount so that the opening degree becomes 75% to 80%, for example. . For example, an inverter attached to the pump adjusts the motor rotation speed by increasing or decreasing the voltage and frequency.
 現時点の三方弁開度に関する信号を制御装置51に入力し、制御装置51で演算処理を行い、その結果をポンプ46に付属するインバータに送り、インバータがモーターの電圧・周波数を調整する方法でもよい。あるいは、三方弁43の開度とインバータ出力値の関係式をあらかじめ導出し、その関係式に基づいてインバータ出力値を調整する方法でも良い。 A method may be used in which a signal related to the current three-way valve opening is input to the control device 51, calculation processing is performed by the control device 51, the result is sent to an inverter attached to the pump 46, and the inverter adjusts the voltage and frequency of the motor. . Alternatively, a method may be used in which a relational expression between the opening degree of the three-way valve 43 and the inverter output value is derived in advance and the inverter output value is adjusted based on the relational expression.
 ユースポイント90での温超純水使用量が大きく変化した場合、その影響が三方弁43の開度に影響を及ぼすまでには、数分間の時間遅れがある。このため、現時点の三方弁43開度の代わりに、将来予測値を使用することが、より望ましい。ここで、将来とは、現時点から1~5分後を意味している。 When there is a large change in the amount of hot ultrapure water used at the use point 90, there is a time delay of several minutes before the effect affects the opening of the three-way valve 43. For this reason, it is more desirable to use a predicted value in the future instead of the current three-way valve 43 opening. Here, the future means one to five minutes after the present time.
 たとえば、過去数ヶ月分の運転データを基に、「2分後の三方弁開度」を目的変数、「現時点の三方弁開度」、「配管9から熱交換器10へ流入する超純水の温度」等を説明変数とする重回帰モデルを構築し、そのモデルに、現時点の運転データ実測値を入力することによって、2分後における温度センサ50の検出超純水温度を75℃に維持するために必要な「2分後の三方弁開度」を予測する。「2分後の三方弁開度」の予測値に基づいて高温循環水量(ポンプ46吐出量)を調整することによって、温超純水使用量の急増に対し、さらに迅速に対応できる。例えば、2分後の三方弁開度の予測値が80%を超えるときには、該開度が75~80%の範囲に収まるようにポンプ46のモーター回転数を増加させる。 For example, based on the operation data for the past several months, “the three-way valve opening after 2 minutes” is the objective variable, “the current three-way valve opening”, “ultra-pure water flowing from the pipe 9 to the heat exchanger 10” By constructing a multiple regression model with explanatory variables such as “temperature of” and inputting actual measured data of the current operation into the model, the temperature of the ultrapure water detected by the temperature sensor 50 after 2 minutes is maintained at 75 ° C. To predict the "three-way valve opening after 2 minutes". By adjusting the high-temperature circulating water amount (pump 46 discharge amount) based on the predicted value of “the three-way valve opening after 2 minutes”, it is possible to respond more rapidly to the sudden increase in the amount of hot ultrapure water used. For example, when the predicted value of the three-way valve opening after 2 minutes exceeds 80%, the motor speed of the pump 46 is increased so that the opening is within the range of 75 to 80%.
 なお、重回帰モデルの代わりに、人工知能モデル等を用いてもよい。 An artificial intelligence model or the like may be used instead of the multiple regression model.
 このようにして、ユースポイントにおける温超純水使用量急増により温超純水温度を維持できなくなるリスクを回避しながら、バイパス水量を少なくし、温超純水の製造コストを削減できる。 In this way, while avoiding the risk that the temperature of the ultra-pure water cannot be maintained due to the rapid increase in the amount of use of the ultra-pure water at the point of use, the amount of bypass water can be reduced and the production cost of the ultra-pure water can be reduced.
 ユースポイントにおける温超純水使用量が増加した場合に、配管9から熱交換器10に流入する超純水の温度が低下し、これに対応して三方弁43の開度が上昇し始めた段階で、媒体水循環水量を自動的に増加させることができ、温超純水温度の制御目標値逸脱リスクを回避することができる。 When the amount of warm ultrapure water used at the use point increases, the temperature of ultrapure water flowing from the pipe 9 to the heat exchanger 10 decreases, and the opening of the three-way valve 43 starts to increase correspondingly. The circulating water amount of the medium water can be automatically increased, and the risk of deviating from the control target value of the warm ultrapure water temperature can be avoided.
 さらに、現時点における「温超純水戻り流量」や「配管9から熱交換器10に流入する超純水の温度」の実測値から、数分後の三方弁開度を予測することにより、現時点の三方弁開度のみで高温循環水量を調節するよりもさらに早く高温循環水量を調整することができ、温超純水温度の制御目標値逸脱リスクをより確実に回避することができる。 Further, by predicting the opening of the three-way valve after several minutes from the actual measured values of the "warm ultrapure water return flow rate" and the "temperature of ultrapure water flowing into the heat exchanger 10 from the pipe 9" at the present time, The high-temperature circulating water volume can be adjusted even faster than adjusting the high-temperature circulating water volume only by the valve opening, and the risk of deviating from the control target value of the warm ultrapure water temperature can be avoided more reliably.
 より具体的な運転例について次に説明する。 Next, more specific operation examples will be described.
 加熱器40として、冷凍機排水を熱源とするヒートポンプと、蒸気を熱源とする蒸気熱交換器の両方を用い、ポンプ47→ヒートポンプ→蒸気熱交換器の順に循環水が流れるようにする。ヒートポンプは、ヒートポンプ出口温度が一定になるように入力電力が調整される。また、蒸気熱交換器における出口温度(即ち、配管42に流れる媒体水温度)が一定になるように、蒸気量が供給される。 As the heater 40, both a heat pump using refrigeration waste water as a heat source and a steam heat exchanger using steam as a heat source are used so that circulating water flows in the order of pump 47 → heat pump → steam heat exchanger. The input power of the heat pump is adjusted so that the heat pump outlet temperature is constant. Further, the amount of steam is supplied so that the outlet temperature in the steam heat exchanger (that is, the temperature of the medium water flowing in the pipe 42) is constant.
 なお、(本発明のヒートポンプ出口温度)=(比較例のヒートポンプ出口温度)、(本発明の蒸気熱交換器出口温度)=(比較例の蒸気熱交換器出口温度)である。 Note that (heat pump outlet temperature of the present invention) = (heat pump outlet temperature of the comparative example), (steam heat exchanger outlet temperature of the present invention) = (steam heat exchanger outlet temperature of the comparative example).
 本実施例では、三方弁43の開度が平常時75~80%(即ち、バイパス水量が20~25%)になるように、ポンプ46に付属したインバータの出力値を調整する。この結果、従来と比較して、媒体水循環水量の平均値が約40%削減される。これに伴い、循環水ポンプの消費電力が削減されるとともに、熱量あたりの単価が低いヒートポンプによる加熱割合が高まる。この結果、全体の運転コストを約15%削減することができる。 In this embodiment, the output value of the inverter attached to the pump 46 is adjusted so that the opening of the three-way valve 43 is normally 75 to 80% (that is, the bypass water amount is 20 to 25%). As a result, the average value of the medium water circulating water amount is reduced by about 40% compared to the conventional case. Accordingly, the power consumption of the circulating water pump is reduced, and the heating rate by the heat pump with a low unit price per heat quantity is increased. As a result, the overall operation cost can be reduced by about 15%.
 即ち、図3においては、ユースポイントでの超純水使用量が著しく増大し、配管7からの戻り超純水量が著しく少なくなり、熱交換器10への流入超純水温度がかなり低い温度(例えば40~45℃又はそれ以下)になった場合でも、熱交換器10に十分に多量の高温媒体水を流して75℃の温超純水を配管11からユースポイント90へ送水できるようにするために、平常時において配管14から配管19へバイパスする媒体水量を多くし、ユースポイント90での超純水使用量が著しく増加したときに、配管14から熱交換器10への媒体水量を確保する必要があった。このため、平常時(ユースポイント90における超純水使用量がほぼ平均量である状態)においても、ヒートポンプ20から配管14への出湯量(媒体水量)を多くし、バイパス媒体水量を多くしておくようにし、ユースポイントの超純水使用量の増大に備えておく必要があった。そして、このように多量の媒体水をバイパスさせるために、ポンプ電力コスト等が多くなっていた。 That is, in FIG. 3, the amount of ultrapure water used at the point of use is remarkably increased, the amount of returned ultrapure water from the pipe 7 is remarkably reduced, and the temperature of the ultrapure water flowing into the heat exchanger 10 is considerably low ( For example, even when the temperature becomes 40 to 45 ° C. or lower), a sufficiently large amount of high-temperature medium water is allowed to flow through the heat exchanger 10 so that 75 ° C. hot ultrapure water can be sent from the pipe 11 to the use point 90. When the amount of medium water bypassed from the pipe 14 to the pipe 19 is increased in normal times and the amount of ultrapure water used at the use point 90 is significantly increased, it is necessary to secure the amount of medium water from the pipe 14 to the heat exchanger 10 was there. For this reason, even during normal times (a state in which the amount of ultrapure water used at the use point 90 is almost an average amount), the amount of hot water discharged from the heat pump 20 to the pipe 14 (medium water amount) is increased, and the amount of bypass medium water is increased. It was necessary to prepare for an increase in the amount of ultrapure water used at the point of use. And in order to bypass a large amount of medium water in this way, pump electric power cost etc. have increased.
 これに対し、本発明では、バイパス媒体水量は平常時では例えば20~25%と少な目にしておき、熱交換器10への供給媒体水量増加が予測されるとき(すなわち、三方弁43の開度の顕著な増加が予測されるとき)には、加熱器40からの出湯量を増加させる。この結果、平常時における加熱器40からの高温媒体水供給量(出湯量)を従来に比べて相当に少なくすることができる。 On the other hand, in the present invention, the amount of bypass medium water is kept small, for example, 20 to 25% in normal times, and when an increase in the amount of supply medium water to the heat exchanger 10 is predicted (that is, the degree of opening of the three-way valve 43). When a significant increase in water is predicted), the amount of tapping water from the heater 40 is increased. As a result, the amount of high-temperature medium water supplied from the heater 40 (the amount of tapping water) at normal times can be considerably reduced as compared with the conventional case.
 制御器51は、配管11を介してユースポイント90へ向う温超純水の温度が常に一定温度(この場合75℃)に維持されるように、三方弁43の開度制御及びポンプ46のモーター回転数制御によって熱交換器10へ供給する媒体水量(高温循環水量)を制御する。なお、ポンプ46の制御による熱交換器10への媒体水量制御によるだけでも温超純水を一定温度に維持できるのであれば三方弁43及びバイパス配管48は省略されてもよい。ただし、三方弁43によるバイパス水量制御による熱交換器10への供給媒体水量制御は、迅速かつ容易であり、熱交換器10の負荷変動に迅速に対応することができる。本実施例では、三方弁43の開度を75~80%と高くしているので、熱交換器10での大幅な負荷増加には三方弁43だけでは対処できない。そこで、前述の通り、ポンプ46の制御も併用する。 The controller 51 controls the opening degree of the three-way valve 43 and the motor speed of the pump 46 so that the temperature of the ultrapure water going to the use point 90 via the pipe 11 is always maintained at a constant temperature (75 ° C. in this case). The amount of medium water (high-temperature circulating water amount) supplied to the heat exchanger 10 is controlled by the control. The three-way valve 43 and the bypass pipe 48 may be omitted as long as the warm ultrapure water can be maintained at a constant temperature only by controlling the amount of medium water to the heat exchanger 10 by controlling the pump 46. However, the supply medium water amount control to the heat exchanger 10 by the bypass water amount control by the three-way valve 43 is quick and easy, and can quickly cope with the load fluctuation of the heat exchanger 10. In the present embodiment, since the opening degree of the three-way valve 43 is increased to 75 to 80%, a significant load increase in the heat exchanger 10 cannot be dealt with by the three-way valve 43 alone. Therefore, as described above, the control of the pump 46 is also used.
 上記実施の形態は本発明の一例であり、本発明は図示以外の形態とされてもよい。 The above embodiment is an example of the present invention, and the present invention may be other than illustrated.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2018年3月6日付で出願された日本特許出願2018-039836に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2018-039836 filed on Mar. 6, 2018, which is incorporated by reference in its entirety.
 2 サブタンク
 4 サブシステム
 6 第1熱交換器
 10 第2熱交換器
 43 三方弁
 48 バイパス配管
 50 温度センサ
2 Sub tank 4 Sub system 6 1st heat exchanger 10 2nd heat exchanger 43 Three-way valve 48 Bypass piping 50 Temperature sensor

Claims (6)

  1.  超純水製造装置からの超純水を加熱するための、ユースポイントからの戻り水を熱源とする第1熱交換器と、
     該第1熱交換器で加熱された超純水をさらに加熱する加熱手段と
    を有し、加熱された超純水をユースポイントに供給する超純水加熱装置であって、
     前記加熱手段は、
     前記第1熱交換器で加熱された超純水が被加熱流体流路に通水される第2熱交換器と、
     該第2熱交換器の熱源流体流路に伝熱媒体としての媒体水を循環流通させる循環流路と、
     循環流路を流れる媒体水を加熱する加熱器と、
     該循環流路に設けられたポンプと
    を備えている加熱装置によって超純水を加熱する方法において、
     ユースポイントでの超純水使用量に応じて該ポンプを制御することを特徴とする超純水加熱方法。
    A first heat exchanger for heating the ultrapure water from the ultrapure water production apparatus using the return water from the use point as a heat source;
    A heating means for further heating the ultrapure water heated by the first heat exchanger, and supplying the heated ultrapure water to the use point,
    The heating means includes
    A second heat exchanger in which ultrapure water heated by the first heat exchanger is passed through the heated fluid channel;
    A circulation flow path for circulating and circulating medium water as a heat transfer medium in the heat source fluid flow path of the second heat exchanger;
    A heater for heating the medium water flowing through the circulation channel;
    In a method of heating ultrapure water by a heating device provided with a pump provided in the circulation channel,
    An ultrapure water heating method, characterized in that the pump is controlled according to the amount of ultrapure water used at a use point.
  2.  前記媒体水循環流路に、前記第2熱交換器を迂回するバイパス流路が設けられており、
     ユースポイントでの超純水使用量に応じて該バイパス流路へのバイパス流量を制御することを特徴とする請求項1の超純水加熱方法。
    The medium water circulation channel is provided with a bypass channel that bypasses the second heat exchanger,
    2. The ultrapure water heating method according to claim 1, wherein a bypass flow rate to the bypass flow path is controlled in accordance with a use amount of ultrapure water at a use point.
  3.  前記バイパス流量を制御するための三方弁が設けられており、ユースポイントでの超純水使用量に応じて該三方弁の開度を制御することを特徴とする請求項2の超純水加熱方法。 3. The ultrapure water heating according to claim 2, wherein a three-way valve for controlling the bypass flow rate is provided, and the opening degree of the three-way valve is controlled according to the amount of ultrapure water used at a use point. Method.
  4.  前記バイパス流量を制御するための三方弁が設けられており、現時点の運転データ実測値から1~5分後の三方弁開度を予測し、その開度予測値がほぼ一定になるように、高温循環水量を制御することを特徴とする請求項2の超純水加熱方法。 A three-way valve for controlling the bypass flow rate is provided, and the three-way valve opening after 1 to 5 minutes is predicted from the actual operation data measurement value so that the predicted opening value is substantially constant. 3. The ultrapure water heating method according to claim 2, wherein the amount of high-temperature circulating water is controlled.
  5.  過去の運転データを基に、「三方弁開度の予測値」を目的変数とする重回帰モデルまたは人工知能モデルを構築し、そのモデルに、現時点の運転データ実測値を入力することによって、「三方弁開度の予測値」を得る請求項4の超純水加熱方法。 Based on past operation data, a multiple regression model or artificial intelligence model with the `` predicted value of the three-way valve opening '' as an objective variable is constructed, and the actual operation data actual measurement value is input to the model, The ultrapure water heating method according to claim 4, wherein a “predicted value of the three-way valve opening” is obtained.
  6.  重回帰モデルまたは人工知能モデルの説明変数に、少なくとも、「三方弁開度の現在値」および「第1熱交換器の超純水側出口温度」を含む請求項5の超純水加熱方法。 6. The ultrapure water heating method according to claim 5, wherein the explanatory variables of the multiple regression model or the artificial intelligence model include at least the “current value of the three-way valve opening” and the “ultrapure water side outlet temperature of the first heat exchanger”.
PCT/JP2018/033812 2018-03-06 2018-09-12 Method for heating ultra-pure water WO2019171632A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-039836 2018-03-06
JP2018039836A JP6948012B2 (en) 2018-03-06 2018-03-06 Ultrapure water heating method

Publications (1)

Publication Number Publication Date
WO2019171632A1 true WO2019171632A1 (en) 2019-09-12

Family

ID=67846988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033812 WO2019171632A1 (en) 2018-03-06 2018-09-12 Method for heating ultra-pure water

Country Status (3)

Country Link
JP (1) JP6948012B2 (en)
TW (1) TW201938965A (en)
WO (1) WO2019171632A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110793201A (en) * 2019-11-13 2020-02-14 无锡溥汇机械科技有限公司 Air-cooled high-temperature heat exchange system with controllable water tank temperature and use method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI769634B (en) * 2020-12-22 2022-07-01 台灣積體電路製造股份有限公司 Chiller water supply control system and control method thereof
JP7033691B1 (en) * 2021-10-29 2022-03-10 野村マイクロ・サイエンス株式会社 How to start up the warm ultra-pure water production system, start-up program, and warm ultra-pure water production system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127633A (en) * 2010-12-17 2012-07-05 Panasonic Corp Hot water supply system
JP2013119060A (en) * 2011-12-07 2013-06-17 Kurita Water Ind Ltd Ultrapure water production method and apparatus
JP2013204956A (en) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd Operation method for pure water cooling device
JP6149992B1 (en) * 2016-09-14 2017-06-21 栗田工業株式会社 Ultrapure water production equipment
JP6149993B1 (en) * 2016-09-14 2017-06-21 栗田工業株式会社 Ultrapure water production equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201325A (en) * 2009-03-03 2010-09-16 Seiko Epson Corp Method of controlling pure water supply system, and pure water supply system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127633A (en) * 2010-12-17 2012-07-05 Panasonic Corp Hot water supply system
JP2013119060A (en) * 2011-12-07 2013-06-17 Kurita Water Ind Ltd Ultrapure water production method and apparatus
JP2013204956A (en) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd Operation method for pure water cooling device
JP6149992B1 (en) * 2016-09-14 2017-06-21 栗田工業株式会社 Ultrapure water production equipment
JP6149993B1 (en) * 2016-09-14 2017-06-21 栗田工業株式会社 Ultrapure water production equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110793201A (en) * 2019-11-13 2020-02-14 无锡溥汇机械科技有限公司 Air-cooled high-temperature heat exchange system with controllable water tank temperature and use method thereof

Also Published As

Publication number Publication date
TW201938965A (en) 2019-10-01
JP2019152411A (en) 2019-09-12
JP6948012B2 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
JP6149993B1 (en) Ultrapure water production equipment
WO2019171632A1 (en) Method for heating ultra-pure water
JP6350719B2 (en) Ultrapure water production equipment
WO2018051551A1 (en) Ultrapure water manufacturing device
JP6725143B2 (en) Water treatment equipment
JP2008188540A (en) Operation method of membrane filter system
JP2013202581A (en) Ultrapure water production apparatus
JP5953726B2 (en) Ultrapure water production method and apparatus
JP4475925B2 (en) Desalination treatment apparatus and desalination treatment method
JP5325431B2 (en) Waste heat recovery equipment for refrigeration equipment
JP6350718B2 (en) Ultrapure water production equipment
JP5101322B2 (en) Pure water production method and apparatus
JP2013204956A (en) Operation method for pure water cooling device
JP2021120988A (en) Control method of heating means of thermal pure water supply device
JP7359198B2 (en) Warm ultrapure water production equipment
JP2013202610A (en) Ultrapure water production apparatus
JP2020199436A (en) Ultrapure water production device, and ultrapure water production method
TW202330086A (en) Water treatment system and water treatment method
TW201901084A (en) Boiler water treatment apparatus and treatment method
KR102624688B1 (en) Cooling water bypass apparatus for maintaining the vacuum degree of the condenser and controlling method of the same
CN118139821A (en) Water treatment system and water treatment method
JP2023041226A (en) water treatment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909198

Country of ref document: EP

Kind code of ref document: A1