JPH0455980B2 - - Google Patents

Info

Publication number
JPH0455980B2
JPH0455980B2 JP59252588A JP25258884A JPH0455980B2 JP H0455980 B2 JPH0455980 B2 JP H0455980B2 JP 59252588 A JP59252588 A JP 59252588A JP 25258884 A JP25258884 A JP 25258884A JP H0455980 B2 JPH0455980 B2 JP H0455980B2
Authority
JP
Japan
Prior art keywords
molding
glass
mold
optical glass
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59252588A
Other languages
Japanese (ja)
Other versions
JPS61132525A (en
Inventor
Koji Hakamazuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP25258884A priority Critical patent/JPS61132525A/en
Publication of JPS61132525A publication Critical patent/JPS61132525A/en
Publication of JPH0455980B2 publication Critical patent/JPH0455980B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/005Pressing under special atmospheres, e.g. inert, reactive, vacuum, clean
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/66Means for providing special atmospheres, e.g. reduced pressure, inert gas, reducing gas, clean room

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明は光学ガラス部品の成形素材を加熱軟化
した後、成形用金型にて押圧成形する光学ガラス
部品の成形方法に関するものである。 従来技術 従来、レンズ、プリズム、フイルター等の光学
ガラス部品の多くは、ガラス等の光学ガラス部品
の成形素材の研磨処理を主とした方法によつて形
成されてきた。しかしながら、この研磨処理には
相当な時間および熟練技術が必要とされ、特に、
非球面レンズを研磨処理によつて形成するには、
一層高度な研磨技術が要求され、かつ処理時間も
長くなり、短時間に大量の光学ガラス部品を製造
することは因難であつた。 そこで、一対の成形用金型内に光学ガラス部品
の成形素材を挿入配置し、これを加圧するだけで
レンズ等の光学ガラス部品を形成する方法が開発
実施され注目されている。 而して、光学ガラス部品の加圧成形法には、一
般的にリヒートプレス法とダイレクトプレス法が
ある。リヒートプレス法は、予め溶融固化した光
学ガラス部品の成形素材としての例えばガラス素
材の必要量を計りとり、これを所定の温度に加熱
して軟化させてから成形用金型内に投入しこれを
加圧して光学ガラス部品を形成する方法である。 しかるに、このリヒートプレス法は、ガラス粘
度と金型温度の関係について明確にされていなか
つたため、固着やヒケ及び折れ込み等の各種問題
を引き起し安定した高精度光学ガラス部品の成形
が不可能であつた。 他方、ダイレクトプレスによる成形方法は従来
第1図示の方法により実施されるもので以下にそ
の具体的な方法について説明する。 先づ、方法を実施するための装置について説明
すると、ガラス溶融炉(図示省略)と接続構成さ
れたオリフイス1の下方位置には主軸2を介して
回転駆動、停止自在に構成されたロータリーテー
ブル3が配設されており、このロータリーテーブ
ル3上には溶融ガラス成形用の下型4,5,6,
7が円周を4等分する位置にそれぞれ4個配設さ
れている。そして、ロータリーテーブル3が停止
した状態、即ち、レンズ成形開始前においては、
下型4(図において左側の下型)の上方位置には
前記オリフイス1の開口部8が臨むように設定構
成されており、この下型4と隣接する下型5の上
方位置には、下型5と協働して下型5内の溶融ガ
ラス9を押圧成形するためのプランジヤー10が
上下方向摺動自在に配設されている。また、前記
オリフイス1の開口部8とその下方位置の下型4
との間には、開口部8から流動垂下する溶融ガラ
ス9を所定量にて切断すべく開閉動作自在に構成
された切断挾11が配設されている。前記ロータ
リーテーブル3は、45度づつ回転、停止を繰り返
すように制御されており、下型4が45度づつ4回
回転、停止を繰り返して元の位置に復元された際
に、1行程が終了するように構成されている。 前記装置によりレンズを形成する方法について
説明すると、まず、オリフイス1から溶融ガラス
9を下型4内に流動垂下せしめ、適量にて切断挾
11を介して溶融ガラス9を切断する。次に、ロ
ータリーテーブル3を図において反時計方向に45
度回転させた後に停止させ、溶融ガラス9を充填
した下型4をプランジヤー10の真下位置まで移
動せしめる。そして、その状態でプランジヤー1
0を下動せしめ、このプランジヤー10と下型4
との協働作用により溶融ガラス9を押圧せしめ、
溶融ガラス9の押圧成形を行なう。この場合に
は、溶融ガラス9の熱はプランジヤー10により
奪われる。 押圧成形後は、プランジヤー10を上動せしめ
た後にロータリーテーブル3を図において反時計
方向に45度回転せしめて停止する。即ち、図にお
ける下型6の位置にて下型4が停止することにな
る。この停止位置では何の作業も行なわず、成形
ガラス(成形レンズ)9の形状維持のみを行な
う。 そして、ロータリーテーブル3をさらに45度回
転させた位置、即ち、図における下型7の位置に
て下型4を停止せしめ、下方から下型4内の成形
レンズ9を突き上げて成形レンズ9を取り出して
レンズの成形方法が完了する。 前記レンズの成形方法は、各下型4,5,6,
7にてそれぞれ行なわれるものであり、それによ
り、レンズが連続的に成形されるものである。 下型4から取り出された成形レンズ9は、図示
を省略している徐冷炉中に入れられ、温度勾配を
つけて歪を防止しつつ常温にまで冷却される。 しかしながら、前記ダイレクトプレスによる成
形方法においては、次の如き問題点があつた。 第1に溶融ガラスを103ポアズ程度の高温状態
で下型中に流動垂下せしめなければならず、その
ために、オリフイス1、切断挾11、下型4,
5,6,7及びプランジヤー10等の各部材が酸
化し易く、これら各部材の寿命が短命化するとい
う問題点があつた。 第2に成形時に溶融ガラス9から熱を均一に奪
いにくく、落下ガラス流表面は、外気に接して低
温となり、粘度が増大し、このことと自由落下ガ
ラス流の比較的速い落下速度とあいまつて、ガラ
ス流が流入位置で陥没流を形成して折れ込みや泡
等を生じ易いという問題点があつた。 第3にガラスの粘度が低粘度(高温)であるた
め、金型表面が酸化され反応し易い、そのため、
金型の劣化が激しく、成形後の光学ガラス部品が
離型しにくく、生産効率が悪いという問題点があ
る。 第4に、プランジヤー10を成形温度(成形に
適した温度)に保ちにくく、そのためにプランジ
ヤー10を冷却する装置が必要となり、装置が複
雑化するという欠点があつた。 発明の目的 本発明は、前記従来の成形方法における問題点
に鑑みて開発されたもので、成形用金型の寿命を
延命化させるとともに離型性を向上させ、かつ成
形条件を一定にすることにより、光学特性の安定
した光学ガラス部品を大量、安価に製造すること
のできる光学ガラス部品の成形方法を提供せんと
するものである。 発明の概要 本発明は、予備成形された成形面を有するガラ
ス成形素材を離型性の良い搬送台上に載置し、予
備加熱炉および本加熱炉を介して前記ガラス成形
素材を(クニツク点温度)〜(クニツク点温度−
30℃)の範囲で加熱軟化す工程と、それぞれの外
周に離型部材を摺動自在に配備して、成形素材の
転移点付近の温度に加熱した上下一対の金型間に
前記加熱軟化したガラス成形素材を搬入する工程
と、前記成形素材を下側金型により搬送台から突
き上げ、非酸化性雰囲気中で上下金型により光学
ガラス部品に押圧成形する工程と、光学ガラス部
品の外周縁に前記下側の離型部材を当接させると
ともに下側金形の成形面を光学ガラス部品より離
型し、上側金型に光学ガラス部品を付着保持した
状態で、下側金型と下側金型と下側離型部材とを
下動する工程と、前記本加熱炉に対向する徐冷炉
内に前記光学ガラス部品を搬送する搬送部材を上
側金型の下方に配置する工程と、光学ガラス部品
の外周縁に上側の離型部材を当接させるとともに
上型の成型面から光学ガラス部品を離型する工程
と、光学ガラス部品を載置した搬送部材を徐冷炉
内に搬入して、徐歪温度領域を通過する工程とを
有することを備えているものである。 実施例 以下本発明の成形方法を図面とともに説明す
る。 第4図は本発明成形方法の実施に直接使用する
装置の概要を示すもので、同図において、20は
上型21、下型22の一対の金型から成る光学ガ
ラス部品としてのガラスレンズ50の押圧成形用
金型で、当型金型20の上下両型21,22は、
それぞれの外周において上下方向に摺動自在な離
型部材23,24を具備するとともに上下両型2
1,22自体が上下方向に摺動自在に、それぞれ
ガイド部材25,26に支持されつつ対向配置さ
れている。 また、上下両型21,22はそれぞれの対向方
向に可動する図示しない駆動部に連結されてい
る。 さらに、上下両型21,22は、その表面を窒
化クロムまたは窒化チタン等の被膜にて被覆され
た13クロム系ステンレス部材またはその他の超硬
質部材にて形成するとともに離型部材23,24
は、上下両型21,22の成形面にて押圧成形後
のガラスレンズ50の外周縁51との接触面23
a,24aにカーボンおよびガラス繊維から成る
織布部またはアルミナウールから成る織布部を設
けた弾性の少ない剛体部材にて形成してある。 30は成形素材としてのガラスゴブ52を、当
該ガラスゴブ52のゴブ台31を介して支持する
載置台で、前記押圧成形用金型20の上下両型2
1,22間に架設されている。 また、ゴブ台31は中央に、前記押圧成形用金
型20の下型21の外径より大径の通孔32を設
けるとともに通孔32の上側開口縁部に段部から
成るガラスゴブ52の係止縁を形成して、ガラス
ゴブ52の受部33を形成してある。 さらに、このゴブ台31は、後述する如く加熱
炉中において、これの受部33に受けて保持する
ガラスゴブ52とともにガラスゴブ52のクニツ
ク点付近の温度に加熱されるものであるから、こ
れに耐え得る耐熱性を有する材料にて形成すると
ともに加熱軟化されるガラスゴブ52との離型性
を有する受部33の構成から成るものである。 すなわち、このゴブ台31はガラスと濡れにく
い性質を有する材料、例えばBN(窒化ホウ素)
や一部カーボンと高分子が複合した複合材料によ
り形成されている。 34,35は、ガラスゴブ52の載置台30の
左右両側部に対向配置されたガラスゴブ52の加
熱炉および押圧成形用金型20の上下両型21,
22間にて押圧成形された後のガラスレンズ50
の徐冷炉である。 また、加熱炉34には予備加熱炉36および本
加熱炉37を装備するとともに加熱炉34と徐冷
炉35にはガラスゴブ52を受部33に係合した
ゴブ台31を先端の挾持部38a,39aにて挾
持しつつ搬送する一対の搬送部材38,39をそ
れぞれ前後方向に移動自在に内装し、かつ徐冷炉
35には押圧成形用金型20の上下両型21,2
2にて押圧成形し離型後のガラスレンズ50を徐
冷炉35中に搬送する搬送部材40を前後方向に
移動自在に内装してある。 また、搬送部材40の先端部40aには、第5
図に示す如く離型されるガラスレンズ50を受け
入れる受け台41を有するとともに受け台41内
には離型後のガラスレンズ50との離型性を考慮
してカーボンとガラス繊維の織布部を設けてあ
る。 以上の構成から成る成形装置により、本発明の
成形方法を適用しつつガラスレンズ50を成形す
る場合には、ゴブ台31の受部33にガラスゴブ
52を係止せしめつつ載置するとともにこれを一
対の搬送部材38,39の挾持部38a,39a
間に挾持しつつ加熱炉34中に搬入するとともに
加熱炉34の予備加熱炉36および本加熱炉37
を介して、ガラスゴブ52を加熱軟化せしめた後
第4図示の状態のようにゴブ台31を載置台30
上側に載置し、ゴブ台31のガラスゴブ52を押
圧成形用金型20の上下両型21,22間に搬入
する。 このガラスゴブ52の搬入に関連して、押圧成
形用金型20の上下両型21,22の駆動部が作
動を開始し、まず、上型21に先行して下型22
が上型21との対向方向にガイド部材26に沿つ
て上動し、前記一対の搬送部材38,39の挾持
部38a,39aにて挾持されつつゴブ台31の
受部33に係止されているガラスゴブ52を下型
22の成形面22aにて受け止めつつゴブ台31
より突き上げる。 この下型22の成形面22aに受け止めつつガ
ラスゴブ52をゴブ台31上より突き上げる下型
22の上動に対応して、前記上型21がガイド部
材25に沿つて下動し、その上下両型21,22
の成形面21a,22a間にてガラスゴブ52が
押圧成形され、第5図aに示す通り、ガラスレン
ズ50が成形される。 そして、上下両型21,22の押圧成形後、第
5図aに示す通り、下型22の下動に関連して離
型部24が下型22の外周において上方に摺動
し、その接触面24aがガラスレンズ50の外周
縁51に当接し、成形後のガラスレンズ50を下
型22の成形面22aより離型する。 但し、この時、成形後のガラスレンズ50は上
型21の成形面21a側に付着して保持されてい
る。 因て、前記上下両型21,22の協動によるガ
ラスゴブ52の押圧成形動作に関連して、前記一
対の搬送部材38,39は加熱炉34および徐冷
炉35内に後退するとともに、前記下型22の離
型部材24によるガラスレンズ50の離型動作に
伴つて、下型22は上型21に先行して再度下動
し、第5図bに示す如く載置台30の下側におけ
る第4図示の状態に復帰する。 また、この下型22がゴブ台31の通孔32中
より下方に下動するのを待つて、徐冷炉35内よ
り搬送部材40が前方に移動し、その先端部40
aに備える受け台41が上型21の下側にセツト
され、同時に上型21の離型部材23が、上型2
1の外周において下方に摺動し、その当接面23
aがガラスレンズ50の外周縁51に当接してガ
ラスレンズ50の成形面22aより離型する。 従つて、離型されたガラスレンズ50は、下側
にセツトされる搬送部材40の受け台41内にて
受け止められ、かつ搬送部材40の後退動により
徐冷炉35内に搬入されて徐冷され、その後、図
示しない搬出部材による所定位置への搬出作業に
よりガラスレンズ50の成形を完了することがで
き、以下同様にして連続したガラスレンズ50の
成形を遂行することができる。 尚、前記ガラスレンズ50の徐冷炉35内にお
ける徐冷は、徐歪温度領域(転移温度より徐歪点
温度に設定された領域)を15分間通過させること
により、20℃/mmで室温まで降温された。 また、前記成形装置によるガラスレンズ50の
成形に当つては、特に、以下に述べる実験結果に
より、押圧成形を非酸化性雰囲気中にて遂行す
る、例えば、押圧成形用金型20の成形部を脱気
しつつヘリウム、アルゴン、キセノン、窒素ある
いは水素−窒素混合気体を導入することにより非
酸化性雰囲気を構成して成形を遂行する(但し、
前記実施例では窒素(N2)を5/mm流入する
ことにより実施した)とともに、ガラスゴブ52
は側圧切断した割断面又はダイレクトプレス等の
加工方法により予備成形された成形面を有するガ
ラスゴブ52を使用し、これを貫入法により求め
た粘度−温度曲線のクニツク点付近の温度に加熱
軟化し、さらに押圧成形用金型20についてはガ
ラス転移温度付近の温度に加熱しつつ遂行するこ
とが成形条件として要求されることが判明した。 すなわち、リヒートプレス法におけるガラス素
材の成形温度を決定するために各硝材について、
貫入法により求めた粘度−温度曲線のうち、重フ
リント系ガラス(SFSO1)とバリウムランタン
系ガラス(BaLF3)の特性を示すのが第2図a,
bである。 尚、貫入法の場合、貫入ピンおよびホルダーは
ニツケル金属を用いた。 第2図a,bより明らかな通り、PbO量のもつ
とも多い重フリント系ガラス(SFSO1)は105.3
ボアズ付近にクニツク点を示し、バリウムランタ
ン系ガラス(BaLF3)のクニツク点の粘度は
107.5ポアズ付近であつた。 加えて、各硝材によりクニツク点の粘度は異な
るが、クニツク点の粘度範囲はほゞ105.3〜107.5
ポアズ内であつた。 また、各硝材のクニツク温度と成形用金型温度
の関係を下記の表に示す。
TECHNICAL FIELD The present invention relates to a method for molding optical glass parts, in which a molding material for optical glass parts is softened by heating and then press-molded using a molding die. BACKGROUND ART Conventionally, many optical glass parts such as lenses, prisms, and filters have been formed by a method that mainly involves polishing a molding material for optical glass parts such as glass. However, this polishing process requires considerable time and skill, and in particular,
To form an aspherical lens through a polishing process,
More advanced polishing techniques were required, and the processing time became longer, making it difficult to manufacture large quantities of optical glass parts in a short period of time. Therefore, a method has been developed and is attracting attention for forming optical glass parts such as lenses by simply inserting and arranging a molding material for an optical glass part into a pair of molding molds and pressurizing the molding material. Pressure molding methods for optical glass parts generally include a reheat press method and a direct press method. In the reheat press method, the required amount of glass material, for example, as a molding material for optical glass parts that has been melted and solidified in advance is measured, heated to a predetermined temperature to soften it, and then put into a mold for molding. This is a method of forming optical glass parts by applying pressure. However, this reheat press method did not clarify the relationship between glass viscosity and mold temperature, which caused various problems such as sticking, sink marks, and folding, making it impossible to form stable high-precision optical glass parts. It was hot. On the other hand, the direct press molding method is conventionally carried out by the method shown in the first figure, and the specific method will be explained below. First, the apparatus for carrying out the method will be described. A rotary table 3 is located below an orifice 1 connected to a glass melting furnace (not shown) and is rotatably driven and stopped via a main shaft 2. is arranged, and on this rotary table 3 there are lower molds 4, 5, 6, for molding molten glass.
Four pieces of 7 are arranged at positions that equally divide the circumference into four. When the rotary table 3 is stopped, that is, before lens molding starts,
The opening 8 of the orifice 1 is configured to face the upper position of the lower mold 4 (the lower mold on the left side in the figure), and the upper position of the lower mold 5 adjacent to this lower mold 4 is A plunger 10 for press-molding the molten glass 9 in the lower mold 5 in cooperation with the mold 5 is disposed so as to be freely slidable in the vertical direction. Also, the opening 8 of the orifice 1 and the lower die 4 located below the opening 8
A cutting peg 11 is disposed between the opening 8 and the cutting peg 11, which can be opened and closed to cut a predetermined amount of the molten glass 9 flowing down from the opening 8. The rotary table 3 is controlled to repeatedly rotate and stop at 45 degree increments, and one stroke ends when the lower mold 4 repeats rotation and stop at 45 degree increments four times and is restored to its original position. is configured to do so. To explain the method of forming a lens using the above-mentioned apparatus, first, the molten glass 9 is made to flow and hang down from the orifice 1 into the lower mold 4, and an appropriate amount of the molten glass 9 is cut through the cutting scissor 11. Next, move the rotary table 3 counterclockwise by 45 degrees in the figure.
After rotating once, it is stopped, and the lower mold 4 filled with molten glass 9 is moved to a position directly below the plunger 10. Then, in that state, plunger 1
0 downward, this plunger 10 and the lower die 4
The molten glass 9 is pressed by the cooperative action of
Press molding of the molten glass 9 is performed. In this case, the heat of the molten glass 9 is removed by the plunger 10. After press molding, the plunger 10 is moved upward, and then the rotary table 3 is rotated 45 degrees counterclockwise in the figure and then stopped. That is, the lower mold 4 stops at the position of the lower mold 6 in the figure. At this stop position, no work is performed; only the shape of the molded glass (molded lens) 9 is maintained. Then, the lower mold 4 is stopped at a position where the rotary table 3 is further rotated by 45 degrees, that is, at the position of the lower mold 7 in the figure, and the molded lens 9 inside the lower mold 4 is pushed up from below to take out the molded lens 9. The lens molding method is completed. The method for molding the lens includes lower molds 4, 5, 6,
7, respectively, whereby lenses are continuously molded. The molded lens 9 taken out from the lower mold 4 is placed in a slow cooling furnace (not shown) and cooled to room temperature while creating a temperature gradient to prevent distortion. However, the direct press molding method has the following problems. First, the molten glass must be allowed to flow and hang down into the lower mold at a high temperature of about 103 poise.
There was a problem in that each member such as 5, 6, 7 and plunger 10 was easily oxidized, and the life of each of these members was shortened. Second, it is difficult to remove heat uniformly from the molten glass 9 during molding, and the surface of the falling glass stream becomes cold when it comes into contact with the outside air, increasing its viscosity. However, there was a problem in that the glass flow formed a sinking flow at the inflow position, and was likely to cause folds, bubbles, etc. Thirdly, since the viscosity of glass is low (high temperature), the mold surface is easily oxidized and reacts.
There are problems in that the mold deteriorates severely, the optical glass parts are difficult to release after molding, and production efficiency is poor. Fourthly, it is difficult to maintain the plunger 10 at a molding temperature (temperature suitable for molding), which requires a device to cool the plunger 10, making the device complicated. Purpose of the Invention The present invention was developed in view of the problems in the conventional molding method, and aims to prolong the life of a mold, improve mold releasability, and keep molding conditions constant. Accordingly, it is an object of the present invention to provide a method for molding optical glass parts that can manufacture optical glass parts with stable optical properties in large quantities at low cost. Summary of the Invention The present invention involves placing a glass molding material having a preformed molding surface on a transfer table with good mold releasability, and passing the glass molding material through a preheating furnace and a main heating furnace. Temperature) ~ (Knikku point temperature -
30℃), and a mold release member is slidably arranged on the outer periphery of each mold material, and the heating softening process is performed between a pair of upper and lower molds heated to a temperature near the transition point of the molding material. A step of transporting the glass molding material, a step of pushing the molding material up from the conveyor table with a lower mold, and press-molding it into an optical glass component with upper and lower molds in a non-oxidizing atmosphere, and a step of pressing the molding material onto the outer periphery of the optical glass component While bringing the lower mold release member into contact with the molding surface of the lower mold, the molding surface of the lower mold is released from the optical glass component, and with the optical glass component attached and held on the upper mold, the lower mold and the lower mold are separated. a step of moving the mold and a lower mold release member downward; a step of arranging a conveying member for conveying the optical glass component into a slow cooling furnace facing the main heating furnace below the upper mold; A step of bringing the upper mold release member into contact with the outer periphery and releasing the optical glass component from the molding surface of the upper mold, and transporting the conveying member with the optical glass component mounted into the slow cooling furnace to allow the gradual distortion temperature region. It is equipped with the step of passing through. Examples The molding method of the present invention will be explained below with reference to the drawings. FIG. 4 shows an outline of an apparatus directly used for carrying out the molding method of the present invention. In the figure, 20 is a glass lens 50 as an optical glass component, which is composed of a pair of molds, an upper mold 21 and a lower mold 22. In this press molding mold, both upper and lower molds 21 and 22 of the mold 20 are as follows:
Both upper and lower molds 2 are provided with mold release members 23 and 24 that are slidable in the vertical direction on their respective outer peripheries.
1 and 22 are slidably vertically supported by guide members 25 and 26, respectively, and are disposed opposite to each other. Further, both the upper and lower dies 21 and 22 are connected to drive parts (not shown) that move in opposite directions. Furthermore, both the upper and lower molds 21 and 22 are made of 13 chromium-based stainless steel material or other ultra-hard material whose surfaces are coated with a film of chromium nitride or titanium nitride, and the mold release members 23 and 24 are
is the contact surface 23 with the outer peripheral edge 51 of the glass lens 50 after press molding with the molding surfaces of both the upper and lower molds 21 and 22.
It is made of a rigid member with low elasticity, with a woven fabric part made of carbon and glass fibers or a woven fabric part made of alumina wool provided on a and 24a. Reference numeral 30 denotes a mounting table that supports a glass gob 52 as a molding material via a gob stand 31 of the glass gob 52, and is mounted on both upper and lower molds 2 of the press molding mold 20.
It is constructed between 1 and 22. Further, the gob stand 31 is provided with a through hole 32 in the center thereof having a diameter larger than the outer diameter of the lower mold 21 of the press molding die 20, and a glass gob 52 consisting of a stepped portion is engaged with the upper opening edge of the through hole 32. A retaining edge is formed to form a receiving portion 33 for the glass gob 52. Furthermore, as will be described later, the gob stand 31 is heated together with the glass gob 52 held by the receiving part 33 in the heating furnace to a temperature near the knick point of the glass gob 52, so that it can withstand this temperature. The receiving portion 33 is made of a heat-resistant material and has a releasability from the glass gob 52 which is softened by heating. That is, the gob stand 31 is made of a material that is difficult to wet with glass, such as BN (boron nitride).
It is partly made of a composite material made of carbon and polymer. Reference numerals 34 and 35 denote a heating furnace for the glass gob 52 and both upper and lower molds 21 of the press mold 20, which are disposed opposite to each other on both left and right sides of the mounting table 30 for the glass gob 52.
Glass lens 50 after being press-molded for 22 hours
This is a slow cooling furnace. Further, the heating furnace 34 is equipped with a preliminary heating furnace 36 and a main heating furnace 37, and the heating furnace 34 and the slow cooling furnace 35 are equipped with a gob stand 31 in which a glass gob 52 is engaged with a receiving part 33, and a gob stand 31 is attached to the holding parts 38a and 39a at the tip. A pair of conveying members 38 and 39 that are conveyed while being clamped are housed inside so as to be movable in the front and rear directions, and the lehr 35 has both upper and lower molds 21 and 2 of the press molding die 20.
A conveying member 40 for conveying the glass lens 50 which has been press-molded and released from the mold in step 2 into the lehr 35 is installed inside the lens 40 so as to be movable in the front and rear directions. Further, a fifth
As shown in the figure, it has a pedestal 41 for receiving the glass lens 50 to be released from the mold, and a woven fabric portion of carbon and glass fiber is provided in the pedestal 41 in consideration of mold releasability with the glass lens 50 after the mold release. It is provided. When molding the glass lens 50 using the molding apparatus having the above configuration while applying the molding method of the present invention, the glass gob 52 is placed while being locked on the receiving part 33 of the gob stand 31, and the glass gob 52 is placed in a pair. Clamping parts 38a, 39a of conveying members 38, 39
It is carried into the heating furnace 34 while being held in between, and the preliminary heating furnace 36 and the main heating furnace 37 of the heating furnace 34 are
After heating and softening the glass gob 52, the gob stand 31 is placed on the mounting stand 30 as shown in the fourth figure.
The glass gob 52 of the gob stand 31 is carried in between the upper and lower molds 21 and 22 of the press-molding mold 20. In connection with the conveyance of the glass gob 52, the driving parts of both the upper and lower molds 21, 22 of the press molding die 20 start operating, and first, the lower mold 22 is moved in advance of the upper mold 21.
moves upward along the guide member 26 in the direction opposite to the upper mold 21, and is held by the holding portions 38a, 39a of the pair of conveying members 38, 39, and is retained by the receiving portion 33 of the gob stand 31. The gob stand 31 receives the glass gob 52 on the molding surface 22a of the lower mold 22.
Push up more. In response to the upward movement of the lower mold 22, which pushes up the glass gob 52 from above the gob stand 31 while being received by the molding surface 22a of the lower mold 22, the upper mold 21 moves downward along the guide member 25, and both the upper and lower molds 21, 22
A glass gob 52 is press-molded between the molding surfaces 21a and 22a, and a glass lens 50 is molded as shown in FIG. 5a. After the press molding of both the upper and lower molds 21 and 22, as shown in FIG. The surface 24a contacts the outer peripheral edge 51 of the glass lens 50, and the molded glass lens 50 is released from the molding surface 22a of the lower mold 22. However, at this time, the glass lens 50 after molding is attached and held on the molding surface 21a side of the upper mold 21. Therefore, in connection with the press molding operation of the glass gob 52 by the cooperation of the upper and lower molds 21 and 22, the pair of conveying members 38 and 39 retreat into the heating furnace 34 and the slow cooling furnace 35, and the lower mold 22 As the glass lens 50 is released from the mold by the mold release member 24, the lower mold 22 moves downward again in advance of the upper mold 21, and as shown in FIG. The state will be restored. Further, after waiting for the lower die 22 to move downward from the inside of the through hole 32 of the gob stand 31, the conveying member 40 moves forward from inside the lehr 35, and its tip 40
The pedestal 41 provided for the upper mold 21 is set under the upper mold 21, and at the same time the mold release member 23 of the upper mold 21 is placed under the upper mold 21.
1 and its contact surface 23
a comes into contact with the outer peripheral edge 51 of the glass lens 50 and is released from the molding surface 22a of the glass lens 50. Therefore, the released glass lens 50 is received in the cradle 41 of the conveying member 40 set on the lower side, and carried into the lehr 35 by the backward movement of the conveying member 40, where it is annealed. Thereafter, molding of the glass lens 50 can be completed by carrying it out to a predetermined position using a carrying member (not shown), and subsequent molding of glass lenses 50 can be continued in the same manner. Incidentally, the glass lens 50 is slowly cooled in the slow cooling furnace 35 by passing through a slow strain temperature region (a region set to a slow strain point temperature lower than the transition temperature) for 15 minutes, whereby the temperature is lowered to room temperature at a rate of 20° C./mm. Ta. In addition, when molding the glass lens 50 using the molding apparatus, in particular, according to the experimental results described below, the press molding is performed in a non-oxidizing atmosphere, for example, the molding part of the press mold 20 is Molding is performed by creating a non-oxidizing atmosphere by introducing helium, argon, xenon, nitrogen, or hydrogen-nitrogen mixed gas while degassing (however,
In the above example, nitrogen (N 2 ) was introduced at 5/mm) and a glass gob 52
uses a glass gob 52 having a cut surface cut by lateral pressure or a molded surface preformed by a processing method such as direct pressing, heated and softened to a temperature near the knick point of the viscosity-temperature curve determined by the penetration method, Furthermore, it has been found that the press molding mold 20 is required to be heated to a temperature near the glass transition temperature as a molding condition. In other words, for each glass material, in order to determine the molding temperature of the glass material in the reheat press method,
Among the viscosity-temperature curves obtained by the intrusion method, the characteristics of heavy flint glass (SFSO1) and barium lanthanum glass (BaLF3) are shown in Figure 2a.
It is b. In the case of the penetration method, the penetration pin and holder were made of nickel metal. As is clear from Figure 2 a and b, the heavy flint glass (SFSO1) with the highest amount of PbO is 10 5.3
The Kunik point is shown near Boaz, and the viscosity of barium lanthanum glass (BaLF3) at the Kunik point is
10 It was around 7.5 poise. In addition, the viscosity at the Kunik point differs depending on each glass material, but the viscosity range at the Kunik point is approximately 105.3 to 107.5.
It was hot inside Poise. Furthermore, the relationship between the temperature of each glass material and the temperature of the molding die is shown in the table below.

【表】【table】

【表】 さらに、第3図は重フリント系ガラス
(SFSO1)の各種材料に対する濡れ特性を示した
もので、特に、SFSO1の成形温度であるクニツ
ク点付近の温度490℃での濡れ角は、各材料に対
し、135℃以上で濡れにくいことを示している。 つまり、これは、押圧成形用金型20の成形材
料との関係上、クニツク点付近の粘度で成形する
ならば、押圧成形用金型20に固着せず離型し易
いことが判明した。 また、成形温度を、第2図a,bの粘度−温度
曲線のクニツク点以上の温度に上がると濡れやす
くなり、各材料と固着し、離型しにくいこととな
り、押圧成形後の光学ガラス部品の面品質を劣化
させることになる。 加えて、粘度−温度曲線のクニツク点以上の温
度では、ガラス構造中の酸素アニオン状態が変化
することがガラマン分光解析により確認され、ガ
ラス成形の再現性は、凝似ニユートニアン領域の
ほうが非ニユートニアン領域での成形よりも優れ
ていることが判明した。 而して、かゝる成形条件を適用しつつ、前記成
形装置により、各ガラス素材、SFSO1(第6図
a)、BaLF3(第6図b)、SF8(第6図c)、BK7
(第6図d)を使用して成形したガラスレンズの
フイゾー干渉計による干渉像を第6図a〜dの各
干渉パターンにより示した。 かゝる干渉パターンによつて判明する如く、前
記成形条件により成形したガラスレンズは、押圧
成形用金型の成形面か、それ以上の面形状をもつ
ことが明らかであるとともにこれを同じ屈折率の
浸液につけ偏光顕微鏡で検討した結果、歪が認め
られなかつた。 さらに、SFSO1を成形素材として適用し、こ
れのクニツク点以上の温度、520℃に加熱軟化さ
せて成形した場合の面形状には第7図aの干渉パ
ターンに示される通り、アスが認められるととも
にこれ以上の温度540℃にした場合には成形後の
ガラスレンズの型への付着が認められた。 加えて、押圧成形用金型20の温度を、30℃低
い温度にして成形した場合、中おちしたフイゾ−
干渉像が得られた。これを第7図bの干渉パター
ンにて示した。 発明の効果 本発明の光学ガラス部品の成形方法によれば、
成形粘度が各種硝材の種類により異なるが105.3
アズ以上となり従来技術の溶融したガラスよりも
高粘度であること及び粘度−温度曲線のクニツク
点以下の温度であるため、ガラス構造中の酸素ア
ニオンが活性化せず、酸素アニオンの金型に対す
る攻撃が少なく、その結果として金型表面を強く
酸化しないため金型寿命を延命化させ離型性を向
上させた。また、凝似ニユートニアン流体下の温
度により成形されるため、成形条件を一定にすれ
ば安定した光学特性の光学ガラス部品が得られ
る。 更に、金型温度をガラス転移温度付近に設定し
たことと、ガラスの加熱温度を粘度−温度のクニ
ツク点に設定することにより、成形素材としての
ガラスの急激な構造変化がなく、かつ金型温度が
歪をとり易い温度に設定してあるため、従来技術
よりも歪の少ない光学ガラス部品が簡単に得られ
る。 以上の点を換言するに、第1にニユートニアン
流体で成形されるため、従来技術に比してヒケや
折れ込み及び泡等の発生が防止できる。 第2の従来技術のように長時間徐冷する必要も
なく、屈折率調整をあまり必要としないため、短
時間での成形を可能ならしめる。 第3にこの成形方法によれば、従来技術のよう
に溶融する程度まで加熱する必要がなく、従つて
上下型及びその周辺装置部材を急激に酸化するこ
となく部材の延命化ができる。 第4に総合的な結果として、短時間で成形を可
能とし、再研磨等の後工程を必要とせず、製造コ
ストを大幅に安価にし品質の安定した光学ガラス
部品の製造を可能にすることができる。
[Table] Furthermore, Figure 3 shows the wetting characteristics of heavy flint glass (SFSO1) for various materials.In particular, the wetting angle at 490℃, which is the forming temperature of SFSO1, near the Kunik point, is This indicates that the material is difficult to wet at temperatures above 135°C. In other words, it has been found that, due to the relationship with the molding material of the press molding die 20, if the molding is performed at a viscosity near the sticking point, it will not stick to the press molding die 20 and will be easily released from the mold. In addition, if the molding temperature is raised to a temperature higher than the knick point of the viscosity-temperature curve shown in Figure 2 a and b, it becomes easy to wet, adheres to each material, and becomes difficult to release from the mold. This results in deterioration of surface quality. In addition, Galaman spectroscopic analysis confirmed that at temperatures above the Kunich point of the viscosity-temperature curve, the oxygen anion state in the glass structure changes, and the reproducibility of glass forming is better in the condensed Newtonian region than in the non-Newtonian region. It turned out to be better than molding. While applying such molding conditions, each glass material, SFSO1 (Fig. 6a), BaLF3 (Fig. 6b), SF8 (Fig. 6c), BK7, is formed by the molding apparatus.
The interference images of the glass lens molded using the Fizeau interferometer (FIG. 6 d) are shown by the interference patterns shown in FIGS. 6 a to 6 d. As is clear from such an interference pattern, it is clear that the glass lens molded under the above molding conditions has a surface shape that is equal to or larger than the molding surface of the press molding die, and that it has the same refractive index. As a result of immersion in liquid and examining it under a polarizing microscope, no distortion was observed. Furthermore, when SFSO1 is applied as a molding material and molded by heating and softening it at a temperature above the nail point, 520℃, as shown in the interference pattern in Figure 7a, as shown in the interference pattern in Figure 7a, as well as asperities are observed. When the temperature was higher than this, 540°C, adhesion of the glass lens to the mold after molding was observed. In addition, if the temperature of the press molding die 20 is lowered by 30 degrees Celsius, the center of the mold will be lowered.
An interference image was obtained. This is shown in the interference pattern of FIG. 7b. Effects of the Invention According to the method for molding optical glass parts of the present invention,
The molding viscosity varies depending on the type of glass material, but it is higher than 105.3 poise, which is higher than the molten glass of the conventional technology, and the temperature is below the Kunich point of the viscosity-temperature curve, so oxygen anions in the glass structure are There is no activation, so there is less attack on the mold by oxygen anions, and as a result, the mold surface is not strongly oxidized, extending the life of the mold and improving mold releasability. Furthermore, since the molding is performed at a temperature under a similar Newtonian fluid, an optical glass component with stable optical properties can be obtained if the molding conditions are kept constant. Furthermore, by setting the mold temperature near the glass transition temperature and the heating temperature of the glass to the viscosity-temperature characteristic point, there is no sudden structural change in the glass as a molding material, and the mold temperature can be kept constant. Since the temperature is set at such a temperature that it is easy to remove distortion, it is possible to easily obtain optical glass parts with less distortion than in the prior art. To put the above point in another way, first, since it is molded using a Newtonian fluid, it is possible to prevent the occurrence of sink marks, folds, bubbles, etc. compared to the prior art. Unlike the second prior art, there is no need for slow cooling for a long time, and there is no need for much adjustment of the refractive index, making it possible to mold in a short time. Thirdly, according to this molding method, unlike the prior art, there is no need to heat the mold to the extent that it melts, and therefore the life of the upper and lower molds and their peripheral equipment members can be extended without rapidly oxidizing them. Fourth, as a comprehensive result, it is possible to manufacture optical glass parts that can be formed in a short time, does not require post-processes such as re-polishing, and has a significantly lower manufacturing cost and stable quality. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のガラスレンズの成形方法を示す
成形装置の斜視図、第2図a,bはSFSO1、
BaLF3の貫入法による粘度の温度依存性を示す
線図、第3図はSFSO1の各材料に対する濡れ特
性を示す線図、第4図は本発明成形方法に使用す
る成形装置の概要図、第5図a,bは押圧成形用
金型による押圧成形状態と押圧成形後のガラスレ
ンズの離型状態を示す説明図、第6図a,b,
c,dは本発明成形方法によつて得られた
SFSO1、BaLF3、SF8およびBK7の各成形素材
により成形された各ガラスレンズにおける表面形
状の干渉像を示す干渉パターン、第7図a,b
は、本発明成形方法の成形条件よりずれた成形条
件によつてSFSO1を成形素材として成形された
ガラスレンズの表面形状の干渉像を示す干渉パタ
ーンである。 20……押圧成形用金型、21……上型、22
……下型、23,24……離型部材、25,26
……ガイド部材、30……載置台、31……ゴブ
台、32……通孔、33……受部、34……加熱
炉、35……徐冷炉、36……予備加熱炉、37
……本加熱炉、38,39,40……搬送部材、
41……受け台、50……ガラスレンズ、51…
…外周縁、52……ガラスゴブ。
Figure 1 is a perspective view of a molding device showing a conventional glass lens molding method, Figures 2a and b are SFSO1,
Figure 3 is a diagram showing the temperature dependence of viscosity by the penetration method of BaLF3, Figure 3 is a diagram showing the wetting characteristics of SFSO1 for each material, Figure 4 is a schematic diagram of the molding equipment used in the molding method of the present invention, Figure 5 Figures a and b are explanatory diagrams showing the state of press molding by the press mold and the release state of the glass lens after press molding;
c, d were obtained by the molding method of the present invention
Interference patterns showing interference images of surface shapes of glass lenses molded with SFSO1, BaLF3, SF8, and BK7 molding materials, Figures 7a and b
is an interference pattern showing an interference image of the surface shape of a glass lens molded using SFSO1 as a molding material under molding conditions that deviate from those of the molding method of the present invention. 20...Mold for press molding, 21...Upper mold, 22
... Lower mold, 23, 24 ... Mold release member, 25, 26
... Guide member, 30 ... Mounting table, 31 ... Gob stand, 32 ... Through hole, 33 ... Receiving part, 34 ... Heating furnace, 35 ... Slow cooling furnace, 36 ... Preheating furnace, 37
... main heating furnace, 38, 39, 40 ... conveyance member,
41... cradle, 50... glass lens, 51...
...Outer rim, 52...Glass gob.

Claims (1)

【特許請求の範囲】 1 予備成形された成形面を有するガラス成形素
材を離型性の良い搬送台上に載置し、予備加熱炉
および本加熱炉を介して前記ガラス成形素材を
(クニツク点温度)〜(クニツク点温度−30℃)
の範囲で加熱軟化す工程と、 それぞれの外周に離型部材を摺動自在に配備し
て、成形素材の転移点付近の温度に加熱した上下
一対の金型間に前記加熱軟化したガラス成形素材
を搬入する工程と、 前記成形素材を下側金型により搬送台から突き
上げ、非酸化性雰囲気中で上下金型により光学ガ
ラス部品に押圧成形する工程と、 光学ガラス部品の外周縁に前記下側の離型部材
を当接させるとともに下側金形の成形面を光学ガ
ラス部品より離型し、上側金型に光学ガラス部品
を付着保持した状態で、下側金型と下側離型部材
とを下動する工程と、 前記本加熱炉に対向する徐冷炉内に前記光学ガ
ラス部品を搬送する搬送部材を上側金型の下方に
配置する工程と、 光学ガラス部品の外周縁に上側の離型部材を当
接させるとともに上型の成型面から光学ガラス部
品を離型する工程と、 光学ガラス部品を載置した搬送部材を徐冷炉内
に搬入して、徐歪温度領域を通過する工程とを有
することを特徴とする光学ガラス部品の成形方
法。
[Scope of Claims] 1. A glass molding material having a preformed molding surface is placed on a transfer table with good mold releasability, and the glass molding material is passed through a preheating furnace and a main heating furnace (at the Kunikku point). Temperature) ~ (Knick point temperature -30℃)
A step of heating and softening the glass molding material within a range of a step of pushing the molding material up from a conveyor table using a lower mold and press-molding it into an optical glass component using upper and lower molds in a non-oxidizing atmosphere; The molding surface of the lower mold is brought into contact with the mold release member, and the molding surface of the lower mold is released from the optical glass component, and with the optical glass component attached and held on the upper mold, the lower mold and the lower mold release member are brought into contact with each other. a step of arranging a conveyance member below the upper mold for conveying the optical glass component into a slow cooling furnace facing the main heating furnace; and a step of disposing an upper mold release member on the outer periphery of the optical glass component. a step of bringing the optical glass components into contact with each other and releasing the optical glass components from the molding surface of the upper mold; and a step of transporting the conveying member on which the optical glass components are placed into a slow cooling furnace and passing through a gradual strain temperature region. A method for forming optical glass parts characterized by:
JP25258884A 1984-11-29 1984-11-29 Forming of optical glass part Granted JPS61132525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25258884A JPS61132525A (en) 1984-11-29 1984-11-29 Forming of optical glass part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25258884A JPS61132525A (en) 1984-11-29 1984-11-29 Forming of optical glass part

Publications (2)

Publication Number Publication Date
JPS61132525A JPS61132525A (en) 1986-06-20
JPH0455980B2 true JPH0455980B2 (en) 1992-09-07

Family

ID=17239456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25258884A Granted JPS61132525A (en) 1984-11-29 1984-11-29 Forming of optical glass part

Country Status (1)

Country Link
JP (1) JPS61132525A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250099A (en) * 1990-03-29 1993-10-05 Canon Kabushiki Kaisha Glass molding process and molding apparatus for the same
JP2010001163A (en) * 2008-06-18 2010-01-07 Konica Minolta Opto Inc Method for producing glass gob, method for producing glass molding, apparatus for producing glass gob and apparatus for producing glass molding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118639A (en) * 1983-11-29 1985-06-26 Hoya Corp Manufacture of pressed lens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118639A (en) * 1983-11-29 1985-06-26 Hoya Corp Manufacture of pressed lens

Also Published As

Publication number Publication date
JPS61132525A (en) 1986-06-20

Similar Documents

Publication Publication Date Title
EP0408065B1 (en) Method of producing optical glass element and production apparatus using this method
US5346523A (en) Method of molding chalcogenide glass lenses
JP3974200B2 (en) Glass optical element molding method
KR0175131B1 (en) Molding of optical element
JPH0471853B2 (en)
JP6739131B2 (en) Mold for molding optical component made of glass and method for manufacturing optical component made of glass using the mold
JPH0455980B2 (en)
JP3869239B2 (en) Optical element press molding apparatus and optical element manufacturing method
JP3188676B2 (en) Method for manufacturing glass molded body
JP3201887B2 (en) Optical element molding method
JPH0513096B2 (en)
JP2790547B2 (en) Glass material manufacturing method
JPH0435427B2 (en)
JP2746454B2 (en) Optical element molding method
JPH0419172B2 (en)
JP2718452B2 (en) Glass optical element molding method
JP3201888B2 (en) Optical element manufacturing method
JPS61286232A (en) Molding method for optical glass parts
JP2875621B2 (en) Method for manufacturing optical glass molded body and method and apparatus for manufacturing optical glass element
JPH0372016B2 (en)
JPH0741327A (en) Optical element forming method
JPH07330347A (en) Method for forming optical element
JP4426740B2 (en) Glass molded product manufacturing method, optical component manufacturing method, press molding apparatus
JPH0455134B2 (en)
JP2892217B2 (en) Method and apparatus for manufacturing glass material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term