WO2020008884A1 - Reverse osmosis treatment method and system - Google Patents

Reverse osmosis treatment method and system Download PDF

Info

Publication number
WO2020008884A1
WO2020008884A1 PCT/JP2019/024317 JP2019024317W WO2020008884A1 WO 2020008884 A1 WO2020008884 A1 WO 2020008884A1 JP 2019024317 W JP2019024317 W JP 2019024317W WO 2020008884 A1 WO2020008884 A1 WO 2020008884A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw water
water
reverse osmosis
heat
heated
Prior art date
Application number
PCT/JP2019/024317
Other languages
French (fr)
Japanese (ja)
Inventor
孝司 青木
小野 雄壱
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN201980045228.3A priority Critical patent/CN112384479B/en
Priority to KR1020207035981A priority patent/KR102477968B1/en
Priority to JP2019533667A priority patent/JP6777236B2/en
Publication of WO2020008884A1 publication Critical patent/WO2020008884A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/22Cooling or heating elements
    • B01D2313/221Heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Definitions

  • the present invention relates to a reverse osmosis treatment method and system for treating water using a reverse osmosis membrane device, and particularly to a reverse osmosis treatment method and system for heating water supplied to a reverse osmosis membrane device with a heat pump.
  • the feed water temperature is adjusted to maintain the treated water volume (maintaining the flux by preventing a decrease in the viscosity of water and improving the recovery rate by increasing the saturation solubility of silica). It is heated to about 25 ° C. Steam, hot water, electric heaters, and the like are used to heat the supply water, and energy is consumed.
  • Japanese Patent Application Laid-Open No. 2012-91118 describes that the feed water of the RO apparatus is heated to 23 to 25 ° C. by a heat pump, but the same publication discloses a specific description of the heat source of the heat pump. Not done.
  • the present invention aims to reduce the heating cost in a reverse osmosis treatment method and system in which water supplied to an RO device is heated by a heat pump.
  • the reverse osmosis treatment method of the present invention is a reverse osmosis treatment method in which raw water is heated by a heat pump and then subjected to membrane separation treatment by a reverse osmosis membrane device, wherein a warm medium flowing out of a heat exchanger of a refrigeration system as a heat source fluid of the heat pump Is used.
  • the reverse osmosis treatment system of the present invention is a reverse osmosis treatment device in which raw water is heated by a heat pump and then subjected to membrane separation treatment by a reverse osmosis membrane device, wherein a warm medium flowing out of a heat exchanger of a refrigeration system as a heat source fluid of the heat pump. Is used.
  • the raw water heated by the heat pump is heated by the second heat exchanger and then supplied to the reverse osmosis device.
  • steam from the boiler is supplied to the second heat exchanger as a heat source fluid for heating raw water.
  • At least a part of the raw water heated by the heat pump is supplied to the boiler as boiler feed water.
  • a water supply tank in which water is circulated between the heat transfer tube of the condenser of the heat pump and raw water is supplied to the water supply tank.
  • the raw water is circulated and heated in, and the heated raw water is supplied from the water supply tank to the reverse osmosis device.
  • a water supply tank in which water is circulated between the heat transfer tube of the condenser of the heat pump and raw water is supplied to the water supply tank.
  • the raw water is circulated and heated, and at least a part of the heated raw water is supplied to the boiler as boiler water supply.
  • the refrigeration system includes a refrigerator main body, and the heat exchanger into which a refrigerant from the refrigerator main body is introduced and a warm medium flows out. A part of the warming medium to be returned is returned to the refrigerator main body, the remaining part is introduced into the evaporator of the heat pump, and the medium cooled by the evaporator is returned to the refrigerant inlet side of the heat exchanger.
  • the refrigeration system includes a refrigerator main body, and the heat exchanger into which a refrigerant from the refrigerator main body is introduced and a warm medium flows out. A part of the warming medium to be returned is returned to the refrigerator main body, the remaining part is introduced into the evaporator of the heat pump, and the medium whose temperature has been lowered by the evaporator is returned to the refrigerator main body.
  • the present invention it is possible to reduce the heating cost of the feed water by heating the feed water to the RO device with a heat pump using the heat medium flowing out of the heat exchanger of the refrigeration system as a heat source.
  • the temperature of the warming medium flowing out of the heat exchanger of the refrigeration system is decreased by the evaporator of the heat pump, so that the refrigeration load of the refrigerator can be reduced.
  • the power consumption of the refrigerator main body can be reduced, and the total benefit generated by installing the heat pump can be increased.
  • the raw water to be subjected to the RO treatment is supplied from a pipe 1 to a condenser 13 of a heat pump 10 by a pump 2, heated, and then passes through a heat exchanger (second heat exchanger) 4 using steam as a heat source from a pipe 3. It is supplied to the RO device 6 via the pipe 5.
  • the permeated water of the RO device 6 is taken out of the pipe 7 as treated water, and the concentrated water flows out of the pipe 8.
  • the type of boiler for supplying steam to the heat exchanger 4 is not particularly limited, and may be any of a small once-through boiler, a water tube boiler, a round boiler, and a waste heat boiler. It should be noted that during normal operation, heating by steam is not necessary, but it is used for heating, for example, when the refrigerator body 21 is stopped or when the RO device 6 is started, which will be described later. However, if necessary, the RO feedwater may be heated by the heat exchanger 4 even during normal operation.
  • the heat pump 10 has a well-known configuration, and introduces a heat medium, such as chlorofluorocarbon alternative, from the evaporator 11 to the condenser 13 at a high temperature by adiabatic compression in the compressor 12, and transfers the heat medium from the condenser 13 to the expansion valve 14. Is introduced into the evaporator 11 through the, and is adiabatically expanded to lower the temperature. Raw water is passed through the heat transfer tube 13 a provided in the condenser 13 via the pump 2, and exchanges heat with a high-temperature heat medium to be heated.
  • a heat medium such as chlorofluorocarbon alternative
  • the refrigeration system 20 is configured to transfer a refrigerant cooled by a refrigerator main body 21 such as a turbo refrigerator or an absorption refrigerator to a heat exchanger such as an air conditioner via a pipe 22 from a medium delivery unit 21a of the refrigerator main body 21.
  • a refrigerator main body 21 such as a turbo refrigerator or an absorption refrigerator
  • a heat exchanger such as an air conditioner
  • the refrigeration system 20 is configured to transfer a refrigerant cooled by a refrigerator main body 21 such as a turbo refrigerator or an absorption refrigerator to a heat exchanger such as an air conditioner via a pipe 22 from a medium delivery unit 21a of the refrigerator main body 21.
  • First heat exchanger to absorb the heat of the surroundings and cool the surroundings.
  • a part of the warming medium which has been heated by absorbing the surrounding heat in the heat exchanger 24, is transferred from the heat exchanger 24 via the medium circulation pump 25, the pipe 26, and the valve 27 to the medium return portion 21 b of the refrigerator body 21.
  • the remaining portion of the warm medium flowing out of the heat exchanger 24 flows through the heat transfer tube 11a of the evaporator 11 via the pipe 31 branched from the pipe 26 and the valve 32, exchanges heat with the heat pump heat medium, and cools down by cooling. It becomes a medium and flows out to the pipe 33.
  • the pipe 33 is connected to the pipe 22, and the refrigerant from the pipe 33 joins with the refrigerant from the refrigerator main body 21 and flows into the heat exchanger 24.
  • the heating medium flowing out of the heat exchanger 24 is used as the heat source fluid flowing through the heat transfer tube 11a of the evaporator 11 of the heat pump 10.
  • the refrigerant whose temperature has been lowered by passing through the heat transfer tube 11 a of the evaporator 11 of the heat pump 10 is returned to the heat exchanger 24.
  • the refrigerator main body 21 of the refrigeration system 20 uses cold water from the cooling tower 40 as a low-temperature fluid for cooling.
  • the cooling water sprinkled from the water sprinkling pipe 41 comes into contact with the air introduced from the louver 43 while flowing down the filler layer 42, and is cooled by the latent heat of evaporation to become cold water, and the pit 44 (cooling tower) (Lower tank). Air containing steam is exhausted to the atmosphere by a fan 48.
  • the cold water in the pit 44 is supplied to the refrigerator main body 21 via a pump 45 and a pipe 46, and exchanges heat to raise the temperature.
  • the warm return water from the refrigerator main body 21 is returned to the sprinkling pipe 41 via the pipe 47.
  • the raw water is heated by the heat pump 10, then, if necessary, is heated by the heat exchanger 4, and is supplied to the RO device 6.
  • a heating medium flowing out of a heat exchanger 24 such as an air conditioner installed in the refrigeration system 20 is used as a heat source of the heat pump 10, and the refrigeration load of the refrigerator main body 21 can be reduced. it can.
  • the power consumption of the refrigerator main body 21 can be reduced, the power consumed by the heat pump 10 is almost offset. For this reason, since the amount of reduction of the steam for heating can be directly recorded as a benefit, the investment in the heat pump can be quickly recovered.
  • the refrigerant sent from the refrigerator main body 21 via the pipe 22 and the refrigerant sent from the evaporator 11 via the pipe 33 are combined to form an air conditioner or the like.
  • the warm medium flowing out of the heat exchanger 24 is sent out to a pipe 28 by a medium circulation pump 25.
  • a part of the sent warm medium is circulated to the medium return part 21b of the refrigerator main body 21 via the valve 29 and the pipe 30.
  • the remaining portion of the heating medium sent to the pipe 28 flows through the heat transfer tube 11a of the evaporator 11 via the pipe 35 and the valve 36 branched from the pipe 28, exchanges heat with the heat pump heat medium, and cools down by cooling. And merges with the pipe 30 from the pipe 37 and returns to the medium return portion 21b of the refrigerator main body 21.
  • FIG. 2 The other configuration of FIG. 2 is the same as that of FIG. 1, and the same reference numerals indicate the same parts.
  • a heating medium flowing out of a heat exchanger 24 such as an air conditioner installed in a refrigeration system 20 is used as a heat source of the heat pump 10.
  • the refrigeration load of the machine body 21 can be reduced.
  • raw water (20 ° C.) is heated to 25 ° C., subjected to RO treatment at 100 m 3 / h, and a centrifugal chiller (500 RT) is operated as a refrigerator main body 21 at a COP (coefficient of performance) of 5
  • the medium of the refrigerator main body 21 is water
  • the inflow water (warm medium) temperature of the refrigerator main body return portion 21b is 12 ° C.
  • the outflow water (refrigerant) temperature of the refrigerator main body delivery portion 21a is 7 ° C.
  • a heat pump 470 kW
  • the raw water is heated from 20 ° C. to 25 ° C.
  • the energy cost will be 80% or less as compared with the case of supplying with three small once-through boilers (equivalent evaporation 2000 kg / h, fuel LNG, steam pressure 0.7 MPa).
  • the energy cost of the system in Fig. 1 was estimated to be 90% or less compared to the case where raw water is heated from 20 ° C to 25 ° C using only a heat pump.
  • the entire amount of raw water heated by passing through the heat transfer tube 13 a of the condenser 13 of the heat pump 10 is sent from the pipe 3 to the heat exchanger 4, and is supplied to the heat exchanger 4 as a heat source fluid. Steam is supplied from the boiler.
  • the pipe 3 is branched into two systems of pipes 50 and 60.
  • the heated raw water flowing into the pipe 50 is sent to the heat exchanger 4 via the valve 51, the water supply tank 52, and the pipe 53.
  • a pipe 86 provided with a valve 85 is connected to the water supply tank 52 in order to supply raw water not heated by the heat pump 10 (hereinafter sometimes referred to as “unheated raw water”) to the water supply tank 52.
  • the heated raw water flowing into the pipe 60 is sent to the water supply tank 64 via the valve 61, the first water softener 62 and the pipe 63.
  • the boiler water that has passed through the second water softener 65 is also introduced into the water supply tank 64 via the pipe 66.
  • Each of the water softeners 62 and 65 has a container and an ion-exchange resin filled in the container, and uses raw water or boiler water as soft water.
  • the boiler water may be water from the same water source as the raw water, or may be water from another water source.
  • the water in the water supply tank 64 is supplied to the boiler 70 via the pipe 67.
  • the steam generated in the boiler 70 is supplied to the heat exchanger 4 via the pipe 71.
  • Raw water from the pipe 53 is heated by the heat exchanger 4 and supplied to the RO device 6.
  • the condensed water generated by the condensation of the steam in the heat exchanger 4 may be sent to the water supply tank 64.
  • FIG. 3 The other configurations in FIG. 3 are the same as those in FIG. 1, and the same reference numerals denote the same parts.
  • FIG. 3 the configurations of the heat exchanger 24, the refrigerator 20, and the cooling tower 40 connected to the heat pump 10 are as shown in FIG. 1, but may be as shown in FIG.
  • not only the water supply to the RO device 6 but also a part of the water supply to the boiler 70 can be heated by one heat pump 10.
  • the supply destination of the heating raw water can be switched or the supply amount can be adjusted by the valve 51 and the valve 61. Then, the raw water supplied by the heat pump 10 is preferentially supplied to the RO device 6 using the valve 51 and the valve 61, and the surplus of the heated raw water is supplied to the boiler 70, whereby the raw water supplied to the RO device 6 is supplied. It is possible to effectively reduce the amount of steam for heating, and to effectively use the raw water heated by the heat pump 10.
  • the valves 51 and 61 are adjusted so that the entire amount of the supplied water to the RO device 6 is used as the raw water to be heated.
  • the surplus heating water is sent to the water supply tank 64 and used as boiler water.
  • the valve 51, the valve 61, and the valve 85 are adjusted to adjust the feed water of the RO device 6 to the set temperature.
  • the surplus amount of the heated raw water is supplied to the water supply tank 64. In this way, the raw water heated by the heat pump can be effectively used throughout the year.
  • the supply destination of the heating raw water may be switched depending on the temperature of the non-heating raw water or the season. For example, when the temperature of the non-heated raw water exceeds a predetermined temperature, or in summer, the entire amount of the supply water of the RO device 6 is the non-heated raw water, and the valves 51, 61 and 85 may be adjusted. Further, when the temperature of the non-heated raw water is equal to or lower than a predetermined temperature, or in a season other than summer, the entire amount of the supply water of the RO device 6 is used as the raw water for heating, and the surplus of the raw water for heating is used as the boiler water supply. The valves 51, 61 and 85 may be adjusted.
  • the raw water heated by the condenser 13 of the heat pump 10 is directly sent to the pipe 3, but in the system of FIG. 4, the raw water from the pipe 1 is introduced into the water supply tank 80, The internal raw water is sent to the heat transfer tube 13 a of the condenser 13 via the pump 81 and the pipe 82. The heated raw water flowing out of the heat transfer tube 13a is returned to the water supply tank 80 via the pipe 83. Thus, the temperature of the raw water in the water supply tank 80 increases. The high temperature raw water in the water supply tank 80 is sent to the pipe 3 via the pump 84.
  • FIG. 4 The other configurations in FIG. 4 are the same as those in FIG. 3, and the same reference numerals indicate the same parts.
  • the same effects as those of the system of FIG. 3 can be obtained by the system of FIG.
  • the raw water is circulated through the water supply tank 80 and the condenser 13, so that the raw water heated to a higher temperature than in the case of FIG.
  • FIG. 4 the configurations of the heat exchanger 24, the refrigerator 20, and the cooling tower 40 connected to the heat pump 10 are as shown in FIG. 1, but may be as shown in FIG.
  • Table 1 shows the results of a trial calculation of the steam cost when the apparatus shown in Fig. 3 was operated under the following conditions.
  • the water supply tank 80, the pump 81, the pipes 82 and 83, and the pump 84 are installed in the system of FIG.
  • the raw water is heated by circulating between the heat transfer tube 13a and the water supply tank 80.
  • the heated raw water is sent from the pump 84 to only the RO device 6 via the pipe 3.
  • raw water heated to a higher temperature than in the case of FIG. 1 is sent to the RO device.
  • the steam heat exchanger 4 is used, but a heat exchanger using heat other than steam as a heat source may be installed instead of the steam heat exchanger 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Raw water is heated by a condenser 13 of a heat pump 10 and then supplied to an RO device 6 through a heat exchanger 4 using steam as a heat source. A part of a warm medium which flows out from a heat exchanger 24 of a refrigeration system 20 is circulated through a heat transfer tube 11a of an evaporator 11 of the heat pump 10. The medium whose temperature has dropped by passing through the heat transfer tube 11a is circulated and supplied to the heat exchanger 24. The refrigeration system 20 circulates a refrigerant from a refrigerator main body 21 through the heat exchanger 24 such as an air conditioner.

Description

逆浸透処理方法及びシステムReverse osmosis treatment method and system
 本発明は、逆浸透膜装置を用いて水を処理する逆浸透処理方法及びシステムに係り、特に逆浸透膜装置への給水をヒートポンプで加熱する逆浸透処理方法及びシステムに関する。 The present invention relates to a reverse osmosis treatment method and system for treating water using a reverse osmosis membrane device, and particularly to a reverse osmosis treatment method and system for heating water supplied to a reverse osmosis membrane device with a heat pump.
 逆浸透膜装置(以下、RO装置ということがある。)にあっては、処理水量維持(水の粘度低下の防止によるフラックスの維持、シリカ飽和溶解度上昇による回収率向上)の為、給水温度を25℃程度に加温している。この給水の加熱には蒸気、温水、電気ヒーターなどが使用され、エネルギーを消費している。 In the case of a reverse osmosis membrane device (hereinafter, sometimes referred to as an RO device), the feed water temperature is adjusted to maintain the treated water volume (maintaining the flux by preventing a decrease in the viscosity of water and improving the recovery rate by increasing the saturation solubility of silica). It is heated to about 25 ° C. Steam, hot water, electric heaters, and the like are used to heat the supply water, and energy is consumed.
 特開2012-91118号公報の請求項7には、RO装置の給水をヒートポンプによって23~25℃に加熱することが記載されているが、同号公報にはヒートポンプの熱源についての具体的記載はなされていない。 Japanese Patent Application Laid-Open No. 2012-91118 describes that the feed water of the RO apparatus is heated to 23 to 25 ° C. by a heat pump, but the same publication discloses a specific description of the heat source of the heat pump. Not done.
特開2012-91118号公報JP 2012-91118 A
 本発明は、ヒートポンプでRO装置への給水を加熱する逆浸透処理方法及びシステムにおいて、加熱コストを低減することを目的とする。 The present invention aims to reduce the heating cost in a reverse osmosis treatment method and system in which water supplied to an RO device is heated by a heat pump.
 本発明の逆浸透処理方法は、原水をヒートポンプで加熱した後、逆浸透膜装置で膜分離処理する逆浸透処理方法において、該ヒートポンプの熱源流体として、冷凍システムの熱交換器から流出する温媒体を用いることを特徴とするものである。 The reverse osmosis treatment method of the present invention is a reverse osmosis treatment method in which raw water is heated by a heat pump and then subjected to membrane separation treatment by a reverse osmosis membrane device, wherein a warm medium flowing out of a heat exchanger of a refrigeration system as a heat source fluid of the heat pump Is used.
 本発明の逆浸透処理システムは、原水をヒートポンプで加熱した後、逆浸透膜装置で膜分離処理する逆浸透処理装置において、該ヒートポンプの熱源流体として、冷凍システムの熱交換器から流出する温媒体を用いることを特徴とするものである。 The reverse osmosis treatment system of the present invention is a reverse osmosis treatment device in which raw water is heated by a heat pump and then subjected to membrane separation treatment by a reverse osmosis membrane device, wherein a warm medium flowing out of a heat exchanger of a refrigeration system as a heat source fluid of the heat pump. Is used.
 本発明の一態様では、前記ヒートポンプで加熱された原水を、第2熱交換器で加熱した後、前記逆浸透装置に供給する。 In one aspect of the present invention, the raw water heated by the heat pump is heated by the second heat exchanger and then supplied to the reverse osmosis device.
 本発明の一態様では、前記第2熱交換器に、ボイラからの蒸気を原水加熱用熱源流体として供給する。 In one embodiment of the present invention, steam from the boiler is supplied to the second heat exchanger as a heat source fluid for heating raw water.
 本発明の一態様では、前記ヒートポンプで加熱された原水の少なくとも一部をボイラ給水として前記ボイラに送水する。 In one embodiment of the present invention, at least a part of the raw water heated by the heat pump is supplied to the boiler as boiler feed water.
 本発明の一態様では、前記ヒートポンプの凝縮器の伝熱チューブとの間で水が循環される給水タンクを設置し、原水を該給水タンクに供給し、該伝熱チューブと給水タンクとの間で原水を循環させて加熱し、加熱された原水を該給水タンクから前記逆浸透装置に供給する。 In one embodiment of the present invention, a water supply tank is provided in which water is circulated between the heat transfer tube of the condenser of the heat pump and raw water is supplied to the water supply tank. The raw water is circulated and heated in, and the heated raw water is supplied from the water supply tank to the reverse osmosis device.
 本発明の一態様では、前記ヒートポンプの凝縮器の伝熱チューブとの間で水が循環される給水タンクを設置し、原水を該給水タンクに供給し、該伝熱チューブと給水タンクとの間で原水を循環させて加熱し、加熱された原水の少なくとも一部をボイラ給水として前記ボイラに送水する。 In one embodiment of the present invention, a water supply tank is provided in which water is circulated between the heat transfer tube of the condenser of the heat pump and raw water is supplied to the water supply tank. The raw water is circulated and heated, and at least a part of the heated raw water is supplied to the boiler as boiler water supply.
 本発明の一態様では、前記冷凍システムは、冷凍機本体と、該冷凍機本体からの冷媒体が導入され、温媒体が流出する前記熱交換器とを備えており、該熱交換器から流出する温媒体の一部を該冷凍機本体に戻し、残部を前記ヒートポンプの蒸発器に導入し、該蒸発器で降温した媒体を該熱交換器の冷媒体流入側に戻す。 In one aspect of the present invention, the refrigeration system includes a refrigerator main body, and the heat exchanger into which a refrigerant from the refrigerator main body is introduced and a warm medium flows out. A part of the warming medium to be returned is returned to the refrigerator main body, the remaining part is introduced into the evaporator of the heat pump, and the medium cooled by the evaporator is returned to the refrigerant inlet side of the heat exchanger.
 本発明の一態様では、前記冷凍システムは、冷凍機本体と、該冷凍機本体からの冷媒体が導入され、温媒体が流出する前記熱交換器とを備えており、該熱交換器から流出する温媒体の一部を該冷凍機本体に戻し、残部を前記ヒートポンプの蒸発器に導入し、該蒸発器で降温した媒体を該冷凍機本体に戻す。 In one aspect of the present invention, the refrigeration system includes a refrigerator main body, and the heat exchanger into which a refrigerant from the refrigerator main body is introduced and a warm medium flows out. A part of the warming medium to be returned is returned to the refrigerator main body, the remaining part is introduced into the evaporator of the heat pump, and the medium whose temperature has been lowered by the evaporator is returned to the refrigerator main body.
 本発明によると、冷凍システムの熱交換器から流出する温媒体を熱源としたヒートポンプでRO装置への給水を加熱することにより、該給水の加熱コストを低減することができる。 According to the present invention, it is possible to reduce the heating cost of the feed water by heating the feed water to the RO device with a heat pump using the heat medium flowing out of the heat exchanger of the refrigeration system as a heat source.
 本発明の一態様では、冷凍システムの熱交換器から流出する温媒体をヒートポンプの蒸発器で降温させるので、冷凍機の冷凍負荷を低減することができる。このことで、冷凍機本体の消費電力を削減し、ヒートポンプの設置により生み出されるトータルの便益を大きくすることができる。 In one embodiment of the present invention, the temperature of the warming medium flowing out of the heat exchanger of the refrigeration system is decreased by the evaporator of the heat pump, so that the refrigeration load of the refrigerator can be reduced. As a result, the power consumption of the refrigerator main body can be reduced, and the total benefit generated by installing the heat pump can be increased.
第1の実施の形態に係る逆浸透処理システムのブロック図である。It is a block diagram of a reverse osmosis treatment system concerning a 1st embodiment. 第2の実施の形態に係る逆浸透処理システムのブロック図である。It is a block diagram of the reverse osmosis treatment system concerning a 2nd embodiment. 第3の実施の形態に係る逆浸透処理システムのブロック図である。It is a block diagram of a reverse osmosis treatment system concerning a 3rd embodiment. 第4の実施の形態に係る逆浸透処理システムのブロック図である。It is a block diagram of the reverse osmosis treatment system concerning a 4th embodiment. 第5の実施の形態に係る逆浸透処理システムのブロック図である。It is a block diagram of the reverse osmosis treatment system concerning a 5th embodiment.
 図1を参照して第1の実施の形態について説明する。 (1) The first embodiment will be described with reference to FIG.
 RO処理される原水は、配管1からポンプ2によってヒートポンプ10の凝縮器13に供給され、加熱された後、配管3から蒸気を熱源とした熱交換器(第2熱交換器)4を通り、配管5を介してRO装置6に供給される。RO装置6の透過水は配管7から処理水として取り出され、濃縮水は配管8へ流出する。 The raw water to be subjected to the RO treatment is supplied from a pipe 1 to a condenser 13 of a heat pump 10 by a pump 2, heated, and then passes through a heat exchanger (second heat exchanger) 4 using steam as a heat source from a pipe 3. It is supplied to the RO device 6 via the pipe 5. The permeated water of the RO device 6 is taken out of the pipe 7 as treated water, and the concentrated water flows out of the pipe 8.
 熱交換器4に蒸気を供給するためのボイラの形式は特に限定されるものではなく、小型貫流ボイラ、水管ボイラ、丸ボイラ、排熱ボイラなどのいずれでもよい。なお、通常運転時には蒸気による加温は必要ないが、後述の冷凍機本体21の停止時や、RO装置6の起動時などの加温等に使用する。ただし、必要に応じ、通常運転時においても熱交換器4でRO給水を加熱するようにしてもよい。 形式 The type of boiler for supplying steam to the heat exchanger 4 is not particularly limited, and may be any of a small once-through boiler, a water tube boiler, a round boiler, and a waste heat boiler. It should be noted that during normal operation, heating by steam is not necessary, but it is used for heating, for example, when the refrigerator body 21 is stopped or when the RO device 6 is started, which will be described later. However, if necessary, the RO feedwater may be heated by the heat exchanger 4 even during normal operation.
 ヒートポンプ10は、周知構成のものであり、蒸発器11からの代替フロン等の熱媒体を圧縮機12で断熱圧縮により高温として凝縮器13に導入し、凝縮器13からの熱媒体を膨張弁14を介して蒸発器11に導入し、断熱膨張させて降温させるように構成されている。凝縮器13内に設けられた伝熱チューブ13aに原水がポンプ2を介して通水され、高温熱媒体と熱交換して加熱される。 The heat pump 10 has a well-known configuration, and introduces a heat medium, such as chlorofluorocarbon alternative, from the evaporator 11 to the condenser 13 at a high temperature by adiabatic compression in the compressor 12, and transfers the heat medium from the condenser 13 to the expansion valve 14. Is introduced into the evaporator 11 through the, and is adiabatically expanded to lower the temperature. Raw water is passed through the heat transfer tube 13 a provided in the condenser 13 via the pump 2, and exchanges heat with a high-temperature heat medium to be heated.
 蒸発器11内に設けられた伝熱チューブ11aに、冷凍システム20の熱交換器24から流出した温媒体の一部が配管31及びバルブ32を介して導入される。蒸発器11内の低温熱媒体との熱交換により降温した冷媒体は、配管33を介して熱交換器24に再度導入される。 (4) A part of the heating medium flowing out of the heat exchanger 24 of the refrigeration system 20 is introduced into the heat transfer tube 11 a provided in the evaporator 11 via the pipe 31 and the valve 32. The refrigerant whose temperature has been lowered by heat exchange with the low-temperature heat medium in the evaporator 11 is again introduced into the heat exchanger 24 via the pipe 33.
 冷凍システム20は、ターボ式冷凍機、吸収式冷凍機などの冷凍機本体21で冷却された冷媒体を、冷凍機本体21の媒体送出部21aから配管22を介して空調機などの熱交換器(第1熱交換器)24に供給し、周囲の熱を吸収させて該周囲を冷却する。熱交換器24で該周囲の熱を吸収して昇温した温媒体の一部が熱交換器24から媒体循環用ポンプ25、配管26、バルブ27を介して冷凍機本体21の媒体戻り部21bに戻る。 The refrigeration system 20 is configured to transfer a refrigerant cooled by a refrigerator main body 21 such as a turbo refrigerator or an absorption refrigerator to a heat exchanger such as an air conditioner via a pipe 22 from a medium delivery unit 21a of the refrigerator main body 21. (First heat exchanger) 24 to absorb the heat of the surroundings and cool the surroundings. A part of the warming medium, which has been heated by absorbing the surrounding heat in the heat exchanger 24, is transferred from the heat exchanger 24 via the medium circulation pump 25, the pipe 26, and the valve 27 to the medium return portion 21 b of the refrigerator body 21. Return to
 熱交換器24から流出した温媒体の残部は、配管26から分岐した配管31、バルブ32を介して蒸発器11の伝熱チューブ11aに流通され、ヒートポンプ熱媒体と熱交換して降温して冷媒体となり、配管33へ流出する。配管33は前記配管22に連なっており、配管33からの冷媒体は、前記冷凍機本体21からの冷媒体と合流して熱交換器24に流入する。 The remaining portion of the warm medium flowing out of the heat exchanger 24 flows through the heat transfer tube 11a of the evaporator 11 via the pipe 31 branched from the pipe 26 and the valve 32, exchanges heat with the heat pump heat medium, and cools down by cooling. It becomes a medium and flows out to the pipe 33. The pipe 33 is connected to the pipe 22, and the refrigerant from the pipe 33 joins with the refrigerant from the refrigerator main body 21 and flows into the heat exchanger 24.
 このように、この実施の形態では、ヒートポンプ10の蒸発器11の伝熱チューブ11aに流通される熱源流体として、熱交換器24から流出する温媒体を利用している。また、ヒートポンプ10の蒸発器11の伝熱チューブ11aを通ることによって降温した冷媒体を熱交換器24に戻すようにしている。 As described above, in this embodiment, the heating medium flowing out of the heat exchanger 24 is used as the heat source fluid flowing through the heat transfer tube 11a of the evaporator 11 of the heat pump 10. In addition, the refrigerant whose temperature has been lowered by passing through the heat transfer tube 11 a of the evaporator 11 of the heat pump 10 is returned to the heat exchanger 24.
 なお、この冷凍システム20の冷凍機本体21は、冷却用の低温流体として冷却塔40からの冷水を用いている。 The refrigerator main body 21 of the refrigeration system 20 uses cold water from the cooling tower 40 as a low-temperature fluid for cooling.
 この冷却塔40では、散水管41から散水された冷却水が充填材層42を流下する間にルーバ43から導入される空気と接触し、蒸発潜熱により冷却されて冷水となり、ピット44(冷却塔下部水槽)に貯留される。蒸気を含む空気はファン48により大気中に排気される。ピット44の冷水は、ポンプ45、配管46を介して冷凍機本体21に供給され、熱交換して昇温する。冷凍機本体21からの温戻り水が配管47を介して散水管41に返送される。 In the cooling tower 40, the cooling water sprinkled from the water sprinkling pipe 41 comes into contact with the air introduced from the louver 43 while flowing down the filler layer 42, and is cooled by the latent heat of evaporation to become cold water, and the pit 44 (cooling tower) (Lower tank). Air containing steam is exhausted to the atmosphere by a fan 48. The cold water in the pit 44 is supplied to the refrigerator main body 21 via a pump 45 and a pipe 46, and exchanges heat to raise the temperature. The warm return water from the refrigerator main body 21 is returned to the sprinkling pipe 41 via the pipe 47.
 このように構成された図1の逆浸透処理装置では、原水はヒートポンプ10で加熱された後、必要に応じ熱交換器4で加熱され、RO装置6に供給される。 In the reverse osmosis treatment device of FIG. 1 configured as described above, the raw water is heated by the heat pump 10, then, if necessary, is heated by the heat exchanger 4, and is supplied to the RO device 6.
 この実施の形態では、ヒートポンプ10の温熱源として、冷凍システム20に設置された空調機等の熱交換器24から流出する温媒体を用いており、冷凍機本体21の冷凍負荷を低減させることができる。また、これによって冷凍機本体21の消費電力を低減できるので、ヒートポンプ10で消費される電力がほぼ相殺される。このため、加温用の蒸気の削減額がそのまま便益として計上することができるため、ヒートポンプの設置による投資の回収を早くすることができる。 In this embodiment, a heating medium flowing out of a heat exchanger 24 such as an air conditioner installed in the refrigeration system 20 is used as a heat source of the heat pump 10, and the refrigeration load of the refrigerator main body 21 can be reduced. it can. In addition, since the power consumption of the refrigerator main body 21 can be reduced, the power consumed by the heat pump 10 is almost offset. For this reason, since the amount of reduction of the steam for heating can be directly recorded as a benefit, the investment in the heat pump can be quickly recovered.
 図2を参照して第2の実施の形態について説明する。 A second embodiment will be described with reference to FIG.
 図1の冷凍システム20では、冷凍機本体21から配管22を介して送られてくる冷媒体と、蒸発器11から配管33を介して送られてくる冷媒体とを合流させて空調機等の熱交換器24に流入させているが、図2の実施の形態では、冷凍機本体21の媒体送出部21aから配管22を介して送られてくる冷媒体のみを熱交換器24に流入させる。 In the refrigeration system 20 of FIG. 1, the refrigerant sent from the refrigerator main body 21 via the pipe 22 and the refrigerant sent from the evaporator 11 via the pipe 33 are combined to form an air conditioner or the like. Although the refrigerant flows into the heat exchanger 24, in the embodiment of FIG. 2, only the refrigerant sent from the medium delivery portion 21 a of the refrigerator main body 21 via the pipe 22 flows into the heat exchanger 24.
 この熱交換器24から流出した温媒体は、媒体循環用ポンプ25によって配管28に送り出される。送り出された温媒体の一部は、バルブ29、配管30を介して冷凍機本体21の媒体戻り部21bに循環される。 The warm medium flowing out of the heat exchanger 24 is sent out to a pipe 28 by a medium circulation pump 25. A part of the sent warm medium is circulated to the medium return part 21b of the refrigerator main body 21 via the valve 29 and the pipe 30.
 配管28に送り出された温媒体の残部は、配管28から分岐した配管35及びバルブ36を介して蒸発器11の伝熱チューブ11aに流通され、ヒートポンプ熱媒体と熱交換して降温して冷媒体となり、配管37から配管30に合流し、冷凍機本体21の媒体戻り部21bに戻る。 The remaining portion of the heating medium sent to the pipe 28 flows through the heat transfer tube 11a of the evaporator 11 via the pipe 35 and the valve 36 branched from the pipe 28, exchanges heat with the heat pump heat medium, and cools down by cooling. And merges with the pipe 30 from the pipe 37 and returns to the medium return portion 21b of the refrigerator main body 21.
 図2のその他の構成は図1と同様であり、同一符号は同一部分を示している。 2 The other configuration of FIG. 2 is the same as that of FIG. 1, and the same reference numerals indicate the same parts.
 この実施の形態においても、図1の実施の形態と同様に、ヒートポンプ10の温熱源として、冷凍システム20に設置された空調機等の熱交換器24から流出する温媒体を用いており、冷凍機本体21の冷凍負荷を低減することができる。 Also in this embodiment, similarly to the embodiment of FIG. 1, a heating medium flowing out of a heat exchanger 24 such as an air conditioner installed in a refrigeration system 20 is used as a heat source of the heat pump 10. The refrigeration load of the machine body 21 can be reduced.
 なお、図1のシステムに従って原水(20℃)を25℃に加熱して100m/hでRO処理し、冷凍機本体21としてターボ冷凍機(500RT)をCOP(成績係数)5で運転し、冷凍機本体21の媒体を水とし、冷凍機本体戻り部21bの流入水(温媒体)温度12℃、冷凍機本体送出部21aの流出水(冷媒体)温度7℃とし、熱交換器4に蒸気を供給せず、ヒートポンプ(470kW)をCOP(成績係数)6で運転する場合、蒸気式熱交換器4のみによって原水を20℃から25℃に加温し、蒸気式熱交換器4に蒸気を3台の小型貫流ボイラ(換算蒸発量2000kg/h、燃料LNG、蒸気圧力0.7MPa)で供給する場合に比べてエネルギーコストは80%以下になると試算される。 In addition, according to the system of FIG. 1, raw water (20 ° C.) is heated to 25 ° C., subjected to RO treatment at 100 m 3 / h, and a centrifugal chiller (500 RT) is operated as a refrigerator main body 21 at a COP (coefficient of performance) of 5, The medium of the refrigerator main body 21 is water, and the inflow water (warm medium) temperature of the refrigerator main body return portion 21b is 12 ° C., and the outflow water (refrigerant) temperature of the refrigerator main body delivery portion 21a is 7 ° C. When a heat pump (470 kW) is operated with a COP (coefficient of performance) 6 without supplying steam, the raw water is heated from 20 ° C. to 25 ° C. by the steam heat exchanger 4 alone, and the steam is supplied to the steam heat exchanger 4. It is estimated that the energy cost will be 80% or less as compared with the case of supplying with three small once-through boilers (equivalent evaporation 2000 kg / h, fuel LNG, steam pressure 0.7 MPa).
 また、図1のシステムは、原水をヒートポンプのみによって20℃から25℃に加温する場合に比べてエネルギーコストは90%以下になると試算された。 The energy cost of the system in Fig. 1 was estimated to be 90% or less compared to the case where raw water is heated from 20 ° C to 25 ° C using only a heat pump.
 図3を参照して第3の実施の形態について説明する。 A third embodiment will be described with reference to FIG.
 図1では、ヒートポンプ10の凝縮器13の伝熱チューブ13aを通過して加熱された原水は、その全量が配管3から熱交換器4に送水されており、熱交換器4に対し熱源流体としてボイラから蒸気が供給されている。図3では、該配管3を配管50,60の2系統に分岐させている。 In FIG. 1, the entire amount of raw water heated by passing through the heat transfer tube 13 a of the condenser 13 of the heat pump 10 is sent from the pipe 3 to the heat exchanger 4, and is supplied to the heat exchanger 4 as a heat source fluid. Steam is supplied from the boiler. In FIG. 3, the pipe 3 is branched into two systems of pipes 50 and 60.
 配管50に流れた加熱原水は、バルブ51、給水タンク52及び配管53を介して熱交換器4に送水される。また、給水タンク52には、ヒートポンプ10で加熱しない原水(以下「非加熱原水」と記す場合あり)を給水タンク52に供給するために、バルブ85を備えた配管86が接続されている。 加熱 The heated raw water flowing into the pipe 50 is sent to the heat exchanger 4 via the valve 51, the water supply tank 52, and the pipe 53. In addition, a pipe 86 provided with a valve 85 is connected to the water supply tank 52 in order to supply raw water not heated by the heat pump 10 (hereinafter sometimes referred to as “unheated raw water”) to the water supply tank 52.
 配管60に流れた加熱原水は、バルブ61、第1軟水器62及び配管63を介して給水タンク64に送水される。給水タンク64には、第2軟水器65を通過したボイラ用水も、配管66を介して導入される。軟水器62,65は、容器と、該容器内に充填されたイオン交換樹脂とを有し、原水又はボイラ用水を軟水とする。ボイラ用水は原水と同一の水源からの水であってもよく、別の水源からの水であってもよい。 加熱 The heated raw water flowing into the pipe 60 is sent to the water supply tank 64 via the valve 61, the first water softener 62 and the pipe 63. The boiler water that has passed through the second water softener 65 is also introduced into the water supply tank 64 via the pipe 66. Each of the water softeners 62 and 65 has a container and an ion-exchange resin filled in the container, and uses raw water or boiler water as soft water. The boiler water may be water from the same water source as the raw water, or may be water from another water source.
 給水タンク64内の水は、配管67を介してボイラ70に供給される。ボイラ70で発生した蒸気が配管71を介して熱交換器4に供給される。配管53からの原水が該熱交換器4で加熱され、RO装置6に供給される。なお、熱交換器4で蒸気が凝縮することにより生じた凝縮水を給水タンク64に送水してもよい。 水 The water in the water supply tank 64 is supplied to the boiler 70 via the pipe 67. The steam generated in the boiler 70 is supplied to the heat exchanger 4 via the pipe 71. Raw water from the pipe 53 is heated by the heat exchanger 4 and supplied to the RO device 6. The condensed water generated by the condensation of the steam in the heat exchanger 4 may be sent to the water supply tank 64.
 図3のその他の構成は図1と同一であり、同一符号は同一部分を示している。 3 The other configurations in FIG. 3 are the same as those in FIG. 1, and the same reference numerals denote the same parts.
 図3では、ヒートポンプ10に連なる熱交換器24及び冷凍機20及び冷却塔40の構成は図1の構成となっているが、図2のように構成されていてもよい。 In FIG. 3, the configurations of the heat exchanger 24, the refrigerator 20, and the cooling tower 40 connected to the heat pump 10 are as shown in FIG. 1, but may be as shown in FIG.
 この第3の実施の形態によると、1台のヒートポンプ10によって、RO装置6への給水だけでなく、ボイラ70への給水の一部も加熱することができる。 According to the third embodiment, not only the water supply to the RO device 6 but also a part of the water supply to the boiler 70 can be heated by one heat pump 10.
 また、バルブ51およびバルブ61により加熱原水の供給先を切替えたり、供給量を調整することができる。そして、バルブ51およびバルブ61を用いてヒートポンプ10による加熱原水を優先的にRO装置6に供給し、加熱原水の余剰分をボイラ70への給水とすることで、RO装置6に供給される原水の加温用の蒸気を効果的に削減するとともに、ヒートポンプ10で加熱した原水を有効に利用することが可能となる。 供給 Further, the supply destination of the heating raw water can be switched or the supply amount can be adjusted by the valve 51 and the valve 61. Then, the raw water supplied by the heat pump 10 is preferentially supplied to the RO device 6 using the valve 51 and the valve 61, and the surplus of the heated raw water is supplied to the boiler 70, whereby the raw water supplied to the RO device 6 is supplied. It is possible to effectively reduce the amount of steam for heating, and to effectively use the raw water heated by the heat pump 10.
 例えば、加熱原水がRO装置6の給水の設定温度(例えば25℃)未満の場合には、RO装置6の給水の全量を加熱原水とするようバルブ51,バルブ61を調整する。加熱原水の全量がRO装置6の給水量を上回る場合には、加熱原水の余剰分が給水タンク64に送水されボイラ給水として使用される。夏場などで、加熱原水がRO装置6の給水の設定温度(例えば25℃)を超える場合には、バルブ51,バルブ61、更にはバルブ85を調整することで、RO装置6の給水が設定温度となるように給水タンク64に供給される加熱原水と非加熱原水の供給量を調整するとともに、加熱原水の余剰分を給水タンク64に送水する。このようにすることで、ヒートポンプで加熱した原水を一年間を通して、有効に利用することが可能となる。 For example, when the raw water to be heated is lower than the set temperature (for example, 25 ° C.) of the water supplied to the RO device 6, the valves 51 and 61 are adjusted so that the entire amount of the supplied water to the RO device 6 is used as the raw water to be heated. When the total amount of the heating raw water exceeds the amount of water supplied to the RO device 6, the surplus heating water is sent to the water supply tank 64 and used as boiler water. When the raw water to be heated exceeds the set temperature (for example, 25 ° C.) of the feed water of the RO device 6 in summer or the like, the valve 51, the valve 61, and the valve 85 are adjusted to adjust the feed water of the RO device 6 to the set temperature. In addition to adjusting the supply amounts of the heated raw water and the non-heated raw water supplied to the water supply tank 64 so as to satisfy the condition, the surplus amount of the heated raw water is supplied to the water supply tank 64. In this way, the raw water heated by the heat pump can be effectively used throughout the year.
 なお、非加熱原水の温度、或いは、季節によって、加熱原水の供給先を切り替えるようにしても良い。例えば、非加熱原水の温度が所定温度を超えた場合、或いは、夏場においては、RO装置6の給水の全量を非加熱原水とし、加熱原水は全てボイラ給水として利用するようにバルブ51,61および85を調整してもよい。また、非加熱原水の温度が所定の温度以下の場合、或いは、夏場以外の季節においては、RO装置6の給水の全量を加熱原水として、加熱原水の余剰分をボイラ給水として利用するように、バルブ51,61および85を調整してもよい。 Note that the supply destination of the heating raw water may be switched depending on the temperature of the non-heating raw water or the season. For example, when the temperature of the non-heated raw water exceeds a predetermined temperature, or in summer, the entire amount of the supply water of the RO device 6 is the non-heated raw water, and the valves 51, 61 and 85 may be adjusted. Further, when the temperature of the non-heated raw water is equal to or lower than a predetermined temperature, or in a season other than summer, the entire amount of the supply water of the RO device 6 is used as the raw water for heating, and the surplus of the raw water for heating is used as the boiler water supply. The valves 51, 61 and 85 may be adjusted.
 図4を参照して第4の実施の形態について説明する。 A fourth embodiment will be described with reference to FIG.
 図3のシステムでは、ヒートポンプ10の凝縮器13で加熱された原水をそのまま配管3へ送水しているが、図4のシステムでは、配管1からの原水を給水タンク80に導入し、給水タンク80内の原水をポンプ81及び配管82を介して凝縮器13の伝熱チューブ13aに送水する。伝熱チューブ13aから流出した、加熱された原水は、配管83を介して給水タンク80に返送される。このようにして給水タンク80内の原水の温度が高くなる。この給水タンク80内の温度の高い原水がポンプ84を介して配管3へ送水される。 In the system of FIG. 3, the raw water heated by the condenser 13 of the heat pump 10 is directly sent to the pipe 3, but in the system of FIG. 4, the raw water from the pipe 1 is introduced into the water supply tank 80, The internal raw water is sent to the heat transfer tube 13 a of the condenser 13 via the pump 81 and the pipe 82. The heated raw water flowing out of the heat transfer tube 13a is returned to the water supply tank 80 via the pipe 83. Thus, the temperature of the raw water in the water supply tank 80 increases. The high temperature raw water in the water supply tank 80 is sent to the pipe 3 via the pump 84.
 図4のその他の構成は図3と同一であり、同一符号は同一部分を示している。図4のシステムによっても、図3のシステムと同様の効果が得られる。なお、図4では、原水を給水タンク80と凝縮器13とを循環させるので、図3の場合よりも高い温度に加熱された原水を配管3へ送り出すことができる。 4 The other configurations in FIG. 4 are the same as those in FIG. 3, and the same reference numerals indicate the same parts. The same effects as those of the system of FIG. 3 can be obtained by the system of FIG. In FIG. 4, the raw water is circulated through the water supply tank 80 and the condenser 13, so that the raw water heated to a higher temperature than in the case of FIG.
 図4では、ヒートポンプ10に連なる熱交換器24、冷凍機20及び冷却塔40の構成は図1の構成となっているが、図2のように構成されていてもよい。 In FIG. 4, the configurations of the heat exchanger 24, the refrigerator 20, and the cooling tower 40 connected to the heat pump 10 are as shown in FIG. 1, but may be as shown in FIG.
 図3の装置を想定し、以下の条件で運転した場合の蒸気コストを試算した結果を表1に示す。 Table 1 shows the results of a trial calculation of the steam cost when the apparatus shown in Fig. 3 was operated under the following conditions.
<運転条件>
 ボイラ:貫流ボイラ、換算蒸発量6000kg/h×10台、燃料LNG、蒸気圧力0.7MPa
 RO装置:原水供給量100m/h
 ヒートポンプ:470kW、COP(成績係数)6
 RO給水の加温以外の蒸気使用量:240,000t/年
 ヒートポンプでの原水の平均加温温度:5℃
 LNG単価:50円/Nm=蒸気単価3963円/t、5℃の熱回収で蒸気の燃料が0.8%(蒸気単価3931円)削減されると仮定。
<Operating conditions>
Boiler: once-through boiler, reduced evaporation 6000 kg / h × 10 units, fuel LNG, steam pressure 0.7 MPa
RO device: raw water supply amount 100m 3 / h
Heat pump: 470 kW, COP (coefficient of performance) 6
Steam consumption other than RO feed water heating: 240,000 t / year Average heating temperature of raw water by heat pump: 5 ° C
LNG unit price: 50 yen / Nm 3 = steam unit price 3963 yen / t, assuming that steam fuel is reduced by 0.8% (steam unit price 3931 yen) by heat recovery at 5 ° C.
[試験例1]
 ヒートポンプによる加熱原水の全量をボイラ給水として利用し、RO給水はボイラからの蒸気(1,228t/年)で原水を20℃から25℃に加熱。
[Test Example 1]
The entire amount of raw water heated by the heat pump is used as boiler feed water, and RO feed water is heated from 20 ° C. to 25 ° C. by steam (1,228 t / year) from the boiler.
[試験例2]
 夏場以外の季節はヒートポンプによる加熱原水の全量をRO給水として利用。夏場は原水が25℃あるとして原水を加熱することなく利用。ボイラ給水は全量を加熱してない原水を使用した。
[Test Example 2]
In the seasons other than summer, the entire amount of raw water heated by the heat pump is used as RO water supply. In summer, raw water is used without heating, assuming that the temperature is 25 ° C. For boiler feed water, raw water was used without heating the whole amount.
[試験例3]
 夏場はヒートポンプによる加熱原水の全量をボイラ給水として利用し、それ以外の季節はヒートポンプによる加熱原水の全量をRO給水として利用した。
[Test Example 3]
In summer, the entire amount of raw water heated by the heat pump was used as boiler feed water, and in other seasons, the entire amount of raw water heated by the heat pump was used as RO feed water.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す通り、季節によってヒートポンプによる加熱原水の供給先を切り替えることで、RO装置に供給される原水の加温用の蒸気を効果的に削減するとともに、ヒートポンプで加熱した原水を有効に利用することで、蒸気コストを抑制することが可能となった。 As shown in Table 1, by switching the supply destination of heated raw water by the heat pump according to the season, the steam for heating the raw water supplied to the RO device is effectively reduced, and the raw water heated by the heat pump is used effectively. By doing so, it became possible to suppress the steam cost.
 図5を参照して第5の実施の形態について説明する。 (5) A fifth embodiment will be described with reference to FIG.
 この実施の形態は、図1のシステムにおいて、給水タンク80、ポンプ81、配管82,83、ポンプ84を設置したものである。図4の場合と同じく、原水を伝熱チューブ13aと給水タンク80との間を循環させて加熱する。加熱された原水がポンプ84から配管3を介してRO装置6のみへ送水される。 In this embodiment, the water supply tank 80, the pump 81, the pipes 82 and 83, and the pump 84 are installed in the system of FIG. As in the case of FIG. 4, the raw water is heated by circulating between the heat transfer tube 13a and the water supply tank 80. The heated raw water is sent from the pump 84 to only the RO device 6 via the pipe 3.
 この実施の形態によると、図1の場合よりも、高い温度に加熱された原水がRO装置に送水される。 According to this embodiment, raw water heated to a higher temperature than in the case of FIG. 1 is sent to the RO device.
 上記実施の形態は本発明の一例であり、本発明は図示以外の形態とされてもよい。 The above embodiment is an example of the present invention, and the present invention may be in a form other than that shown.
 例えば、図1,2,5では、蒸気式熱交換器4を用いているが、蒸気式熱交換器4の代わりに蒸気以外を熱源とする熱交換器を設置してもよい。 For example, in FIGS. 1, 2, and 5, the steam heat exchanger 4 is used, but a heat exchanger using heat other than steam as a heat source may be installed instead of the steam heat exchanger 4.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。 Although the present invention has been described in detail using specific embodiments, it is apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the present invention.
 本出願は、2018年7月6日付で出願された日本特許出願2018-129257に基づいており、その全体が引用により援用される。 This application is based on Japanese Patent Application No. 2018-129257 filed on July 6, 2018, which is incorporated by reference in its entirety.
 4 蒸気式熱交換器
 6 RO装置
 10 ヒートポンプ
 11 蒸発器
 12 圧縮機
 13 凝縮器
 14 膨張弁
 20 冷凍システム
 21 冷凍機本体
 24 熱交換器
 40 冷却塔
 52,64,80 給水タンク
 70 ボイラ
Reference Signs List 4 steam heat exchanger 6 RO device 10 heat pump 11 evaporator 12 compressor 13 condenser 14 expansion valve 20 refrigeration system 21 refrigerator main body 24 heat exchanger 40 cooling tower 52, 64, 80 water supply tank 70 boiler

Claims (14)

  1.  原水をヒートポンプで加熱した後、逆浸透膜装置で膜分離処理する逆浸透処理方法において、
     該ヒートポンプの熱源流体として、冷凍システムの熱交換器から流出する温媒体を用いることを特徴とする逆浸透処理方法。
    In a reverse osmosis treatment method in which raw water is heated by a heat pump and then subjected to a membrane separation treatment in a reverse osmosis membrane device,
    A reverse osmosis treatment method comprising using a heating medium flowing out of a heat exchanger of a refrigeration system as a heat source fluid of the heat pump.
  2.  前記ヒートポンプで加熱された原水を、第2熱交換器で加熱した後、前記逆浸透装置に供給することを特徴とする請求項1の逆浸透処理方法。 The reverse osmosis treatment method according to claim 1, wherein the raw water heated by the heat pump is supplied to the reverse osmosis device after being heated by the second heat exchanger.
  3.  前記第2熱交換器に、ボイラからの蒸気を原水加熱用熱源流体として供給することを特徴とする請求項2の逆浸透処理方法。 3. The reverse osmosis treatment method according to claim 2, wherein steam from the boiler is supplied to the second heat exchanger as a heat source fluid for heating raw water.
  4.  前記ヒートポンプで加熱された原水の少なくとも一部をボイラ給水として前記ボイラに送水することを特徴とする請求項3の逆浸透処理方法。 The reverse osmosis treatment method according to claim 3, wherein at least a part of the raw water heated by the heat pump is supplied to the boiler as boiler feedwater.
  5.  前記ヒートポンプの凝縮器の伝熱チューブとの間で水が循環される給水タンクを設置し、原水を該給水タンクに供給し、該伝熱チューブと給水タンクとの間で原水を循環させて加熱し、加熱された原水を該給水タンクから前記逆浸透装置に供給することを特徴とする請求項1~3のいずれか1項の逆浸透処理方法。 A water supply tank in which water is circulated between the heat transfer tube of the condenser of the heat pump is installed, raw water is supplied to the water supply tank, and the raw water is circulated and heated between the heat transfer tube and the water supply tank. 4. The reverse osmosis treatment method according to claim 1, wherein heated raw water is supplied from the water supply tank to the reverse osmosis device.
  6.  前記ヒートポンプの凝縮器の伝熱チューブとの間で水が循環される給水タンクを設置し、原水を該給水タンクに供給し、該伝熱チューブと給水タンクとの間で原水を循環させて加熱し、加熱された原水の少なくとも一部をボイラ給水として前記ボイラに送水することを特徴とする請求項4の逆浸透処理方法。 A water supply tank in which water is circulated between the heat transfer tube of the condenser of the heat pump is installed, raw water is supplied to the water supply tank, and the raw water is circulated and heated between the heat transfer tube and the water supply tank. The reverse osmosis treatment method according to claim 4, wherein at least a part of the heated raw water is supplied to the boiler as boiler feedwater.
  7.  前記冷凍システムは、冷凍機本体と、該冷凍機本体からの冷媒体が導入され、温媒体が流出する前記熱交換器とを備えており、
     該熱交換器から流出する温媒体の一部を該冷凍機本体に戻し、残部を前記ヒートポンプの蒸発器に導入し、該蒸発器で降温した媒体を該熱交換器の冷媒体流入側に戻すことを特徴とする請求項1~6のいずれか1項の逆浸透処理方法。
    The refrigeration system includes a refrigerator main body, the heat exchanger into which a refrigerant from the refrigerator main body is introduced, and a heating medium flows out,
    A part of the warm medium flowing out of the heat exchanger is returned to the refrigerator main body, and the remaining part is introduced into the evaporator of the heat pump, and the medium cooled by the evaporator is returned to the refrigerant inlet side of the heat exchanger. The reverse osmosis treatment method according to any one of claims 1 to 6, wherein:
  8.  前記冷凍システムは、冷凍機本体と、該冷凍機本体からの冷媒体が導入され、温媒体が流出する前記熱交換器とを備えており、
     該熱交換器から流出する温媒体の一部を該冷凍機本体に戻し、残部を前記ヒートポンプの蒸発器に導入し、該蒸発器で降温した媒体を該冷凍機本体に戻すことを特徴とする請求項1~6のいずれか1項の逆浸透処理方法。
    The refrigeration system includes a refrigerator main body, the heat exchanger into which a refrigerant from the refrigerator main body is introduced, and a heating medium flows out,
    A part of the warm medium flowing out of the heat exchanger is returned to the refrigerator main body, the remaining part is introduced into an evaporator of the heat pump, and the medium cooled by the evaporator is returned to the refrigerator main body. The reverse osmosis treatment method according to any one of claims 1 to 6.
  9.  原水をヒートポンプで加熱した後、逆浸透膜装置で膜分離処理する逆浸透処理システムにおいて、
     該ヒートポンプの熱源流体として、冷凍システムの熱交換器から流出する温媒体を用いることを特徴とする逆浸透処理システム。
    In a reverse osmosis treatment system where raw water is heated by a heat pump and then subjected to membrane separation by a reverse osmosis membrane device,
    A reverse osmosis treatment system, wherein a heating medium flowing out of a heat exchanger of a refrigeration system is used as a heat source fluid of the heat pump.
  10.  前記ヒートポンプで加熱された原水を、さらに加熱して前記逆浸透装置に供給する第2熱交換器を有することを特徴とする請求項9の逆浸透処理システム。 10. The reverse osmosis treatment system according to claim 9, further comprising a second heat exchanger that further heats the raw water heated by the heat pump and supplies the raw water to the reverse osmosis device.
  11.  前記第2熱交換器に、蒸気を原水加熱用熱源流体として供給するボイラを有することを特徴とする請求項10の逆浸透処理システム。 11. The reverse osmosis treatment system according to claim 10, further comprising a boiler that supplies steam to the second heat exchanger as a heat source fluid for heating raw water.
  12.  前記ヒートポンプで加熱された原水の少なくとも一部をボイラ給水として前記ボイラに送水する手段を有することを特徴とする請求項11の逆浸透処理システム。 12. The reverse osmosis treatment system according to claim 11, further comprising means for feeding at least a part of the raw water heated by the heat pump to the boiler as boiler feed water.
  13.  前記ヒートポンプの凝縮器の伝熱チューブとの間で水が循環される給水タンクを有し、原水を該給水タンクに供給し、該伝熱チューブと給水タンクとの間で原水を循環させて加熱し、加熱された原水を該給水タンクから前記逆浸透装置に供給することを特徴とする請求項9~11のいずれか1項の逆浸透処理システム。 The water pump has a water supply tank through which water is circulated between a heat transfer tube of a condenser of the heat pump, supplies raw water to the water supply tank, and circulates the raw water between the heat transfer tube and the water supply tank to heat the raw water. The reverse osmosis treatment system according to any one of claims 9 to 11, wherein heated raw water is supplied from the water supply tank to the reverse osmosis device.
  14.  前記ヒートポンプの凝縮器の伝熱チューブとの間で水が循環される給水タンクを設置し、原水を該給水タンクに供給し、該伝熱チューブと給水タンクとの間で原水を循環させて加熱し、加熱された原水の少なくとも一部をボイラ給水として前記ボイラに送水することを特徴とする請求項12の逆浸透処理システム。 A water supply tank in which water is circulated between the heat transfer tube of the condenser of the heat pump is installed, raw water is supplied to the water supply tank, and the raw water is circulated and heated between the heat transfer tube and the water supply tank. The reverse osmosis treatment system according to claim 12, wherein at least a part of the heated raw water is supplied to the boiler as boiler feedwater.
PCT/JP2019/024317 2018-07-06 2019-06-19 Reverse osmosis treatment method and system WO2020008884A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980045228.3A CN112384479B (en) 2018-07-06 2019-06-19 Reverse osmosis treatment method and system
KR1020207035981A KR102477968B1 (en) 2018-07-06 2019-06-19 Reverse osmosis treatment method and system
JP2019533667A JP6777236B2 (en) 2018-07-06 2019-06-19 Reverse osmosis treatment method and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018129257 2018-07-06
JP2018-129257 2018-07-06

Publications (1)

Publication Number Publication Date
WO2020008884A1 true WO2020008884A1 (en) 2020-01-09

Family

ID=69060581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024317 WO2020008884A1 (en) 2018-07-06 2019-06-19 Reverse osmosis treatment method and system

Country Status (5)

Country Link
JP (1) JP6777236B2 (en)
KR (1) KR102477968B1 (en)
CN (1) CN112384479B (en)
TW (1) TWI781329B (en)
WO (1) WO2020008884A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021011987A (en) * 2019-07-08 2021-02-04 栗田工業株式会社 Heat pump system
WO2022013977A1 (en) * 2020-07-15 2022-01-20 栗田工業株式会社 Heat pump system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634808A (en) * 1986-06-24 1988-01-09 Takuma Co Ltd Reverse-osmosis membrane device system
JPH01130785A (en) * 1987-11-18 1989-05-23 Ishikawajima Harima Heavy Ind Co Ltd Ozonized water sterilizer
JPH07167525A (en) * 1993-12-16 1995-07-04 Shimizu Corp Hot water supplying heat pump system utilizing cooling exhaust heat
JP2006159003A (en) * 2004-12-02 2006-06-22 Mayekawa Mfg Co Ltd Heating and cooling method and apparatus for ultrapure water
JP2012091118A (en) * 2010-10-27 2012-05-17 Japan Organo Co Ltd Water treatment system and water treatment method
CN204702545U (en) * 2015-06-04 2015-10-14 杭州英普水处理技术有限公司 A kind of reverse osmosis former water water inlet heating unit
JP2016107178A (en) * 2014-12-02 2016-06-20 三浦工業株式会社 Water treatment system
JP2018027256A (en) * 2016-08-19 2018-02-22 日本ウォーターシステム株式会社 Waster treatment equipment
WO2018051552A1 (en) * 2016-09-14 2018-03-22 栗田工業株式会社 Ultrapure water manufacturing device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5325431B2 (en) * 2008-02-29 2013-10-23 パナソニック株式会社 Waste heat recovery equipment for refrigeration equipment
CN103209928B (en) * 2010-10-27 2015-08-05 奥加诺株式会社 Water treatment system and water treatment method
JP5971088B2 (en) * 2012-11-08 2016-08-17 三浦工業株式会社 Boiler feed water heating system
JP6532494B2 (en) * 2017-03-16 2019-06-19 栗田工業株式会社 Reverse osmosis processing method and apparatus
CN106988813B (en) * 2017-05-15 2019-04-09 华电电力科学研究院 A kind of system and method using waste heat driving process equipment
CN107060928B (en) * 2017-05-15 2023-10-27 华电电力科学研究院有限公司 System and method for supplying electric energy and heat energy by utilizing process waste heat

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634808A (en) * 1986-06-24 1988-01-09 Takuma Co Ltd Reverse-osmosis membrane device system
JPH01130785A (en) * 1987-11-18 1989-05-23 Ishikawajima Harima Heavy Ind Co Ltd Ozonized water sterilizer
JPH07167525A (en) * 1993-12-16 1995-07-04 Shimizu Corp Hot water supplying heat pump system utilizing cooling exhaust heat
JP2006159003A (en) * 2004-12-02 2006-06-22 Mayekawa Mfg Co Ltd Heating and cooling method and apparatus for ultrapure water
JP2012091118A (en) * 2010-10-27 2012-05-17 Japan Organo Co Ltd Water treatment system and water treatment method
JP2016107178A (en) * 2014-12-02 2016-06-20 三浦工業株式会社 Water treatment system
CN204702545U (en) * 2015-06-04 2015-10-14 杭州英普水处理技术有限公司 A kind of reverse osmosis former water water inlet heating unit
JP2018027256A (en) * 2016-08-19 2018-02-22 日本ウォーターシステム株式会社 Waster treatment equipment
WO2018051552A1 (en) * 2016-09-14 2018-03-22 栗田工業株式会社 Ultrapure water manufacturing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021011987A (en) * 2019-07-08 2021-02-04 栗田工業株式会社 Heat pump system
WO2022013977A1 (en) * 2020-07-15 2022-01-20 栗田工業株式会社 Heat pump system

Also Published As

Publication number Publication date
TWI781329B (en) 2022-10-21
JPWO2020008884A1 (en) 2020-07-09
JP6777236B2 (en) 2020-10-28
CN112384479B (en) 2022-03-18
KR102477968B1 (en) 2022-12-14
CN112384479A (en) 2021-02-19
TW202005706A (en) 2020-02-01
KR20210024463A (en) 2021-03-05

Similar Documents

Publication Publication Date Title
US20100000709A1 (en) Heating and heat recovery unit for an air conditioning system
JP6689801B2 (en) Solar air conditioning system
WO2015129456A1 (en) Co2 water heater
WO2016046882A1 (en) Refrigeration cycle device
JP2011112272A (en) Method and device for heating and cooling
WO2020008884A1 (en) Reverse osmosis treatment method and system
KR101156465B1 (en) Air-conditioning and heating equipment using sea water and deep sea water source heat pump and method for controlling the same
WO2007077687A1 (en) Heat pump hot water supply device
JP5261111B2 (en) Absorption refrigerator
KR20110056847A (en) Heat-pump system
JP2019190708A (en) Absorptive refrigerator
CN107388617A (en) Fume hot-water compound type lithium bromide absorption type refrigeration unit
JP2007278655A (en) Heat storage type hot water supplier
JP2009236368A (en) Absorption chiller/heater
CN207081238U (en) Fume hot-water compound type lithium bromide absorption type handpiece Water Chilling Units
WO2016098263A1 (en) Heat exchanger and heat pump type hot water generating device using same
CN107504710A (en) Fume hot-water single-double effect compound type lithium bromide absorption type handpiece Water Chilling Units
JP2006162086A (en) Heat pump water heater
JP2013011424A (en) Steam absorption type refrigerating machine
JP2011058767A (en) Heat pump water heater
JP3451539B2 (en) Absorption type cold heat generator
JP2009250580A (en) Heat pump device
JP3383898B2 (en) Absorption type cold heat generator
JP2022066605A (en) Absorption type refrigerator and control method for absorption type refrigerator
JP3724975B2 (en) Steam tank absorption chiller / heater

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019533667

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19830643

Country of ref document: EP

Kind code of ref document: A1