JPS61286232A - Molding method for optical glass parts - Google Patents
Molding method for optical glass partsInfo
- Publication number
- JPS61286232A JPS61286232A JP12863185A JP12863185A JPS61286232A JP S61286232 A JPS61286232 A JP S61286232A JP 12863185 A JP12863185 A JP 12863185A JP 12863185 A JP12863185 A JP 12863185A JP S61286232 A JPS61286232 A JP S61286232A
- Authority
- JP
- Japan
- Prior art keywords
- molding
- mold
- glass
- press
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/12—Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はガラスレンズ等の光学ガラス部品の成形方法に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for molding optical glass parts such as glass lenses.
[従来の技術]
従来、レンズやプリズム等の光学ガラス部品の加圧成形
法としては、リヒートプレス法とダイレクトプレス法が
ある。[Prior Art] Conventionally, there are a reheat press method and a direct press method as pressure molding methods for optical glass parts such as lenses and prisms.
前者のリヒートプレス法は、予め溶融固化した光学ガラ
ス部品の成形用素材としての1例えば板状または塊状等
のガラスを、切断または荒削り等の作業により所定の容
量または重量に調整した後、これを所定の温度に加熱軟
化させてから成形用金型内に投入し、これを加圧して光
学ガラス部品を成形する方法である。The former reheat press method involves cutting or roughing a glass plate or block of glass as a material for forming an optical glass component, which has been melted and solidified in advance, and then adjusting it to a predetermined volume or weight through operations such as cutting or rough machining. This is a method of heating and softening the material to a predetermined temperature, placing it in a mold, and pressurizing it to form an optical glass component.
一方、後者のダイレクトプレス法は、ガラス溶融炉内で
変形可能な高温状態にした溶融ガラスを溶融炉と接続構
成されたオリフィスより流下さ、せ、この流下するガラ
ス流を間欠的に切断して得られるガラス塊を成形用金型
内に投入して加圧成形する方法である。On the other hand, in the latter direct press method, molten glass that has been heated to a high temperature that can be deformed in a glass melting furnace is made to flow down through an orifice connected to the melting furnace, and this flowing glass flow is intermittently cut. This is a method in which the resulting glass gob is placed in a mold and press-molded.
一般に、これら成形法においては、ガラス素材が成形用
金型内で成形され、型から取り出される時点において、
表面温度は形状がくずれない程度に冷却されているが、
内部温度は高く、不均一な温度分布を生じる。この様な
ガラス中心温度が高い状態で型から取り出されると、こ
れが冷却された場合、一定寸法が得られにくく、またプ
レス形状が一定せず、ヒケを生じる原因にもなり、安定
した高精度の光学ガラス部品の成形は難しかった。Generally, in these molding methods, the glass material is molded in a mold, and at the time it is taken out from the mold,
Although the surface temperature is cooled to the extent that the shape does not collapse,
The internal temperature is high, resulting in uneven temperature distribution. If the glass is taken out of the mold with a high center temperature, it will be difficult to obtain a constant size when it is cooled, and the pressed shape will not be consistent, causing sink marks. Molding optical glass parts was difficult.
さらには、ガラスの粘度が低粘度(高温)であるため金
型表面が酸化され反応し易い、そのため、成形用金型の
劣化が激しく、融着などを生じるため、生産効率が悪い
という問題点があった。Furthermore, since the viscosity of glass is low (high temperature), the mold surface is easily oxidized and reacts, which causes severe deterioration of the mold and causes fusion, resulting in poor production efficiency. was there.
因って本発明は以上のような従来技術の問題点に着目し
てなされたもので成形用金型への融着やガラス成形品の
ヒケもなく安定した高精度の光学ガラス部品の成形が可
能な成形方法の提供を目的とする。Therefore, the present invention has been made by focusing on the problems of the prior art as described above, and it is possible to stably mold optical glass parts with high precision without adhesion to the molding die or sinkage of the glass molded product. The purpose is to provide a possible molding method.
[問題点を解決するための手段]
本発明は光学ガラス部品のガラス素材を加熱軟化すると
ともに前記光学ガラス部品の成形用金型の温度を、前記
ガラス素材の転移点以下から転移点より100℃低い温
度範囲の温度に保持した後、当該成形用金型内に前記加
熱軟化後のガラス素材を搬入し非酸化性雰囲気中にて押
圧成形するとともに当該成形用金型内における押圧成形
後の光学ガラス成形品を成形用金型内に加圧保持しつつ
成形用金型の型温を前記ガラス素材の転移点付近まで昇
温し、しかる後離型することにより成形するものである
。[Means for Solving the Problems] The present invention heats and softens the glass material of the optical glass component, and also increases the temperature of the mold for molding the optical glass component from below the transition point of the glass material to 100° C. above the transition point. After maintaining the temperature in a low temperature range, the heated and softened glass material is carried into the mold and press-molded in a non-oxidizing atmosphere. The glass molded product is held under pressure in a mold while raising the mold temperature of the mold to around the transition point of the glass material, and then released from the mold.
[作用]
本発明方法では成形用金型の温度をガラス素材の転移点
以下から転移点より100℃低い温度範囲の温度に保持
することによって、加熱軟化されたガラス素材との融着
を阻止するとともに押圧成形後の光学ガラス成形品を成
形用金型内に加圧保持しつつ光学ガラス成形品の温度を
均一化せしめ、かつその後再度、型温を前記ガラス素材
の転移点付近まで昇温させることによってヒケ等の形状
歪みをなくすとともに成形用金型の形状を高精度に転写
しつつ成形するものである。[Function] In the method of the present invention, the temperature of the molding die is maintained within the temperature range from below the transition point of the glass material to 100°C lower than the transition point, thereby preventing fusion with the heated and softened glass material. At the same time, the temperature of the optical glass molded product is made uniform while pressurizing and holding the optical glass molded product after press molding in the molding die, and then the mold temperature is again raised to near the transition point of the glass material. By doing so, shape distortions such as sink marks are eliminated, and the shape of the molding die is transferred with high precision during molding.
[実施例]
以下本発明の成形方法の実施例を図面とともに説明する
。[Example] Examples of the molding method of the present invention will be described below with reference to the drawings.
第1図は本発明方法の実施に使用する成形装置の概略説
明図、第2図および第3図は第1図示の成形装置におけ
るガラスレンズの成形工程を示す説明図、第4図a、b
、cは各成形工程におけるガラス素材の成形面と押圧成
形用金型の成形面における反射波面を示す図である。FIG. 1 is a schematic explanatory diagram of a molding apparatus used to carry out the method of the present invention, FIGS. 2 and 3 are explanatory diagrams showing the glass lens molding process in the molding apparatus shown in FIG. 1, and FIGS. 4 a and b.
, c are diagrams showing reflected wavefronts on the molding surface of the glass material and the molding surface of the press molding die in each molding process.
まず、第1図〜第3図によって、成形装置を説明すると
、図においてlは上型2.下型3の一対の金型から成る
光学ガラス部品としてのガラスレンズ30の押圧成形用
金型で、この金型1の上下両型2,3は、それぞれの外
周において上下方向に摺動自在な離型部材4.5を具備
するとともに上下両型2,3自体が上下方向に摺動自在
にそれぞれガイド部材6,7に支持されつつ対向配置さ
れている。また上下両型2,3はそれぞれの対向方向に
可動する図示しない駆動部に連結されている。First, the molding apparatus will be explained with reference to FIGS. 1 to 3. In the figures, l is an upper mold 2. A mold for press molding a glass lens 30 as an optical glass component consisting of a pair of molds of a lower mold 3. Both upper and lower molds 2 and 3 of this mold 1 are slidable in the vertical direction on their respective outer peripheries. A mold release member 4.5 is provided, and both the upper and lower molds 2, 3 themselves are disposed facing each other while being supported by guide members 6, 7, respectively, so as to be slidable in the vertical direction. Further, both the upper and lower dies 2 and 3 are connected to a drive section (not shown) that moves in opposite directions.
さらに、上下両型2.3は、その成形面を窒化クロムま
たは窒化チタン等の被膜にて被覆された13クロム系ス
テンレス部材またはその他の超硬質部材にて形成すると
ともに離型部材4,5は、上下両型2,3の成形面にて
押圧成形後のガラスレンズ30の外周縁31との接触面
4a、5aをカーボンおよびガラス繊維から成る織布部
またはアルミナウールから成る織布部を設けた弾性の少
ない剛体部材にて形成しである。10は成形素材として
のガラスゴブ32を、当該ガラスゴブ32のゴブ台11
を介して支持する載置台で、前記押圧成形用金型1の上
下両型2,3間に架設されている。Furthermore, the molding surfaces of both the upper and lower molds 2.3 are made of 13 chromium-based stainless steel material coated with a film of chromium nitride or titanium nitride, or other ultra-hard materials, and the mold release members 4, 5 are The contact surfaces 4a and 5a of the molding surfaces of both the upper and lower molds 2 and 3 with the outer peripheral edge 31 of the glass lens 30 after press molding are provided with a woven fabric part made of carbon and glass fiber or a woven fabric part made of alumina wool. It is made of a rigid member with low elasticity. Reference numeral 10 indicates a glass gob 32 as a molding material, and a gob stand 11 of the glass gob 32.
This is a mounting table that is supported through the press molding die 1 and is installed between the upper and lower molds 2 and 3 of the press molding die 1.
とともに通孔12の上側開口縁部に段部から成るガラス
ゴブ32の係止縁を形成して、ガラスゴブ32の受部1
3を形成しである。さらに、このゴブ台11は、加熱炉
中において、これの受部13に受けて保持するガラスゴ
ブ32とともにガラスゴブ32の軟化点付近の温度に加
熱されるものであるから、これに絶え得る耐熱性を有す
る材料にて形成するとともに加熱軟化されるガラスゴブ
32との離型性を有する受部13の構成から成るもので
ある。At the same time, a locking edge of the glass gob 32 consisting of a stepped portion is formed at the upper opening edge of the through hole 12, and the receiving portion 1 of the glass gob 32 is
3 is formed. Furthermore, since the gob stand 11 is heated together with the glass gob 32 held in the receiving part 13 of the gob stand 11 to a temperature near the softening point of the glass gob 32 in the heating furnace, it has sufficient heat resistance. The receiving part 13 is made of a material having a mold releasability from the glass gob 32 which is softened by heating.
すなわち、このゴブ台11はガラスと濡れにくい性質を
有する材料、例えばBN(窒化ホウ素)や一部カーポン
と高分子が複合した複合材料により形成されている。That is, the gob stand 11 is made of a material that does not easily wet with glass, such as BN (boron nitride) or a composite material that is a combination of a portion of carbon and a polymer.
14.15はガラスゴブ32の蔵置台10の左右両側部
に対向配置されたガラスゴブ32の加熱炉および押圧成
形用金型1の上下両型2,3間にて押圧成形された後の
ガラスレンズ30の徐冷炉である。また、加熱炉14に
は予備加熱炉17および本加熱炉16を装備するととも
に加熱炉14と徐冷炉15にはガラスゴブ32を受部1
3に係合したゴブ台11を先端の挟持部18a、19a
にて挟持しつつ搬送する一対の搬送部材18゜19をそ
れぞれ前後方向に移動自在に内装しである。14.15 shows the glass lens 30 after being press-molded between the heating furnace of the glass gob 32 and the upper and lower molds 2 and 3 of the press-molding mold 1, which are arranged opposite to each other on the left and right sides of the storage stand 10 for the glass gob 32. This is a slow cooling furnace. Further, the heating furnace 14 is equipped with a preliminary heating furnace 17 and a main heating furnace 16, and the heating furnace 14 and the slow cooling furnace 15 are equipped with a glass gob 32 in the receiving part 1.
The gob stand 11 engaged with the
A pair of conveying members 18 and 19, which are conveyed while being clamped by the conveyor belt, are each movable in the front and rear directions.
以上の構成からなる成形装置によりガラスレンズ30を
成形する場合には、ゴブ台11の受部13にガラスゴブ
32を係止せしめつつ載置するとともにこれを一対の搬
送部材18.19の挟持部18a、19a、間に挟持し
つつ加熱炉14中に搬入するとともに加熱炉14の予備
加熱炉17および本加熱炉16を介してガラスゴブ32
を加熱軟化せしめた後第1図示の状態のようにゴブ台1
1を載置台10上側に載置し、ゴブ台11のガラスゴブ
32を押圧成形用金型1の上下両型2,3間に搬入する
・。When molding the glass lens 30 with the molding apparatus having the above configuration, the glass gob 32 is placed on the receiving part 13 of the gob stand 11 while being locked, and is held between the holding parts 18a of the pair of conveying members 18 and 19. , 19a, are carried into the heating furnace 14 while being sandwiched between them, and are passed through the preheating furnace 17 and main heating furnace 16 of the heating furnace 14 to the glass gob 32.
After heating and softening the gob stand 1 as shown in the first figure.
1 is placed on the upper side of the mounting table 10, and the glass gob 32 of the gob table 11 is carried between the upper and lower molds 2 and 3 of the press molding mold 1.
このガラスゴブ32の搬入に関連して、押圧成形用金型
1の上下両型2,3の駆動部が作動を開始し、まず、上
型2に先行して下型3が上型2との対向方向にガイド部
材7に沿って上動し、前記一対の搬送部材18.19の
挟持部18a。In connection with the conveyance of the glass gob 32, the driving parts of both the upper and lower molds 2 and 3 of the press molding die 1 start operating, and first, the lower mold 3 is connected to the upper mold 2 before the upper mold 2. The clamping portions 18a of the pair of conveying members 18, 19 move upward along the guide member 7 in opposite directions.
19aにて挟持されつつゴブ台itの受部13に係止さ
れているガラスゴブ32を下型3の成形面3aにて受は
止めつつゴブ台11より突き上げる。The glass gob 32 held by the gob holder 19a and held by the receiving part 13 of the gob holder IT is pushed up from the gob holder 11 while being held by the molding surface 3a of the lower mold 3.
この下型3の成形面3aに受は止めつつガラス 。The glass is fixed on the molding surface 3a of this lower mold 3.
ゴブ32をゴブ台ll上より突き上げる下型3の上動に
対応して前記上型2がガイド部材6に沿って下動し、そ
の上下両型2,3の成形面2a。The upper mold 2 moves downward along the guide member 6 in response to the upward movement of the lower mold 3 that pushes up the gob 32 from above the gob stand 11, and the molding surfaces 2a of both the upper and lower molds 2, 3 are formed.
3a間にてガラスゴブ32が押圧成形され、第2図に示
す通りガラスレンズ30が成形される。A glass gob 32 is press-molded between 3a, and a glass lens 30 is formed as shown in FIG.
そして、上下両型2,3の押圧成形後、第2図に示す通
り、下型3の下動に関連して離型部材4.5が上下型の
外周において上下方向に摺動し、その接触面4a、5a
がガラスレンズ30の外周縁31に当接し、成形後のガ
ラスレンズ30を上下型2.3の成形面2a、3aより
離型部材4,5で挟持した型で離型する。After the press molding of both the upper and lower molds 2 and 3, as shown in FIG. Contact surfaces 4a, 5a
contacts the outer peripheral edge 31 of the glass lens 30, and the molded glass lens 30 is released from the molding surfaces 2a, 3a of the upper and lower molds 2.3 by the molds held between mold release members 4, 5.
この離型動作後、ただちに、上下型2,3は、第1図示
の状態に復帰するが同時にガラスレンズ30も下型3の
動きに関連して、離型部材5の接触面5aに載置した状
態で下動しく第3図参照)ゴブ台11の上面に受は止め
られる。Immediately after this mold release operation, the upper and lower molds 2 and 3 return to the state shown in the first figure, but at the same time, the glass lens 30 is also placed on the contact surface 5a of the mold release member 5 in conjunction with the movement of the lower mold 3. In this state, the receiver is fixed on the upper surface of the gob stand 11 by moving it downward (see FIG. 3).
よって、ゴブ台11上に載置されたガラスレンズ30は
、さらに搬送部材18.19により徐冷炉15内に搬入
されて徐冷され、その後、図示しない搬出部材による所
定位置への搬出作業によりガラスレンズ30の成形を完
了することができ、以下同様にして連続したガラスレン
ズ30の成形を遂行することができる。Therefore, the glass lens 30 placed on the gob stand 11 is further carried into the lehr 15 by the conveying members 18 and 19 and gradually cooled, and then the glass lens is carried out to a predetermined position by a carrying member (not shown). 30 can be completed, and subsequent molding of successive glass lenses 30 can be accomplished in the same manner.
しかして、一般にプレス成形においてはガラスレンズの
表面層はプレス時において、急激に冷却固化するが、内
部の温度は高く、温度部分が不均一になり、固化された
層においては表面と内部に温度差が出き、表面は張力を
受ける。したがって、金型温度が低すぎ、ガラスレンズ
と金型との接触面の温度が低くて、上記張力の大きさが
ガラスの強度以上になると、ガラスは破壊することにな
る0通常、これはビリ、カンと呼ばれる。逆に、金型温
度が高すぎると、ガラスと金型が融着するかあるいは、
プレス後に変形を起こしやすくなる。Generally, in press molding, the surface layer of a glass lens is rapidly cooled and solidified during pressing, but the internal temperature is high and the temperature area becomes uneven, and the temperature of the solidified layer is on the surface and inside. There will be a difference and the surface will be under tension. Therefore, if the mold temperature is too low, the temperature of the contact surface between the glass lens and the mold is low, and the above tension exceeds the strength of the glass, the glass will break.Normally, this will cause the glass to break. , called Kang. Conversely, if the mold temperature is too high, the glass and mold may fuse or
Deformation tends to occur after pressing.
因って本発明者は、前記成形装置を使用したガラスレン
ズ30の成形方法において、これらの点に鑑みて、種々
の実験を行なうことにより、成形用金型1の温度を被成
形素材としてのガラス素材の転移点以下から転移点より
100℃低い温度範囲の温度で一定に保持し、この型温
にて押圧成形するとともにその加圧状態を成形されたガ
ラスレンズの温度が型温と均一になるまで保持した後、
型温をガラス転移点付近の温度まで上昇させることによ
り極めて寸法精度の高いガラスレンズを得ることができ
ることを知見したのである。Therefore, in the method of molding the glass lens 30 using the molding apparatus, the present inventor conducted various experiments in view of these points and determined the temperature of the mold 1 as a material to be molded. The temperature is kept constant in the range from below the transition point of the glass material to 100 degrees Celsius below the transition point, and press molding is performed at this mold temperature, and the temperature of the molded glass lens is kept uniform with the mold temperature. After holding until
They discovered that by raising the mold temperature to a temperature close to the glass transition point, it was possible to obtain a glass lens with extremely high dimensional accuracy.
即ち、実験によれば型温を、ガラス素材の転移点以下か
ら転移点より100℃低い温度範囲に保持することによ
り、ガラス素材と成形用金型の融着を防ぐことができ、
さらに、プレスした瞬間におけるガラスレンズ内部の温
度不均一を型内で加圧保持し続けることにより、ガラス
レンズ内部の温度を均一化するとともに、型温と同一に
した後、型内に保持したまま、型温を転移点付近まで昇
温させることにより、型の形状を高精度にガラスレンズ
に転写させ得ることが出来る。That is, experiments have shown that by maintaining the mold temperature within a temperature range from below the transition point of the glass material to 100 degrees Celsius below the transition point, it is possible to prevent the glass material and the mold from fusion.
Furthermore, by continuing to pressurize and hold the temperature inside the glass lens in the mold at the moment of pressing, the temperature inside the glass lens is made uniform, and after making it the same as the mold temperature, it is kept in the mold. By raising the mold temperature to near the transition point, the shape of the mold can be transferred to the glass lens with high precision.
以下には、前記成形装置を使用し、その成形方法におけ
る成形条件の具体例を実施例1.2として挙げることに
する。In the following, specific examples of molding conditions in the molding method using the above-mentioned molding apparatus will be given as Example 1.2.
実 施 例 1
前記成形装置におけるガラスレンズ30の成形方法にお
いて、そのガラス素材としてのガラスゴブ32にSF8
(転移点443℃)を使用するとともにこのガラスゴ
ブ32を予備加熱炉17で483℃で5分間加熱し1本
加熱炉16内で640℃で5分間加熱軟化せしめた後、
型温400℃に保持した上下型2,3間に搬入し、プレ
ス圧力110 kgw/cm2で1分間押圧成形した後
、プレス圧力を40 kgw/cm2に減圧させて、型
温を6℃/sinの速度で460℃まで昇温させ、て、
徐歪温度領域(転移温度より徐歪点温度に設定された領
域)を15分間通過させることにより、20℃/sin
で室温まで降温させることによりガラスレンズ30を成
形した。第4図aは前記型温400℃で1分間押圧成形
した直後のガラスレンズ30の反射波面を示し、第4図
すは、前記460℃まで型温を昇温して押圧成形し、徐
冷炉15を通過させた後のガラスレンズの反射波面であ
り、第4図Cは金型1の成形面の反射波面を示すもので
ある。Example 1 In the method of molding a glass lens 30 in the molding apparatus, SF8 is added to the glass gob 32 as the glass material.
(transition point: 443°C), and heated this glass gob 32 at 483°C for 5 minutes in the preheating furnace 17, and softened it by heating at 640°C for 5 minutes in the heating furnace 16.
It was carried between the upper and lower molds 2 and 3, which were maintained at a mold temperature of 400°C, and press-molded for 1 minute at a press pressure of 110 kgw/cm2, then the press pressure was reduced to 40 kgw/cm2, and the mold temperature was reduced to 6°C/sin. Raise the temperature to 460℃ at a rate of
20℃/sin by passing through a slow strain temperature region (a region set to a slow strain point temperature lower than the transition temperature) for 15 minutes.
The glass lens 30 was molded by lowering the temperature to room temperature. FIG. 4a shows the reflected wavefront of the glass lens 30 immediately after press molding at the mold temperature of 400° C. for 1 minute, and FIG. 4C shows the reflected wavefront of the molding surface of the mold 1. FIG.
第4図a −Cの各図によりガラスレンズ30の成形過
程における転写具合の変化を知ることができ金型2の成
形面が高精度に転写されていることが解る。From the figures in FIGS. 4A to 4C, changes in the transfer condition during the molding process of the glass lens 30 can be seen, and it can be seen that the molding surface of the mold 2 is transferred with high precision.
尚、前記成形装置によるガラスレンズ30の成形に当っ
ては押圧成形を非酸化性雰囲気中にて遂行する1例えば
、押圧成形用金型1の成形部を脱気しつつヘソウム、ア
ルゴン、キセノン、窒素するいは水素−窒素混合気体を
導入することにより非酸化性雰囲気を構成して成形を遂
行する。When molding the glass lens 30 using the molding apparatus, press molding is performed in a non-oxidizing atmosphere. Molding is performed in a non-oxidizing atmosphere by introducing nitrogen or a hydrogen-nitrogen mixed gas.
実 施 例 2
前記成形装置により、ガラス素材としてSF11(転移
点485℃)を使用した。この時の成形条件の設定とし
ては、予備加熱炉17で525℃で90秒加熱した後1
本加熱炉16で680℃で90秒加熱したガラスゴブ3
2を型温430℃に保持した上下型2.3間に搬入し、
プレス圧力110 kgw/c■2で30秒間押圧成形
した後、プレス圧力を55 kgw/cm2 に減圧さ
せて、型温を6℃/minの速度で490℃まで昇温さ
せ。Example 2 SF11 (transition point: 485° C.) was used as a glass material using the above-mentioned molding device. The molding conditions at this time were to be heated at 525°C for 90 seconds in the preheating furnace 17, then heated at 525°C for 90 seconds.
Glass gob 3 heated at 680°C for 90 seconds in the main heating furnace 16
2 is carried between the upper and lower molds 2 and 3 kept at a mold temperature of 430℃,
After press molding for 30 seconds at a press pressure of 110 kgw/cm2, the press pressure was reduced to 55 kgw/cm2, and the mold temperature was raised to 490°C at a rate of 6°C/min.
型温か490 ’Oに達した時点で型内から離型部材4
.5を介して取り出し、徐冷炉15内において、除歪温
度領域を15分間通過させることにより20℃/min
で室温まで降温させた。この様にして、成形されたガラ
スレンズ30は第、l実施例同様金型の成形面が高精度
に転写された光学ガラス部材であった。When the mold temperature reaches 490'O, release member 4 is removed from the mold.
.. 5 and passed through the strain relief temperature range in the slow cooling furnace 15 for 15 minutes at 20°C/min.
The temperature was lowered to room temperature. The glass lens 30 thus molded was an optical glass member on which the molding surface of the mold was transferred with high precision, similar to the first embodiment.
[発明の効果]
本発明の光学ガラス部品の成形方法によれば、従来技術
では1問題であった、ガラスの金型への融着も、金型温
度を転移点以下から転移点より100℃低い温度範囲に
保持することにより、解決することができ、さらに、プ
レスしたガラスレンズを金型温度と均一にした後、転移
点付近まで昇温して成形するという成形過程をふむこと
により、ヒケや折れ込み等のない、高精度の光学ガラス
部品を成形することができる。[Effects of the Invention] According to the method for molding optical glass parts of the present invention, the melting of the glass to the mold, which was a problem with the prior art, can be solved by changing the mold temperature from below the transition point to 100°C above the transition point. This problem can be solved by maintaining the temperature in a low temperature range.Furthermore, the shrinkage problem can be solved by using a molding process in which the pressed glass lens is heated to a temperature close to the transition point after being made uniform with the mold temperature. It is possible to mold high-precision optical glass parts without folds or folds.
第1図は本発明方法の実施に使用する成形装置の概略説
明図、第2図および第3図はif図示の成形装置におけ
るガラスレンズの成形工程を示す説明図、i4図a、b
、cは各成形工程におけるガラス素材の成形面ト押圧成
形用金型の成形面における反射波面を示す図である。
1・・・押圧成形用金型
2.3・・・上下型
4.5・・・離型部材
14・・・加熱炉
15・・・徐冷炉
30・・・ガラスレンズ
32・・・ガラスゴブFig. 1 is a schematic explanatory diagram of a molding apparatus used to carry out the method of the present invention, Figs. 2 and 3 are explanatory diagrams showing the glass lens molding process in the molding apparatus shown in the if diagram, and i4 Figures a and b.
, c are diagrams showing reflected wavefronts at the molding surface of the glass material and the molding surface of the press molding die in each molding process. 1...Mold for press molding 2.3...Upper and lower molds 4.5...Mold release member 14...Heating furnace 15...Learning furnace 30...Glass lens 32...Glass gob
Claims (5)
もに前記光学ガラス部品の成形用金型の温度を、前記ガ
ラス素材の転移点以下から転移点より100℃低い温度
範囲の温度に保持した後、当該成形用金型内に前記加熱
軟化後のガラス素材を搬入し非酸化性雰囲気中にて押圧
成形するとともに当該成形用金型内における押圧成形後
の光学ガラス成形品を成形用金型内に加圧保持しつつ成
形用金型の型温を前記ガラス素材の転移点付近まで昇温
し、しかる後離型することにより成形することを特徴と
する光学ガラス部品の成形方法。(1) After heating and softening the glass material of the optical glass component and maintaining the temperature of the mold for molding the optical glass component within a temperature range from below the transition point of the glass material to 100 degrees Celsius lower than the transition point, The glass material after being heated and softened is carried into the molding die and press-molded in a non-oxidizing atmosphere, and the optical glass molded product after being press-molded in the molding die is placed into the molding die. A method for molding an optical glass component, characterized in that molding is carried out by raising the mold temperature of a molding die to around the transition point of the glass material while maintaining pressure, and then releasing the mold.
成形用金型の押圧成形時の型温を 400℃に保持して成形することを特徴とする特許請求
の範囲第1項記載の光学ガラス部品の成形方法。(2) The optical glass component according to claim 1, wherein the glass material is made of SF8 and the mold temperature of the press molding mold is maintained at 400°C during press molding. molding method.
圧成形用金型の押圧成形時の型温を 430℃に保持して成形することを特徴とする特許請求
の範囲第1項記載の光学ガラス部品の成形方法。(3) The optical glass component according to claim 1, characterized in that the glass material is SF11 and the mold temperature of the press molding mold is maintained at 430°C during press molding. molding method.
するとき、プレス圧力110kg/cm^2で一分間押
圧成形した後、プレス圧力を 40kg/cm^2に減圧させて、型温を6℃/min
の速度にて460℃まで昇温させることにより成形する
ことを特徴とする特許請求の範囲第1項記載の光学ガラ
ス部品の成形方 法。(4) To raise the temperature after the press molding, when the glass material is SF8, after press molding for 1 minute at a press pressure of 110 kg/cm^2, the press pressure is reduced to 40 kg/cm^2, and the mold temperature is increased. 6℃/min
A method for molding an optical glass component according to claim 1, characterized in that the molding is carried out by raising the temperature to 460° C. at a rate of .
とするとき、プレス圧力110kg/cm^2で30秒
間押圧成形した後、プレス圧力を55kg/cm^2に
減圧させて、型温を6℃/minの速度にて490℃ま
で昇温させることにより成形することを特徴とする特許
請求の範囲第1項記載の光学ガラス部品の成形方 法。(5) The temperature increase after the press molding is such that the glass material is heated to SF11.
In this case, after press molding at a press pressure of 110 kg/cm^2 for 30 seconds, reduce the press pressure to 55 kg/cm^2 and raise the mold temperature to 490 °C at a rate of 6 °C/min. 2. A method for molding an optical glass component according to claim 1, wherein the molding is performed by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12863185A JPS61286232A (en) | 1985-06-13 | 1985-06-13 | Molding method for optical glass parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12863185A JPS61286232A (en) | 1985-06-13 | 1985-06-13 | Molding method for optical glass parts |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61286232A true JPS61286232A (en) | 1986-12-16 |
Family
ID=14989584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12863185A Pending JPS61286232A (en) | 1985-06-13 | 1985-06-13 | Molding method for optical glass parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61286232A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5873921A (en) * | 1994-09-09 | 1999-02-23 | Hoya Precisions Inc. | Process for manufacturing glass optical elements |
US6230520B1 (en) | 1997-07-18 | 2001-05-15 | Hoya Corporation | Process for preparation of glass optical elements |
-
1985
- 1985-06-13 JP JP12863185A patent/JPS61286232A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5873921A (en) * | 1994-09-09 | 1999-02-23 | Hoya Precisions Inc. | Process for manufacturing glass optical elements |
US6009725A (en) * | 1994-09-09 | 2000-01-04 | Hoya Precision Inc. | Process for manufacturing glass optical elements |
US6564584B2 (en) * | 1994-09-09 | 2003-05-20 | Hoya Corporation | Process for manufacturing glass optical elements |
US6810686B2 (en) | 1994-09-09 | 2004-11-02 | Hoya Corporation | Process for manufacturing glass optical elements |
US6230520B1 (en) | 1997-07-18 | 2001-05-15 | Hoya Corporation | Process for preparation of glass optical elements |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6564584B2 (en) | Process for manufacturing glass optical elements | |
JPH0471853B2 (en) | ||
JPS61286232A (en) | Molding method for optical glass parts | |
JP3886022B2 (en) | Method and apparatus for producing glass molded body | |
JP3967146B2 (en) | Optical element molding method | |
JPH01148717A (en) | Forming device of optical element | |
JPS61251529A (en) | Method of high precision molding for glass optical part | |
JP2790547B2 (en) | Glass material manufacturing method | |
JPH06144845A (en) | Method for forming glass optical element | |
JPS63248727A (en) | Production of glass molded article | |
JPH05286728A (en) | Production of glass lens | |
JPH0455980B2 (en) | ||
JP2718452B2 (en) | Glass optical element molding method | |
JP2746454B2 (en) | Optical element molding method | |
JPH09235124A (en) | Material for forming optical element and apparatus for producing the same | |
JPH0372016B2 (en) | ||
JP3184584B2 (en) | Glass lens molding method | |
JPH01224234A (en) | Press molding device of glass | |
JP3387635B2 (en) | Optical element manufacturing method | |
JPS6374926A (en) | Forming of optical glass part | |
JP2023127555A (en) | Method for manufacturing flat-plate-like glass, device for manufacturing the same, and method for manufacturing glass substrate | |
JPH05254851A (en) | Method for forming optical glass element | |
JPH04149032A (en) | Production of optical glass formed body and method and device for producing optical glass element | |
JPH0741327A (en) | Optical element forming method | |
JPH0648749A (en) | Production of ring-shaped lens and device therefor |