JP6777236B2 - Reverse osmosis treatment method and system - Google Patents

Reverse osmosis treatment method and system Download PDF

Info

Publication number
JP6777236B2
JP6777236B2 JP2019533667A JP2019533667A JP6777236B2 JP 6777236 B2 JP6777236 B2 JP 6777236B2 JP 2019533667 A JP2019533667 A JP 2019533667A JP 2019533667 A JP2019533667 A JP 2019533667A JP 6777236 B2 JP6777236 B2 JP 6777236B2
Authority
JP
Japan
Prior art keywords
reverse osmosis
heat
water
raw water
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019533667A
Other languages
Japanese (ja)
Other versions
JPWO2020008884A1 (en
Inventor
孝司 青木
孝司 青木
小野 雄壱
雄壱 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Publication of JPWO2020008884A1 publication Critical patent/JPWO2020008884A1/en
Application granted granted Critical
Publication of JP6777236B2 publication Critical patent/JP6777236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/22Cooling or heating elements
    • B01D2313/221Heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、逆浸透膜装置を用いて水を処理する逆浸透処理方法及びシステムに係り、特に逆浸透膜装置への給水をヒートポンプで加熱する逆浸透処理方法及びシステムに関する。 The present invention relates to a reverse osmosis treatment method and system for treating water using a reverse osmosis membrane device, and more particularly to a reverse osmosis treatment method and system for heating water supply to the reverse osmosis membrane device with a heat pump.

逆浸透膜装置(以下、RO装置ということがある。)にあっては、処理水量維持(水の粘度低下の防止によるフラックスの維持、シリカ飽和溶解度上昇による回収率向上)の為、給水温度を25℃程度に加温している。この給水の加熱には蒸気、温水、電気ヒーターなどが使用され、エネルギーを消費している。 In the reverse osmosis membrane device (hereinafter, may be referred to as RO device), the water supply temperature is set in order to maintain the amount of treated water (maintain flux by preventing decrease in water viscosity and improve recovery rate by increasing silica saturation solubility). It is heated to about 25 ° C. Steam, hot water, electric heaters, etc. are used to heat this water supply, which consumes energy.

特開2012−91118号公報の請求項7には、RO装置の給水をヒートポンプによって23〜25℃に加熱することが記載されているが、同号公報にはヒートポンプの熱源についての具体的記載はなされていない。 Claim 7 of Japanese Patent Application Laid-Open No. 2012-91118 describes that the water supply of the RO apparatus is heated to 23 to 25 ° C. by a heat pump, but the Japanese Patent Application Laid-Open No. 2012 describes a specific description of the heat source of the heat pump. Not done.

特開2012−91118号公報JP 2012-91118

本発明は、ヒートポンプでRO装置への給水を加熱する逆浸透処理方法及びシステムにおいて、加熱コストを低減することを目的とする。 An object of the present invention is to reduce heating costs in a reverse osmosis treatment method and system for heating water supply to an RO apparatus with a heat pump.

本発明の逆浸透処理方法は、原水をヒートポンプで加熱した後、逆浸透膜装置で膜分離処理する逆浸透処理方法において、該ヒートポンプの熱源流体として、冷凍システムの熱交換器から流出する温媒体を用いることを特徴とするものである。 The reverse osmosis treatment method of the present invention is a reverse osmosis treatment method in which raw water is heated by a heat pump and then membrane separation treatment is performed by a reverse osmosis membrane device. It is characterized by using.

本発明の逆浸透処理システムは、原水をヒートポンプで加熱した後、逆浸透膜装置で膜分離処理する逆浸透処理装置において、該ヒートポンプの熱源流体として、冷凍システムの熱交換器から流出する温媒体を用いることを特徴とするものである。 In the reverse osmosis treatment system of the present invention, in a reverse osmosis treatment apparatus in which raw water is heated by a heat pump and then membrane separation treatment is performed by the reverse osmosis membrane apparatus, a hot medium flowing out from a heat exchanger of a refrigeration system as a heat source fluid of the heat pump. It is characterized by using.

本発明の一態様では、前記ヒートポンプで加熱された原水を、第2熱交換器で加熱した後、前記逆浸透装置に供給する。 In one aspect of the present invention, the raw water heated by the heat pump is heated by the second heat exchanger and then supplied to the reverse osmosis apparatus.

本発明の一態様では、前記第2熱交換器に、ボイラからの蒸気を原水加熱用熱源流体として供給する。 In one aspect of the present invention, steam from the boiler is supplied to the second heat exchanger as a heat source fluid for heating raw water.

本発明の一態様では、前記ヒートポンプで加熱された原水の少なくとも一部をボイラ給水として前記ボイラに送水する。 In one aspect of the present invention, at least a part of the raw water heated by the heat pump is sent to the boiler as boiler supply water.

本発明の一態様では、前記ヒートポンプの凝縮器の伝熱チューブとの間で水が循環される給水タンクを設置し、原水を該給水タンクに供給し、該伝熱チューブと給水タンクとの間で原水を循環させて加熱し、加熱された原水を該給水タンクから前記逆浸透装置に供給する。 In one aspect of the present invention, a water supply tank in which water is circulated with the heat transfer tube of the condenser of the heat pump is installed, raw water is supplied to the water supply tank, and between the heat transfer tube and the water supply tank. The raw water is circulated and heated, and the heated raw water is supplied from the water supply tank to the reverse osmosis apparatus.

本発明の一態様では、前記ヒートポンプの凝縮器の伝熱チューブとの間で水が循環される給水タンクを設置し、原水を該給水タンクに供給し、該伝熱チューブと給水タンクとの間で原水を循環させて加熱し、加熱された原水の少なくとも一部をボイラ給水として前記ボイラに送水する。 In one aspect of the present invention, a water supply tank in which water is circulated with the heat transfer tube of the condenser of the heat pump is installed, raw water is supplied to the water supply tank, and between the heat transfer tube and the water supply tank. The raw water is circulated and heated, and at least a part of the heated raw water is sent to the boiler as boiler supply water.

本発明の一態様では、前記冷凍システムは、冷凍機本体と、該冷凍機本体からの冷媒体が導入され、温媒体が流出する前記熱交換器とを備えており、該熱交換器から流出する温媒体の一部を該冷凍機本体に戻し、残部を前記ヒートポンプの蒸発器に導入し、該蒸発器で降温した媒体を該熱交換器の冷媒体流入側に戻す。 In one aspect of the present invention, the refrigerating system includes a refrigerator main body and a heat exchanger into which a refrigerant body from the refrigerator main body is introduced and a hot medium flows out, and flows out from the heat exchanger. A part of the warm medium is returned to the main body of the refrigerator, the rest is introduced into the evaporator of the heat pump, and the medium cooled by the evaporator is returned to the refrigerant body inflow side of the heat exchanger.

本発明の一態様では、前記冷凍システムは、冷凍機本体と、該冷凍機本体からの冷媒体が導入され、温媒体が流出する前記熱交換器とを備えており、該熱交換器から流出する温媒体の一部を該冷凍機本体に戻し、残部を前記ヒートポンプの蒸発器に導入し、該蒸発器で降温した媒体を該冷凍機本体に戻す。 In one aspect of the present invention, the refrigerating system includes a refrigerator main body and a heat exchanger into which a refrigerant body from the refrigerator main body is introduced and a hot medium flows out, and flows out from the heat exchanger. A part of the warm medium is returned to the refrigerator body, the rest is introduced into the evaporator of the heat pump, and the medium cooled by the evaporator is returned to the refrigerator body.

本発明によると、冷凍システムの熱交換器から流出する温媒体を熱源としたヒートポンプでRO装置への給水を加熱することにより、該給水の加熱コストを低減することができる。 According to the present invention, the heating cost of the water supply can be reduced by heating the water supply to the RO apparatus with a heat pump using a heat medium flowing out from the heat exchanger of the refrigeration system as a heat source.

本発明の一態様では、冷凍システムの熱交換器から流出する温媒体をヒートポンプの蒸発器で降温させるので、冷凍機の冷凍負荷を低減することができる。このことで、冷凍機本体の消費電力を削減し、ヒートポンプの設置により生み出されるトータルの便益を大きくすることができる。 In one aspect of the present invention, the temperature of the hot medium flowing out of the heat exchanger of the refrigerating system is lowered by the evaporator of the heat pump, so that the refrigerating load of the refrigerating machine can be reduced. As a result, the power consumption of the refrigerator body can be reduced, and the total benefit generated by the installation of the heat pump can be increased.

第1の実施の形態に係る逆浸透処理システムのブロック図である。It is a block diagram of the reverse osmosis treatment system which concerns on 1st Embodiment. 第2の実施の形態に係る逆浸透処理システムのブロック図である。It is a block diagram of the reverse osmosis treatment system which concerns on 2nd Embodiment. 第3の実施の形態に係る逆浸透処理システムのブロック図である。It is a block diagram of the reverse osmosis treatment system which concerns on 3rd Embodiment. 第4の実施の形態に係る逆浸透処理システムのブロック図である。It is a block diagram of the reverse osmosis treatment system which concerns on 4th Embodiment. 第5の実施の形態に係る逆浸透処理システムのブロック図である。It is a block diagram of the reverse osmosis treatment system which concerns on 5th Embodiment.

図1を参照して第1の実施の形態について説明する。 The first embodiment will be described with reference to FIG.

RO処理される原水は、配管1からポンプ2によってヒートポンプ10の凝縮器13に供給され、加熱された後、配管3から蒸気を熱源とした熱交換器(第2熱交換器)4を通り、配管5を介してRO装置6に供給される。RO装置6の透過水は配管7から処理水として取り出され、濃縮水は配管8へ流出する。 The raw water to be RO-treated is supplied from the pipe 1 to the condenser 13 of the heat pump 10 by the pump 2, and after being heated, passes through the heat exchanger (second heat exchanger) 4 using steam as a heat source from the pipe 3. It is supplied to the RO device 6 via the pipe 5. The permeated water of the RO device 6 is taken out from the pipe 7 as treated water, and the concentrated water flows out to the pipe 8.

熱交換器4に蒸気を供給するためのボイラの形式は特に限定されるものではなく、小型貫流ボイラ、水管ボイラ、丸ボイラ、排熱ボイラなどのいずれでもよい。なお、通常運転時には蒸気による加温は必要ないが、後述の冷凍機本体21の停止時や、RO装置6の起動時などの加温等に使用する。ただし、必要に応じ、通常運転時においても熱交換器4でRO給水を加熱するようにしてもよい。 The type of boiler for supplying steam to the heat exchanger 4 is not particularly limited, and may be any of a small once-through boiler, a water pipe boiler, a round boiler, an exhaust heat boiler, and the like. Although heating by steam is not required during normal operation, it is used for heating when the refrigerator main body 21 described later is stopped or when the RO device 6 is started. However, if necessary, the RO water supply may be heated by the heat exchanger 4 even during normal operation.

ヒートポンプ10は、周知構成のものであり、蒸発器11からの代替フロン等の熱媒体を圧縮機12で断熱圧縮により高温として凝縮器13に導入し、凝縮器13からの熱媒体を膨張弁14を介して蒸発器11に導入し、断熱膨張させて降温させるように構成されている。凝縮器13内に設けられた伝熱チューブ13aに原水がポンプ2を介して通水され、高温熱媒体と熱交換して加熱される。 The heat pump 10 has a well-known configuration, and a heat medium such as CFC substitutes from the evaporator 11 is introduced into the condenser 13 at a high temperature by adiabatic compression by the compressor 12, and the heat medium from the condenser 13 is introduced into the expansion valve 14. It is configured to be introduced into the evaporator 11 via an adiabatic expansion to lower the temperature. Raw water is passed through a heat transfer tube 13a provided in the condenser 13 via a pump 2, and is heated by exchanging heat with a high-temperature heat medium.

蒸発器11内に設けられた伝熱チューブ11aに、冷凍システム20の熱交換器24から流出した温媒体の一部が配管31及びバルブ32を介して導入される。蒸発器11内の低温熱媒体との熱交換により降温した冷媒体は、配管33を介して熱交換器24に再度導入される。 A part of the heat medium flowing out of the heat exchanger 24 of the refrigeration system 20 is introduced into the heat transfer tube 11a provided in the evaporator 11 via the pipe 31 and the valve 32. The refrigerant body whose temperature has been lowered by heat exchange with the low temperature heat medium in the evaporator 11 is introduced again into the heat exchanger 24 via the pipe 33.

冷凍システム20は、ターボ式冷凍機、吸収式冷凍機などの冷凍機本体21で冷却された冷媒体を、冷凍機本体21の媒体送出部21aから配管22を介して空調機などの熱交換器(第1熱交換器)24に供給し、周囲の熱を吸収させて該周囲を冷却する。熱交換器24で該周囲の熱を吸収して昇温した温媒体の一部が熱交換器24から媒体循環用ポンプ25、配管26、バルブ27を介して冷凍機本体21の媒体戻り部21bに戻る。 The refrigerating system 20 heats a refrigerant body cooled by the refrigerator main body 21 such as a turbo refrigerator or an absorption chiller from a medium delivery unit 21a of the refrigerator main body 21 via a pipe 22 to a heat exchanger such as an air conditioner. It is supplied to (first heat exchanger) 24 to absorb ambient heat and cool the ambient. A part of the warm medium that has been heated by absorbing the ambient heat in the heat exchanger 24 is transferred from the heat exchanger 24 through the medium circulation pump 25, the pipe 26, and the valve 27 to the medium return portion 21b of the refrigerator main body 21. Return to.

熱交換器24から流出した温媒体の残部は、配管26から分岐した配管31、バルブ32を介して蒸発器11の伝熱チューブ11aに流通され、ヒートポンプ熱媒体と熱交換して降温して冷媒体となり、配管33へ流出する。配管33は前記配管22に連なっており、配管33からの冷媒体は、前記冷凍機本体21からの冷媒体と合流して熱交換器24に流入する。 The rest of the heat medium flowing out of the heat exchanger 24 is circulated to the heat transfer tube 11a of the evaporator 11 via the pipe 31 and the valve 32 branched from the pipe 26, exchanges heat with the heat pump heat medium, lowers the temperature, and cools. It becomes a medium and flows out to the pipe 33. The pipe 33 is connected to the pipe 22, and the refrigerant body from the pipe 33 merges with the refrigerant body from the refrigerator main body 21 and flows into the heat exchanger 24.

このように、この実施の形態では、ヒートポンプ10の蒸発器11の伝熱チューブ11aに流通される熱源流体として、熱交換器24から流出する温媒体を利用している。また、ヒートポンプ10の蒸発器11の伝熱チューブ11aを通ることによって降温した冷媒体を熱交換器24に戻すようにしている。 As described above, in this embodiment, the hot medium flowing out from the heat exchanger 24 is used as the heat source fluid flowing through the heat transfer tube 11a of the evaporator 11 of the heat pump 10. Further, the cooled refrigerant body is returned to the heat exchanger 24 by passing through the heat transfer tube 11a of the evaporator 11 of the heat pump 10.

なお、この冷凍システム20の冷凍機本体21は、冷却用の低温流体として冷却塔40からの冷水を用いている。 The refrigerator main body 21 of the refrigerating system 20 uses cold water from the cooling tower 40 as a low-temperature fluid for cooling.

この冷却塔40では、散水管41から散水された冷却水が充填材層42を流下する間にルーバ43から導入される空気と接触し、蒸発潜熱により冷却されて冷水となり、ピット44(冷却塔下部水槽)に貯留される。蒸気を含む空気はファン48により大気中に排気される。ピット44の冷水は、ポンプ45、配管46を介して冷凍機本体21に供給され、熱交換して昇温する。冷凍機本体21からの温戻り水が配管47を介して散水管41に返送される。 In the cooling tower 40, the cooling water sprinkled from the sprinkler pipe 41 comes into contact with the air introduced from the louver 43 while flowing down the filler layer 42, and is cooled by the latent heat of evaporation to become cold water, and becomes pit 44 (cooling tower). It is stored in the lower water tank). The air containing steam is exhausted into the atmosphere by the fan 48. The cold water in the pit 44 is supplied to the refrigerator main body 21 via the pump 45 and the pipe 46, and heats are exchanged to raise the temperature. The warming water from the refrigerator main body 21 is returned to the sprinkler pipe 41 via the pipe 47.

このように構成された図1の逆浸透処理装置では、原水はヒートポンプ10で加熱された後、必要に応じ熱交換器4で加熱され、RO装置6に供給される。 In the reverse osmosis treatment apparatus of FIG. 1 configured in this way, the raw water is heated by the heat pump 10 and then heated by the heat exchanger 4 as needed and supplied to the RO apparatus 6.

この実施の形態では、ヒートポンプ10の温熱源として、冷凍システム20に設置された空調機等の熱交換器24から流出する温媒体を用いており、冷凍機本体21の冷凍負荷を低減させることができる。また、これによって冷凍機本体21の消費電力を低減できるので、ヒートポンプ10で消費される電力がほぼ相殺される。このため、加温用の蒸気の削減額がそのまま便益として計上することができるため、ヒートポンプの設置による投資の回収を早くすることができる。 In this embodiment, as the heat source of the heat pump 10, a hot medium flowing out from the heat exchanger 24 such as an air conditioner installed in the refrigerating system 20 is used, and the refrigerating load of the refrigerating machine main body 21 can be reduced. it can. Further, since the power consumption of the refrigerator main body 21 can be reduced by this, the power consumption of the heat pump 10 is substantially offset. Therefore, the reduction amount of steam for heating can be recorded as a benefit as it is, so that the investment can be quickly recovered by installing the heat pump.

図2を参照して第2の実施の形態について説明する。 A second embodiment will be described with reference to FIG.

図1の冷凍システム20では、冷凍機本体21から配管22を介して送られてくる冷媒体と、蒸発器11から配管33を介して送られてくる冷媒体とを合流させて空調機等の熱交換器24に流入させているが、図2の実施の形態では、冷凍機本体21の媒体送出部21aから配管22を介して送られてくる冷媒体のみを熱交換器24に流入させる。 In the refrigeration system 20 of FIG. 1, the refrigerant body sent from the refrigerator main body 21 via the pipe 22 and the refrigerant body sent from the evaporator 11 via the pipe 33 are merged to form an air conditioner or the like. Although it flows into the heat exchanger 24, in the embodiment of FIG. 2, only the refrigerant body sent from the medium delivery portion 21a of the refrigerator main body 21 via the pipe 22 flows into the heat exchanger 24.

この熱交換器24から流出した温媒体は、媒体循環用ポンプ25によって配管28に送り出される。送り出された温媒体の一部は、バルブ29、配管30を介して冷凍機本体21の媒体戻り部21bに循環される。 The warm medium flowing out of the heat exchanger 24 is sent out to the pipe 28 by the medium circulation pump 25. A part of the sent hot medium is circulated to the medium return portion 21b of the refrigerator main body 21 via the valve 29 and the pipe 30.

配管28に送り出された温媒体の残部は、配管28から分岐した配管35及びバルブ36を介して蒸発器11の伝熱チューブ11aに流通され、ヒートポンプ熱媒体と熱交換して降温して冷媒体となり、配管37から配管30に合流し、冷凍機本体21の媒体戻り部21bに戻る。 The rest of the hot medium sent out to the pipe 28 is circulated to the heat transfer tube 11a of the evaporator 11 via the pipe 35 and the valve 36 branched from the pipe 28, exchanges heat with the heat pump heat medium, and lowers the temperature to lower the refrigerant body. Then, the pipe 37 joins the pipe 30 and returns to the medium return portion 21b of the refrigerating machine main body 21.

図2のその他の構成は図1と同様であり、同一符号は同一部分を示している。 The other configurations of FIG. 2 are the same as those of FIG. 1, and the same reference numerals indicate the same parts.

この実施の形態においても、図1の実施の形態と同様に、ヒートポンプ10の温熱源として、冷凍システム20に設置された空調機等の熱交換器24から流出する温媒体を用いており、冷凍機本体21の冷凍負荷を低減することができる。 Also in this embodiment, as in the embodiment of FIG. 1, as the heat source of the heat pump 10, a warm medium flowing out from the heat exchanger 24 such as an air conditioner installed in the refrigeration system 20 is used for freezing. The refrigerating load of the machine body 21 can be reduced.

なお、図1のシステムに従って原水(20℃)を25℃に加熱して100m/hでRO処理し、冷凍機本体21としてターボ冷凍機(500RT)をCOP(成績係数)5で運転し、冷凍機本体21の媒体を水とし、冷凍機本体戻り部21bの流入水(温媒体)温度12℃、冷凍機本体送出部21aの流出水(冷媒体)温度7℃とし、熱交換器4に蒸気を供給せず、ヒートポンプ(470kW)をCOP(成績係数)6で運転する場合、蒸気式熱交換器4のみによって原水を20℃から25℃に加温し、蒸気式熱交換器4に蒸気を3台の小型貫流ボイラ(換算蒸発量2000kg/h、燃料LNG、蒸気圧力0.7MPa)で供給する場合に比べてエネルギーコストは80%以下になると試算される。In addition, according to the system of FIG. 1, raw water (20 ° C.) was heated to 25 ° C. and RO-treated at 100 m 3 / h, and a turbo refrigerator (500RT) was operated as a refrigerator main body 21 at COP (performance coefficient) 5. The medium of the refrigerator main body 21 is water, the inflow water (warm medium) temperature of the refrigerator main body return portion 21b is 12 ° C., and the outflow water (refrigerator body) temperature of the refrigerator main body delivery portion 21a is 7 ° C. When the heat pump (470 kW) is operated at COP (performance coefficient) 6 without supplying steam, the raw water is heated from 20 ° C. to 25 ° C. only by the steam heat exchanger 4, and steam is sent to the steam heat exchanger 4. It is estimated that the energy cost will be 80% or less as compared with the case of supplying the above with three small once-through boilers (converted evaporation amount 2000 kg / h, fuel LNG, steam pressure 0.7 MPa).

また、図1のシステムは、原水をヒートポンプのみによって20℃から25℃に加温する場合に比べてエネルギーコストは90%以下になると試算された。 Further, it is estimated that the energy cost of the system of FIG. 1 is 90% or less as compared with the case where the raw water is heated from 20 ° C. to 25 ° C. only by a heat pump.

図3を参照して第3の実施の形態について説明する。 A third embodiment will be described with reference to FIG.

図1では、ヒートポンプ10の凝縮器13の伝熱チューブ13aを通過して加熱された原水は、その全量が配管3から熱交換器4に送水されており、熱交換器4に対し熱源流体としてボイラから蒸気が供給されている。図3では、該配管3を配管50,60の2系統に分岐させている。 In FIG. 1, the total amount of raw water heated through the heat transfer tube 13a of the condenser 13 of the heat pump 10 is sent from the pipe 3 to the heat exchanger 4, and is used as a heat source fluid for the heat exchanger 4. Steam is supplied from the boiler. In FIG. 3, the pipe 3 is branched into two systems of pipes 50 and 60.

配管50に流れた加熱原水は、バルブ51、給水タンク52及び配管53を介して熱交換器4に送水される。また、給水タンク52には、ヒートポンプ10で加熱しない原水(以下「非加熱原水」と記す場合あり)を給水タンク52に供給するために、バルブ85を備えた配管86が接続されている。 The heated raw water flowing through the pipe 50 is sent to the heat exchanger 4 via the valve 51, the water supply tank 52, and the pipe 53. Further, a pipe 86 provided with a valve 85 is connected to the water supply tank 52 in order to supply the raw water that is not heated by the heat pump 10 (hereinafter, may be referred to as “unheated raw water”) to the water supply tank 52.

配管60に流れた加熱原水は、バルブ61、第1軟水器62及び配管63を介して給水タンク64に送水される。給水タンク64には、第2軟水器65を通過したボイラ用水も、配管66を介して導入される。軟水器62,65は、容器と、該容器内に充填されたイオン交換樹脂とを有し、原水又はボイラ用水を軟水とする。ボイラ用水は原水と同一の水源からの水であってもよく、別の水源からの水であってもよい。 The heated raw water flowing through the pipe 60 is sent to the water supply tank 64 via the valve 61, the first water softener 62, and the pipe 63. Boiler water that has passed through the second water softener 65 is also introduced into the water supply tank 64 via the pipe 66. The water softeners 62 and 65 have a container and an ion exchange resin filled in the container, and use raw water or boiler water as soft water. The boiler water may be water from the same water source as the raw water, or may be water from another water source.

給水タンク64内の水は、配管67を介してボイラ70に供給される。ボイラ70で発生した蒸気が配管71を介して熱交換器4に供給される。配管53からの原水が該熱交換器4で加熱され、RO装置6に供給される。なお、熱交換器4で蒸気が凝縮することにより生じた凝縮水を給水タンク64に送水してもよい。 The water in the water supply tank 64 is supplied to the boiler 70 via the pipe 67. The steam generated in the boiler 70 is supplied to the heat exchanger 4 via the pipe 71. The raw water from the pipe 53 is heated by the heat exchanger 4 and supplied to the RO device 6. The condensed water generated by the condensation of steam in the heat exchanger 4 may be sent to the water supply tank 64.

図3のその他の構成は図1と同一であり、同一符号は同一部分を示している。 The other configurations of FIG. 3 are the same as those of FIG. 1, and the same reference numerals indicate the same parts.

図3では、ヒートポンプ10に連なる熱交換器24及び冷凍機20及び冷却塔40の構成は図1の構成となっているが、図2のように構成されていてもよい。 In FIG. 3, the heat exchanger 24, the refrigerator 20, and the cooling tower 40 connected to the heat pump 10 are configured as shown in FIG. 1, but may be configured as shown in FIG.

この第3の実施の形態によると、1台のヒートポンプ10によって、RO装置6への給水だけでなく、ボイラ70への給水の一部も加熱することができる。 According to this third embodiment, not only the water supply to the RO device 6 but also a part of the water supply to the boiler 70 can be heated by one heat pump 10.

また、バルブ51およびバルブ61により加熱原水の供給先を切替えたり、供給量を調整することができる。そして、バルブ51およびバルブ61を用いてヒートポンプ10による加熱原水を優先的にRO装置6に供給し、加熱原水の余剰分をボイラ70への給水とすることで、RO装置6に供給される原水の加温用の蒸気を効果的に削減するとともに、ヒートポンプ10で加熱した原水を有効に利用することが可能となる。 Further, the valve 51 and the valve 61 can switch the supply destination of the heated raw water and adjust the supply amount. Then, the raw water heated by the heat pump 10 is preferentially supplied to the RO device 6 by using the valve 51 and the valve 61, and the surplus of the heated raw water is supplied to the boiler 70, so that the raw water supplied to the RO device 6 is supplied. It is possible to effectively reduce the heating steam of the above and to effectively use the raw water heated by the heat pump 10.

例えば、加熱原水がRO装置6の給水の設定温度(例えば25℃)未満の場合には、RO装置6の給水の全量を加熱原水とするようバルブ51,バルブ61を調整する。加熱原水の全量がRO装置6の給水量を上回る場合には、加熱原水の余剰分が給水タンク64に送水されボイラ給水として使用される。夏場などで、加熱原水がRO装置6の給水の設定温度(例えば25℃)を超える場合には、バルブ51,バルブ61、更にはバルブ85を調整することで、RO装置6の給水が設定温度となるように給水タンク64に供給される加熱原水と非加熱原水の供給量を調整するとともに、加熱原水の余剰分を給水タンク64に送水する。このようにすることで、ヒートポンプで加熱した原水を一年間を通して、有効に利用することが可能となる。 For example, when the heated raw water is lower than the set temperature (for example, 25 ° C.) of the water supply of the RO device 6, the valves 51 and 61 are adjusted so that the entire amount of the supplied water of the RO device 6 is used as the heated raw water. When the total amount of the heated raw water exceeds the water supply amount of the RO device 6, the surplus of the heated raw water is sent to the water supply tank 64 and used as boiler water supply. When the heated raw water exceeds the set temperature of the water supply of the RO device 6 (for example, 25 ° C.) in summer or the like, the water supply of the RO device 6 can be set to the set temperature by adjusting the valve 51, the valve 61, and the valve 85. The supply amounts of the heated raw water and the unheated raw water supplied to the water supply tank 64 are adjusted so as to be the same, and the surplus of the heated raw water is sent to the water supply tank 64. By doing so, the raw water heated by the heat pump can be effectively used throughout the year.

なお、非加熱原水の温度、或いは、季節によって、加熱原水の供給先を切り替えるようにしても良い。例えば、非加熱原水の温度が所定温度を超えた場合、或いは、夏場においては、RO装置6の給水の全量を非加熱原水とし、加熱原水は全てボイラ給水として利用するようにバルブ51,61および85を調整してもよい。また、非加熱原水の温度が所定の温度以下の場合、或いは、夏場以外の季節においては、RO装置6の給水の全量を加熱原水として、加熱原水の余剰分をボイラ給水として利用するように、バルブ51,61および85を調整してもよい。 The supply destination of the heated raw water may be switched depending on the temperature of the unheated raw water or the season. For example, when the temperature of the unheated raw water exceeds a predetermined temperature, or in the summer, the entire amount of the supplied water of the RO device 6 is used as the unheated raw water, and all the heated raw water is used as the boiler supply water. 85 may be adjusted. Further, when the temperature of the unheated raw water is below a predetermined temperature, or in a season other than summer, the entire amount of the supplied water of the RO device 6 is used as the heated raw water, and the surplus of the heated raw water is used as the boiler supply water. Valves 51, 61 and 85 may be adjusted.

図4を参照して第4の実施の形態について説明する。 A fourth embodiment will be described with reference to FIG.

図3のシステムでは、ヒートポンプ10の凝縮器13で加熱された原水をそのまま配管3へ送水しているが、図4のシステムでは、配管1からの原水を給水タンク80に導入し、給水タンク80内の原水をポンプ81及び配管82を介して凝縮器13の伝熱チューブ13aに送水する。伝熱チューブ13aから流出した、加熱された原水は、配管83を介して給水タンク80に返送される。このようにして給水タンク80内の原水の温度が高くなる。この給水タンク80内の温度の高い原水がポンプ84を介して配管3へ送水される。 In the system of FIG. 3, the raw water heated by the condenser 13 of the heat pump 10 is sent to the pipe 3 as it is, but in the system of FIG. 4, the raw water from the pipe 1 is introduced into the water supply tank 80 and the water supply tank 80 is used. The raw water in the water is sent to the heat transfer tube 13a of the condenser 13 via the pump 81 and the pipe 82. The heated raw water flowing out of the heat transfer tube 13a is returned to the water supply tank 80 via the pipe 83. In this way, the temperature of the raw water in the water supply tank 80 rises. The hot raw water in the water supply tank 80 is sent to the pipe 3 via the pump 84.

図4のその他の構成は図3と同一であり、同一符号は同一部分を示している。図4のシステムによっても、図3のシステムと同様の効果が得られる。なお、図4では、原水を給水タンク80と凝縮器13とを循環させるので、図3の場合よりも高い温度に加熱された原水を配管3へ送り出すことができる。 The other configurations of FIG. 4 are the same as those of FIG. 3, and the same reference numerals indicate the same parts. The system of FIG. 4 also has the same effect as the system of FIG. In FIG. 4, since the raw water is circulated between the water supply tank 80 and the condenser 13, the raw water heated to a temperature higher than that in the case of FIG. 3 can be sent out to the pipe 3.

図4では、ヒートポンプ10に連なる熱交換器24、冷凍機20及び冷却塔40の構成は図1の構成となっているが、図2のように構成されていてもよい。 In FIG. 4, the heat exchanger 24, the refrigerator 20, and the cooling tower 40 connected to the heat pump 10 are configured as shown in FIG. 1, but may be configured as shown in FIG.

図3の装置を想定し、以下の条件で運転した場合の蒸気コストを試算した結果を表1に示す。 Table 1 shows the results of trial calculation of the steam cost when the device of FIG. 3 is assumed and operated under the following conditions.

<運転条件>
ボイラ:貫流ボイラ、換算蒸発量6000kg/h×10台、燃料LNG、蒸気圧力0.7MPa
RO装置:原水供給量100m/h
ヒートポンプ:470kW、COP(成績係数)6
RO給水の加温以外の蒸気使用量:240,000t/年
ヒートポンプでの原水の平均加温温度:5℃
LNG単価:50円/Nm=蒸気単価3963円/t、5℃の熱回収で蒸気の燃料が0.8%(蒸気単価3931円)削減されると仮定。
<Operating conditions>
Boiler: once-through boiler, equivalent evaporation amount 6000 kg / h x 10 units, fuel LNG, steam pressure 0.7 MPa
RO device: Raw water supply 100m 3 / h
Heat pump: 470 kW, COP (coefficient of performance) 6
The amount of steam used other than the heating of RO water supply: 240,000t / year Average heating temperature of raw water with a heat pump: 5 ° C
LNG unit price: 50 yen / Nm 3 = steam unit price 3963 yen / t, assuming that steam fuel is reduced by 0.8% (steam unit price 3931 yen) by heat recovery at 5 ° C.

[試験例1]
ヒートポンプによる加熱原水の全量をボイラ給水として利用し、RO給水はボイラからの蒸気(1,228t/年)で原水を20℃から25℃に加熱。
[Test Example 1]
The entire amount of raw water heated by the heat pump is used as boiler water supply, and RO water supply heats the raw water from 20 ° C to 25 ° C with steam (1,228t / year) from the boiler.

[試験例2]
夏場以外の季節はヒートポンプによる加熱原水の全量をRO給水として利用。夏場は原水が25℃あるとして原水を加熱することなく利用。ボイラ給水は全量を加熱してない原水を使用した。
[Test Example 2]
In seasons other than summer, the entire amount of raw water heated by the heat pump is used as RO water supply. In the summer, the raw water is used at 25 ° C without heating. For the boiler water supply, raw water that was not completely heated was used.

[試験例3]
夏場はヒートポンプによる加熱原水の全量をボイラ給水として利用し、それ以外の季節はヒートポンプによる加熱原水の全量をRO給水として利用した。
[Test Example 3]
In the summer, the entire amount of raw water heated by the heat pump was used as boiler water supply, and in other seasons, the entire amount of raw water heated by the heat pump was used as RO water supply.

Figure 0006777236
Figure 0006777236

表1に示す通り、季節によってヒートポンプによる加熱原水の供給先を切り替えることで、RO装置に供給される原水の加温用の蒸気を効果的に削減するとともに、ヒートポンプで加熱した原水を有効に利用することで、蒸気コストを抑制することが可能となった。 As shown in Table 1, by switching the supply destination of the heated raw water by the heat pump depending on the season, the steam for heating the raw water supplied to the RO device is effectively reduced, and the raw water heated by the heat pump is effectively used. By doing so, it became possible to suppress the steam cost.

図5を参照して第5の実施の形態について説明する。 A fifth embodiment will be described with reference to FIG.

この実施の形態は、図1のシステムにおいて、給水タンク80、ポンプ81、配管82,83、ポンプ84を設置したものである。図4の場合と同じく、原水を伝熱チューブ13aと給水タンク80との間を循環させて加熱する。加熱された原水がポンプ84から配管3を介してRO装置6のみへ送水される。 In this embodiment, the water supply tank 80, the pump 81, the pipes 82, 83, and the pump 84 are installed in the system of FIG. As in the case of FIG. 4, raw water is circulated between the heat transfer tube 13a and the water supply tank 80 to heat it. The heated raw water is sent from the pump 84 to only the RO device 6 via the pipe 3.

この実施の形態によると、図1の場合よりも、高い温度に加熱された原水がRO装置に送水される。 According to this embodiment, raw water heated to a higher temperature than in the case of FIG. 1 is sent to the RO apparatus.

上記実施の形態は本発明の一例であり、本発明は図示以外の形態とされてもよい。 The above embodiment is an example of the present invention, and the present invention may be a form other than the illustration.

例えば、図1,2,5では、蒸気式熱交換器4を用いているが、蒸気式熱交換器4の代わりに蒸気以外を熱源とする熱交換器を設置してもよい。 For example, although the steam heat exchanger 4 is used in FIGS. 1, 2 and 5, a heat exchanger using a heat source other than steam may be installed instead of the steam heat exchanger 4.

本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。 Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the intent and scope of the invention.

本出願は、2018年7月6日付で出願された日本特許出願2018−129257に基づいており、その全体が引用により援用される。 This application is based on Japanese Patent Application No. 2018-129257 filed on July 6, 2018, which is incorporated by reference in its entirety.

4 蒸気式熱交換器
6 RO装置
10 ヒートポンプ
11 蒸発器
12 圧縮機
13 凝縮器
14 膨張弁
20 冷凍システム
21 冷凍機本体
24 熱交換器
40 冷却塔
52,64,80 給水タンク
70 ボイラ
4 Steam heat exchanger 6 RO device 10 Heat pump 11 Evaporator 12 Compressor 13 Condenser 14 Expansion valve 20 Refrigeration system 21 Refrigerator body 24 Heat exchanger 40 Cooling tower 52, 64, 80 Water supply tank 70 Boiler

Claims (14)

原水をヒートポンプで加熱した後、逆浸透膜装置で膜分離処理する逆浸透処理方法において、
該ヒートポンプの熱源流体として、冷凍機本体(21)及び第1熱交換器(24)を有する冷凍システムの該第1熱交換器(24)から流出する温媒体を用いる逆浸透処理方法であって、
該熱交換器(24)から流出する温媒体の一部を該冷凍機本体(21)に戻し、残部を前記ヒートポンプに導入し、該ヒートポンプで降温した媒体を該熱交換器(24)に戻すことを特徴とする逆浸透処理方法。
In a reverse osmosis treatment method in which raw water is heated by a heat pump and then membrane separation is performed by a reverse osmosis membrane device.
As a heat source fluid of the heat pump, a reverse osmosis treatment method using the temperature medium flowing out of the refrigerator main body (21) and the first heat exchanger (24) the first heat exchanger of the refrigeration system with a (24) ,
A part of the warm medium flowing out of the heat exchanger (24) is returned to the refrigerator main body (21), the rest is introduced into the heat pump, and the medium cooled by the heat pump is returned to the heat exchanger (24). A reverse osmosis treatment method characterized by this.
原水をヒートポンプで加熱した後、逆浸透膜装置で膜分離処理する逆浸透処理方法において、In a reverse osmosis treatment method in which raw water is heated by a heat pump and then membrane separation is performed by a reverse osmosis membrane device.
該ヒートポンプの熱源流体として、冷凍機本体(21)及び第1熱交換器(24)を有する冷凍システムの該第1熱交換器(24)から流出する温媒体を用いる逆浸透処理方法であって、A reverse osmosis treatment method using a warm medium flowing out of the first heat exchanger (24) of a refrigeration system having a refrigerator main body (21) and a first heat exchanger (24) as the heat source fluid of the heat pump. ,
該熱交換器(24)から流出する温媒体の一部を該冷凍機本体(21)に戻し、残部を前記ヒートポンプに導入し、該ヒートポンプで降温した媒体を該冷凍機本体(21)に戻すことを特徴とする逆浸透処理方法。A part of the warm medium flowing out of the heat exchanger (24) is returned to the refrigerator main body (21), the rest is introduced into the heat pump, and the medium cooled by the heat pump is returned to the refrigerator main body (21). A reverse osmosis treatment method characterized by this.
前記ヒートポンプで加熱された原水を、第2熱交換器(4)で加熱した後、前記逆浸透装置に供給することを特徴とする請求項1又は2の逆浸透処理方法。 The reverse osmosis treatment method according to claim 1 or 2 , wherein the raw water heated by the heat pump is heated by the second heat exchanger (4) and then supplied to the reverse osmosis apparatus. 前記第2熱交換器に、ボイラからの蒸気を原水加熱用熱源流体として供給することを特徴とする請求項の逆浸透処理方法。 The reverse osmosis treatment method according to claim 3 , wherein steam from a boiler is supplied to the second heat exchanger as a heat source fluid for heating raw water. 前記ヒートポンプで加熱された原水の少なくとも一部をボイラ給水として前記ボイラに送水することを特徴とする請求項の逆浸透処理方法。 The reverse osmosis treatment method according to claim 4 , wherein at least a part of the raw water heated by the heat pump is sent to the boiler as boiler supply water. 前記ヒートポンプの凝縮器の伝熱チューブとの間で水が循環される給水タンクを設置し、原水を該給水タンクに供給し、該伝熱チューブと給水タンクとの間で原水を循環させて加熱し、加熱された原水を該給水タンクから前記逆浸透装置に供給することを特徴とする請求項1〜のいずれか1項の逆浸透処理方法。 A water supply tank in which water is circulated between the heat transfer tube of the condenser of the heat pump is installed, raw water is supplied to the water supply tank, and the raw water is circulated and heated between the heat transfer tube and the water supply tank. The reverse osmosis treatment method according to any one of claims 1 to 4 , wherein the heated raw water is supplied from the water supply tank to the reverse osmosis apparatus. 前記ヒートポンプの凝縮器の伝熱チューブとの間で水が循環される給水タンクを設置し、原水を該給水タンクに供給し、該伝熱チューブと給水タンクとの間で原水を循環させて加熱し、加熱された原水の少なくとも一部をボイラ給水として前記ボイラに送水することを特徴とする請求項の逆浸透処理方法。 A water supply tank in which water is circulated between the heat transfer tube of the condenser of the heat pump is installed, raw water is supplied to the water supply tank, and raw water is circulated and heated between the heat transfer tube and the water supply tank. The reverse osmosis treatment method according to claim 5 , wherein at least a part of the heated raw water is supplied to the boiler as boiler water supply. 原水をヒートポンプで加熱した後、逆浸透膜装置で膜分離処理する逆浸透処理システムにおいて、
該ヒートポンプの熱源流体として、冷凍機本体(21)及び第1熱交換器(24)を有する冷凍システムの該第1熱交換器(24)から流出する温媒体を用いる逆浸透処理システムであって、
該熱交換器(24)から流出する温媒体の一部を該冷凍機本体(21)に戻し、残部を前記ヒートポンプに導入し、該ヒートポンプで降温した媒体を該熱交換器(24)に戻すことを特徴とする逆浸透処理システム。
In a reverse osmosis treatment system in which raw water is heated by a heat pump and then membrane separation is performed by a reverse osmosis membrane device.
As a heat source fluid of the heat pump, a reverse osmosis treatment system using warm medium flowing out of the refrigerator main body (21) and the first heat exchanger (24) the first heat exchanger of the refrigeration system with a (24) ,
A part of the warm medium flowing out of the heat exchanger (24) is returned to the refrigerator main body (21), the rest is introduced into the heat pump, and the medium cooled by the heat pump is returned to the heat exchanger (24). A reverse osmosis treatment system characterized by this.
原水をヒートポンプで加熱した後、逆浸透膜装置で膜分離処理する逆浸透処理システムにおいて、In a reverse osmosis treatment system in which raw water is heated by a heat pump and then membrane separation is performed by a reverse osmosis membrane device.
該ヒートポンプの熱源流体として、冷凍機本体(21)及び第1熱交換器(24)を有する冷凍システムの該第1熱交換器(24)から流出する温媒体を用いる逆浸透処理システムであって、A reverse osmosis treatment system using a warm medium flowing out of the first heat exchanger (24) of a refrigeration system having a refrigerator main body (21) and a first heat exchanger (24) as the heat source fluid of the heat pump. ,
該熱交換器(24)から流出する温媒体の一部を該冷凍機本体(21)に戻し、残部を前記ヒートポンプに導入し、該ヒートポンプで降温した媒体を該冷凍機本体(21)に戻すことを特徴とする逆浸透処理システム。A part of the warm medium flowing out of the heat exchanger (24) is returned to the refrigerator main body (21), the rest is introduced into the heat pump, and the medium cooled by the heat pump is returned to the refrigerator main body (21). A reverse osmosis treatment system characterized by this.
前記ヒートポンプで加熱された原水を、さらに加熱して前記逆浸透装置に供給する第2熱交換器(4)を有することを特徴とする請求項8又は9の逆浸透処理システム。 The reverse osmosis treatment system according to claim 8 or 9, further comprising a second heat exchanger (4) that further heats the raw water heated by the heat pump and supplies it to the reverse osmosis apparatus. 前記第2熱交換器に、蒸気を原水加熱用熱源流体として供給するボイラを有することを特徴とする請求項10の逆浸透処理システム。 The reverse osmosis treatment system according to claim 10, wherein the second heat exchanger has a boiler that supplies steam as a heat source fluid for heating raw water. 前記ヒートポンプで加熱された原水の少なくとも一部をボイラ給水として前記ボイラに送水する手段を有することを特徴とする請求項11の逆浸透処理システム。 The reverse osmosis treatment system according to claim 11, further comprising means for supplying at least a part of the raw water heated by the heat pump to the boiler as boiler supply water. 前記ヒートポンプの凝縮器の伝熱チューブとの間で水が循環される給水タンクを有し、原水を該給水タンクに供給し、該伝熱チューブと給水タンクとの間で原水を循環させて加熱し、加熱された原水を該給水タンクから前記逆浸透装置に供給することを特徴とする請求項〜11のいずれか1項の逆浸透処理システム。 It has a water supply tank in which water is circulated between the heat transfer tube of the condenser of the heat pump, supplies raw water to the water supply tank, and circulates the raw water between the heat transfer tube and the water supply tank to heat the water. The reverse osmosis treatment system according to any one of claims 8 to 11, wherein the heated raw water is supplied from the water supply tank to the reverse osmosis apparatus. 前記ヒートポンプの凝縮器の伝熱チューブとの間で水が循環される給水タンクを設置し、原水を該給水タンクに供給し、該伝熱チューブと給水タンクとの間で原水を循環させて加熱し、加熱された原水の少なくとも一部をボイラ給水として前記ボイラに送水することを特徴とする請求項12の逆浸透処理システム。 A water supply tank in which water is circulated between the heat transfer tube of the condenser of the heat pump is installed, raw water is supplied to the water supply tank, and raw water is circulated and heated between the heat transfer tube and the water supply tank. The reverse osmosis treatment system according to claim 12, wherein at least a part of the heated raw water is supplied to the boiler as boiler water supply.
JP2019533667A 2018-07-06 2019-06-19 Reverse osmosis treatment method and system Active JP6777236B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018129257 2018-07-06
JP2018129257 2018-07-06
PCT/JP2019/024317 WO2020008884A1 (en) 2018-07-06 2019-06-19 Reverse osmosis treatment method and system

Publications (2)

Publication Number Publication Date
JPWO2020008884A1 JPWO2020008884A1 (en) 2020-07-09
JP6777236B2 true JP6777236B2 (en) 2020-10-28

Family

ID=69060581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019533667A Active JP6777236B2 (en) 2018-07-06 2019-06-19 Reverse osmosis treatment method and system

Country Status (5)

Country Link
JP (1) JP6777236B2 (en)
KR (1) KR102477968B1 (en)
CN (1) CN112384479B (en)
TW (1) TWI781329B (en)
WO (1) WO2020008884A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6819735B1 (en) * 2019-07-08 2021-01-27 栗田工業株式会社 Heat pump system
WO2022013977A1 (en) * 2020-07-15 2022-01-20 栗田工業株式会社 Heat pump system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634808A (en) * 1986-06-24 1988-01-09 Takuma Co Ltd Reverse-osmosis membrane device system
JPH01130785A (en) * 1987-11-18 1989-05-23 Ishikawajima Harima Heavy Ind Co Ltd Ozonized water sterilizer
JP3303151B2 (en) * 1993-12-16 2002-07-15 清水建設株式会社 Hot water supply heat pump system utilizing cooling waste heat
JP2006159003A (en) * 2004-12-02 2006-06-22 Mayekawa Mfg Co Ltd Heating and cooling method and apparatus for ultrapure water
JP5325431B2 (en) * 2008-02-29 2013-10-23 パナソニック株式会社 Waste heat recovery equipment for refrigeration equipment
KR101577125B1 (en) * 2010-10-27 2015-12-11 오르가노 가부시키가이샤 Water treatment system and water treatment method
JP5743490B2 (en) * 2010-10-27 2015-07-01 オルガノ株式会社 Water treatment system and water treatment method
JP5971088B2 (en) * 2012-11-08 2016-08-17 三浦工業株式会社 Boiler feed water heating system
JP2016107178A (en) * 2014-12-02 2016-06-20 三浦工業株式会社 Water treatment system
CN204702545U (en) * 2015-06-04 2015-10-14 杭州英普水处理技术有限公司 A kind of reverse osmosis former water water inlet heating unit
JP6725143B2 (en) * 2016-08-19 2020-07-15 日本ウォーターシステム株式会社 Water treatment equipment
JP6149993B1 (en) * 2016-09-14 2017-06-21 栗田工業株式会社 Ultrapure water production equipment
JP6532494B2 (en) * 2017-03-16 2019-06-19 栗田工業株式会社 Reverse osmosis processing method and apparatus
CN106988813B (en) * 2017-05-15 2019-04-09 华电电力科学研究院 A kind of system and method using waste heat driving process equipment
CN107060928B (en) * 2017-05-15 2023-10-27 华电电力科学研究院有限公司 System and method for supplying electric energy and heat energy by utilizing process waste heat

Also Published As

Publication number Publication date
CN112384479B (en) 2022-03-18
JPWO2020008884A1 (en) 2020-07-09
TWI781329B (en) 2022-10-21
WO2020008884A1 (en) 2020-01-09
KR102477968B1 (en) 2022-12-14
TW202005706A (en) 2020-02-01
KR20210024463A (en) 2021-03-05
CN112384479A (en) 2021-02-19

Similar Documents

Publication Publication Date Title
US20100000709A1 (en) Heating and heat recovery unit for an air conditioning system
JP6777236B2 (en) Reverse osmosis treatment method and system
JP2013002763A (en) Solar heat utilizing air conditioning system
JP2011112272A (en) Method and device for heating and cooling
JP2015161465A (en) CO2 water heater
JP2004003801A (en) Refrigeration equipment using carbon dioxide as refrigerant
JP2011089722A (en) Method and device for refrigeration/air conditioning
JP6689801B2 (en) Solar air conditioning system
WO2007077687A1 (en) Heat pump hot water supply device
KR101156465B1 (en) Air-conditioning and heating equipment using sea water and deep sea water source heat pump and method for controlling the same
JP2004156806A (en) Warm/cold thermal system
JP2019190708A (en) Absorptive refrigerator
JP2014231922A (en) Floor panel heat removal system
JP2007278655A (en) Heat storage type hot water supplier
CN107388617A (en) Fume hot-water compound type lithium bromide absorption type refrigeration unit
JP5490841B2 (en) Water refrigerant heater and water refrigerant water heater using the same
CN207081238U (en) Fume hot-water compound type lithium bromide absorption type handpiece Water Chilling Units
KR20110056847A (en) Heat-pump system
JP2009115387A (en) Water refrigerant heater and water refrigerant water heater using the same
JP6455752B2 (en) Refrigeration system
JP6819735B1 (en) Heat pump system
CN107504710A (en) Fume hot-water single-double effect compound type lithium bromide absorption type handpiece Water Chilling Units
JP2006162086A (en) Heat pump water heater
JP2011058767A (en) Heat pump water heater
JP2009250580A (en) Heat pump device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200921

R150 Certificate of patent or registration of utility model

Ref document number: 6777236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250