JPS61132525A - Forming of optical glass part - Google Patents

Forming of optical glass part

Info

Publication number
JPS61132525A
JPS61132525A JP25258884A JP25258884A JPS61132525A JP S61132525 A JPS61132525 A JP S61132525A JP 25258884 A JP25258884 A JP 25258884A JP 25258884 A JP25258884 A JP 25258884A JP S61132525 A JPS61132525 A JP S61132525A
Authority
JP
Japan
Prior art keywords
molding
optical glass
mold
glass
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25258884A
Other languages
Japanese (ja)
Other versions
JPH0455980B2 (en
Inventor
Koji Hakamazuka
康治 袴塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP25258884A priority Critical patent/JPS61132525A/en
Publication of JPS61132525A publication Critical patent/JPS61132525A/en
Publication of JPH0455980B2 publication Critical patent/JPH0455980B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/005Pressing under special atmospheres, e.g. inert, reactive, vacuum, clean
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/66Means for providing special atmospheres, e.g. reduced pressure, inert gas, reducing gas, clean room

Abstract

PURPOSE:To obtain an optical glass part having stable optical characteristics, at a low cost, by placing a molding material of the optical glass part on a transfer table, inserting the material between a pair of molds, and molding in a nonoxidizing atmosphere. CONSTITUTION:A molding material 52 of an optical glass part is placed on a receiving part 33 of a gob table 31 having excellent releasability, clamps 38a and 39a of the transfer members 38, 39, inserted into a heating furnace 34, and heated at the transition point or thereabout, and the gob table 31 is placed on the supporting table 30. The upper and lower molds 21, 22 of the compression molding molds 20 are operated in a nonoxidizing atmosphere, the lower mold 22 is lifted along the guiding member 26 to receive and push up the material 52 with the forming face 22 of the lower mold 22, and at the same time, the upper mold 21 is lowered along the guide member 25 to effect the compression molding of the material between the forming faces 21a, 22a of the molds 21, 22. After the compression molding, the lower mold 22 is retracted downward, and at the same time, the releasing part 24 is slidden up along the outer circumference of the lower mold, the contacting surface 24a of the releasing part 24 is made to contact with the circumferential edge 51 of the glass lens, and the lens is released from the forming face 22a. Thereafter, the releasing member 23 of the upper mold 21 is lowered to release the lens from the forming face 21a.

Description

【発明の詳細な説明】 技術分野 本発明は光学ガラス部品の成形素材を加熱軟化した後、
成形用金型にて押圧成形する光学ガラス部・品の成形方
法に関するものである。
[Detailed Description of the Invention] Technical Field The present invention relates to a method for heating and softening a molding material for optical glass parts.
The present invention relates to a method for molding optical glass parts and articles by press molding using a mold.

従来技術 従来、レンズ、プリズム、フィルター等の光iガラス部
品の多くは、ガラス等の光学ガラス部品の成形素材の研
磨処理を主とした方法によって形成されてきた。しかし
ながら、この研磨処理には相当な時間および熟練技術が
必要とされ、特に、非球面レンズを研磨処理によって形
成するには、一層高度な研磨技術が要求され、かつ処理
時間も長くなり、短時間に大量の光学ガラス部品を製造
することは困難であった。
BACKGROUND OF THE INVENTION Conventionally, many optical i-glass components such as lenses, prisms, and filters have been formed by a method that mainly involves polishing a molding material for optical glass components such as glass. However, this polishing process requires a considerable amount of time and skill, and in particular, forming an aspherical lens by polishing requires an even more advanced polishing technique and requires a longer processing time. It was difficult to manufacture optical glass parts in large quantities.

そこで、一対の成形用金型内に光学ガラス部品の成形素
材を挿入配置し、これを加圧するだけでレンズ等の光学
ガラス部品を成形する方法が開発実施され注目されてい
る。
Therefore, a method for molding optical glass parts such as lenses by simply inserting and arranging a molding material for optical glass parts into a pair of molds and applying pressure has been developed and is attracting attention.

而して、光学ガラス部品の加圧成形法には、一般的にリ
ヒートプレス法とダイレクトプレス法がある。リヒート
プレス法は、予め溶融固化した光学ガラス部品の成形素
材としての例えばガラス素材の必要量を計りとり、これ
を所定の温度に加熱して軟化させてから成形用金型内に
投入しこれを加圧して光学ガラス部品を成形する方法で
ある。
Pressure molding methods for optical glass parts generally include a reheat press method and a direct press method. In the reheat press method, the required amount of glass material, for example, as a molding material for optical glass parts that has been melted and solidified in advance is measured, heated to a predetermined temperature to soften it, and then put into a mold for molding. This is a method of molding optical glass parts by applying pressure.

しかるに、このリヒートプレス法は、ガラス粘度と金型
温度の関係について明確にされていなかったため、固着
やヒケ及び折れ込み等の各種問題を引き起し安定した高
精度光学ガラス部品の成形が不可能であった。
However, this reheat press method did not clarify the relationship between glass viscosity and mold temperature, which caused various problems such as sticking, sink marks, and folding, making it impossible to stably mold high-precision optical glass parts. Met.

他方、ダイレクトプレスによる成形方法は従来wg1図
示の方法により実施されるもので以下にその具体的な方
法について説明する。
On the other hand, the direct press molding method is conventionally carried out by the method shown in WG1, and the specific method will be described below.

先づ、方法を実施するための装置について説明すると、
ガラス溶融炉(図示省略)と接続構成されたオリフィス
1の下方位置には主軸2を介して回転駆動、停止自在に
構成されたマータリーテーブル3が配設されて巧り、こ
のロータリーテーブル3上には溶融ガラス成形用の下M
4.5.6.7が円周を4等分する位置にそれぞれ4個
配設されている。そして、ロータリーテーブル3が停止
した状態、即ち、レンズ成形開始前においては、下型4
(図において左側の下型)の上方位置には前記オリフィ
ス1の開口部8が臨むように設定構成されており、この
下M4と隣接する下型5の上方位置には、下型5と協働
して下型5内の溶融ガラス9を押圧成形するためのプラ
ンジャー10が上下方向摺動自在に配設されている。ま
た、h記オリフィス1の開口部8とその下方位置の下型
4との間には、開口部8から流動垂下する溶融ガラス9
を所定量にて切断すべく開閉動作自在に構成された切断
挾11が配設されている。前記ロータリーテーブル3は
、45度づつ回転、停止を緩り返すように制御されてお
り、下型4が45度づつ4回回転、停止を繰り返して元
の位置に復元された際に、1行程が終了するように構成
されている。
First, I will explain the equipment for carrying out the method.
Below the orifice 1, which is connected to a glass melting furnace (not shown), there is provided a rotary table 3 which can be rotated and stopped via a main shaft 2. Lower M for molten glass molding
4, 5, 6, and 7 are arranged at positions that equally divide the circumference into four. When the rotary table 3 is stopped, that is, before starting lens molding, the lower mold 4
The configuration is such that the opening 8 of the orifice 1 faces the upper position (lower mold on the left side in the figure), and the upper position of the lower mold 5 adjacent to the lower mold 5 is located in cooperation with the lower mold 5. A plunger 10 is provided so as to be slidable in the vertical direction. Further, between the opening 8 of the orifice 1 marked h and the lower mold 4 located below it, molten glass 9 flowing and hanging down from the opening 8 is provided.
A cutting peg 11 is provided that can be opened and closed to cut a predetermined amount. The rotary table 3 is controlled to slowly rotate and stop in 45 degree increments, and when the lower mold 4 repeats 45 degree increments and stops four times and is restored to its original position, one stroke is completed. is configured to end.

前記装置によりレンズを成形する方法について説明する
と、まず、オリフィス1から溶融ガラス9を下型4内に
流動重下せしめ、適シにて切断挾11を介して溶融ガラ
ス9を切断する。次に、ロータリーテーブル3を図にお
いて反時計方向に45度回転させた後に停止させ、溶融
ガラス9を充填した下型4をプランジャー10の真下位
置まで移動せしめる。そして、その状態でプランジャー
10を下動せしめ、このプランジャー10と下型4との
S動作用により溶融ガラス9を押圧せしめ、溶融ガラス
9の押圧成形を行なう。この場合には、溶融ガラス9の
熱はプランジャー10により奪われる。
To explain the method of molding a lens using the above-mentioned apparatus, first, the molten glass 9 is made to flow down into the lower mold 4 from the orifice 1, and the molten glass 9 is cut through the cutting scissor 11 with a cutting tool. Next, the rotary table 3 is rotated 45 degrees counterclockwise in the figure and then stopped, and the lower mold 4 filled with molten glass 9 is moved to a position directly below the plunger 10. Then, in this state, the plunger 10 is moved downward, and the molten glass 9 is pressed by the S operation of the plunger 10 and the lower die 4, thereby performing press molding of the molten glass 9. In this case, the heat of the molten glass 9 is removed by the plunger 10.

押圧成形後は、プランジャー10を上動せしめた後にロ
ータリーテーブル3を図において反時計方向に45度回
転せしめて停止する。即ち、図における下型6の位置に
て下型4が停止することになる。この停止位置では何の
作業も行なわず、成形ガラス(成形レンズ)9の形状維
持のみを行なう0 そして、ロータリーテーブル3をさらに45度回転させ
た位置、即ち、図における下型Tの位置にて下型4を停
止せしめ、下方から下型4内の成形レンズ9を突き上げ
て成形レンズ9を取り出してレンズの成形方法が完了す
る。
After press molding, the plunger 10 is moved upward, and then the rotary table 3 is rotated 45 degrees counterclockwise in the figure and then stopped. That is, the lower mold 4 stops at the position of the lower mold 6 in the figure. At this stop position, no work is performed, and only the shape of the molded glass (molded lens) 9 is maintained.Then, the rotary table 3 is further rotated by 45 degrees, i.e., at the position of the lower mold T in the figure. The lower mold 4 is stopped, the molded lens 9 inside the lower mold 4 is pushed up from below, and the molded lens 9 is taken out, thereby completing the lens molding method.

前記レンズの成形方法は、各下型4.5.6.7にてそ
れぞれ行なわれるものであり、それにより、レンズが連
続的に成形されるものである。
The lens molding method is carried out using each lower mold 4, 5, 6, and 7, so that the lenses are molded continuously.

下型4から取り出された成形レンズ9は、図示を省略し
ている徐冷炉中に入れられ、温度勾配置つけて歪を防止
しつつ常温にまで冷却される。
The molded lens 9 taken out from the lower mold 4 is placed in a slow cooling furnace (not shown) and cooled to room temperature while being placed under a temperature gradient to prevent distortion.

しかしながら、前記ダイレクトプレスによる成形方法に
おいては、次の如き問題点があった。
However, the direct press molding method has the following problems.

第1に溶融ガラスを10”ポアズ程度の高温状態で下型
中に流動垂下せしめなければならず、そのために、オリ
フィス1、切断挾11、下型4.5.6.7及びプラン
ジャー10等の各部材が酸化し易く、これら各部材の特
命が短命化するという問題点があった。
First, the molten glass must be allowed to flow down into the lower mold at a high temperature of about 10" poise, and for this purpose, the orifice 1, cutting peg 11, lower mold 4.5.6.7, plunger 10, etc. There was a problem in that each member was easily oxidized, and the lifespan of each member was shortened.

第2に成形時に溶融ガラス9から熱を均一に奪いに<<
、落下ガラス流表面は、外気に接して低温となり、粘度
が増大し、このことと自由落下ガラス流の比較的速い落
下速度とあいまって、ガラス流が流入位置で陥没流を形
成して折れ込みや泡等を生じ易いという問題点があった
Second, to uniformly remove heat from the molten glass 9 during molding.
, the surface of the falling glass flow becomes cold when it comes into contact with the outside air, and its viscosity increases. This, combined with the relatively high falling speed of the free-falling glass flow, causes the glass flow to form a sinking flow at the inlet position and fold. There was a problem that it was easy to generate bubbles and the like.

第3にガラスの粘度が低粘度(高温)であるため、金型
表面が條化され反応し易い、そのため、金型の劣化が激
しく、成形後の光学ガラス部品が離型しに<<、生産効
率が悪いという問題点がある。
Thirdly, since the viscosity of glass is low (high temperature), the mold surface becomes rough and easily reacts, which causes severe deterioration of the mold and prevents optical glass parts from releasing from the mold after molding. There is a problem of poor production efficiency.

第4に、プランジャー10を成形温度(成形に適した温
度)に保ちに<<、そのためにプランジャー10を冷却
する装置が必要となり、装置が複雑化するという欠点が
あった。
Fourthly, in order to maintain the plunger 10 at a molding temperature (temperature suitable for molding), a device for cooling the plunger 10 is required, making the device complicated.

発明の目的 本発明は、前記従来の成形方法における問題点に鑑みて
開発されたもので、成形用金型の寿命を延命化させると
ともに離型性を向上させ、かつ成形条件を一定にするこ
とにより、光学特性の安定した光学ガラス部品を大針、
安価に製造することのできる光学ガラス部品の成形方法
を提供せんとするものである。
Purpose of the Invention The present invention was developed in view of the problems in the conventional molding method, and aims to prolong the life of a mold, improve mold releasability, and keep molding conditions constant. This allows us to produce optical glass parts with stable optical properties.
It is an object of the present invention to provide a method for molding optical glass parts that can be manufactured at low cost.

発明の概要 本発明は、非酸化性雰囲気中で貫入法による粘度一温度
曲線により求めた変曲点(以下クニック点という)付近
の温度に加熱軟化した光学ガラス部品の成形素材を、当
該成形素材の転移温度付近の温度に加熱した光学部品の
成形用金型間に挿入した後、押圧成形することを特徴と
する光学ガラス部品の成形方法である。
SUMMARY OF THE INVENTION The present invention provides a method for forming a molded material for an optical glass component that has been softened by heating to a temperature near an inflection point (hereinafter referred to as a "knick point") determined by a viscosity-temperature curve obtained by an intrusion method in a non-oxidizing atmosphere. This is a method for molding an optical glass component, which comprises inserting the optical component between molding molds heated to a temperature near the transition temperature of , and then press-molding the component.

実 1jff4   例 以下本発明の成形方法を図面とともに説明する。Actual 1jff4 example The molding method of the present invention will be explained below with reference to the drawings.

栴4図は本発明成形方法の実施に直接使用する装置の概
要を示すもので、同図において、20は上型21、下型
22の一対の金型から成る光学ガラス部品としてのガラ
スレンズ50の押圧成形用金型で、当型金型20の上下
両型21.22は、それぞれの外周において上下方向に
摺動自在な離型部材23.24を具備するとともに上下
両型21.22自体が上下方向に摺動自在に、それぞれ
ガイド部材25.26に支持されつつ対向配置されてい
る。
Figure 4 shows an outline of the apparatus directly used for carrying out the molding method of the present invention. In the figure, 20 denotes a glass lens 50 as an optical glass component consisting of a pair of molds, an upper mold 21 and a lower mold 22. In this press molding mold, both the upper and lower molds 21.22 of the mold 20 are provided with release members 23.24 that are slidable in the vertical direction on their respective outer peripheries, and the upper and lower molds 21.22 themselves are are arranged to face each other while being supported by guide members 25 and 26, respectively, so as to be slidable in the vertical direction.

また、上下両型21.22はそれぞれの対向方向に可動
する図示しない駆動部に連結されている。
Further, both the upper and lower molds 21 and 22 are connected to drive parts (not shown) that move in opposite directions.

さらに、上下両型21.22は、その表面を窒化クロム
または窒化チタン等の被膜にて被覆された13クロム系
ステンレス部材またはその他の超硬質部材にて形成する
とともに離型部材23.24は、上下両型21.22の
成形面にて押圧成形後のガラスレンズ50の外周縁51
との接触面23!、24eLにカーボンおよびガラス繊
維から成る織布部またはアルミナウールから成る織布部
を設けた弾性の少ない剛体部材にて形成しである。
Further, both the upper and lower molds 21.22 are made of 13 chromium stainless steel or other ultra-hard material whose surfaces are coated with a film of chromium nitride or titanium nitride, and the mold release members 23.24 are made of The outer peripheral edge 51 of the glass lens 50 after press molding on the molding surfaces of both the upper and lower molds 21 and 22
Contact surface 23! , 24eL is made of a rigid member with low elasticity and has a woven fabric part made of carbon and glass fibers or a woven fabric part made of alumina wool.

30は成形素材としてのガラスゴブ52を、当該ガラス
ゴブ52のゴブ台31を介して支持する載置台で、前記
押圧成形用金型20の上下両型21.22間に架設され
ている。
A mounting table 30 supports a glass gob 52 as a molding material via a gob stand 31 of the glass gob 52, and is installed between the upper and lower molds 21 and 22 of the press molding mold 20.

また、ゴブ台31は中央に、前記押圧成形用金型20の
下型21の外径より大径の通孔32を設けるとともに通
孔32の上側開口縁部に段部から成るガラスゴブ52の
係止縁を形成して、ガラスゴブ52の受部33を形成し
である。
Further, the gob stand 31 is provided with a through hole 32 in the center thereof having a diameter larger than the outer diameter of the lower mold 21 of the press molding die 20, and a glass gob 52 consisting of a stepped portion is engaged with the upper opening edge of the through hole 32. A retaining edge is formed to form a receiving portion 33 for the glass gob 52.

さらに、このゴブ台31は、後述する如く加熱炉中にお
いて、これの受部33に受けて保持するガラスゴブ52
とともにガラスゴブ52のクニック点付近の温度に加熱
されるものであるから、これに耐え得る耐熱性を有する
材料にて形成するとともに加熱軟化されるガラスゴブ5
2との離型性を有する受部33の構成から成るものであ
る。
Further, this gob stand 31 has a glass gob 52 which is received and held in a receiving part 33 of the gob stand 31 in a heating furnace as described later.
Since the glass gob 52 is heated to a temperature near the knick point thereof, the glass gob 5 is made of a material having heat resistance that can withstand this temperature and is softened by heating.
It consists of a receiving part 33 that has a mold releasability from 2.

すなわち、このゴブ台31はガラスと濡れにくい性質を
有する材料、例えばBN(窒化ホウ素)や一部カーボン
と高分子が複合したg金材料により形成されている。
That is, the gob stand 31 is made of a material that does not easily wet with glass, such as BN (boron nitride) or g-gold material, which is a composite of a portion of carbon and a polymer.

34.35は、ガラスゴブ52の載置台30の左右両側
部に対向配置されたガラスゴブ52の加熱炉および押圧
成形用金型20の上下両型21.22間にて押圧成形さ
れた後のガラスレンズ50の徐冷炉である。
34.35 is a glass lens that has been press-molded between the heating furnace of the glass gob 52 and the upper and lower molds 21 and 22 of the press-molding mold 20, which are arranged opposite to each other on the left and right sides of the mounting table 30 for the glass gob 52. 50 slow cooling furnaces.

また、加熱炉34には予備加熱炉36および本加熱炉3
7を装備するとともに加熱炉34と徐冷炉35にはガラ
スゴブ52を受部33に係合したゴブ台31を先端の挾
持部38.!!、3!l!にて挾持しつつ搬送する一対
の搬送部材38.39をそれぞれ前後方向に移動自在に
内装し、かつ徐冷炉35には押圧成形用金型20の上下
両型21.22にて押圧成形し離型後のガラスレンズ5
0を徐冷炉35中に搬送する搬送部材40を前後方向に
移動自在に内装しである。
The heating furnace 34 also includes a preliminary heating furnace 36 and a main heating furnace 3.
7, and the heating furnace 34 and the slow cooling furnace 35 are equipped with a gob stand 31 with a glass gob 52 engaged in the receiving part 33, and a holding part 38. ! ! , 3! l! A pair of conveying members 38 and 39 are installed inside the annealing furnace 35 so as to be able to move freely in the front and rear directions, and the conveying members 38 and 39 are conveyed while being held in the annealing furnace 35. rear glass lens 5
A conveying member 40 for conveying 0 to an annealing furnace 35 is installed inside the conveying member 40 so as to be movable in the front and rear directions.

また、搬送部材40の先端部40αには、@5図に示す
如く離型されるガラスレンズ50を受は入れる受は合4
1を有するとともに受は台41内には離型後のガラスレ
ンズ50との木型性を考慮してカーボンとガラス繊維の
織布部を設けである。
In addition, the distal end portion 40α of the conveying member 40 has a receiver for receiving the glass lens 50 to be released from the mold as shown in Figure @5.
1, and a woven fabric part of carbon and glass fiber is provided in the base 41 in consideration of the wooden shape of the glass lens 50 after being released from the mold.

以上の構成から成る成形装置により、本発明の成形方法
を適用しつつガラスレンズ50を成形する場合には、ゴ
ブ台31の受部33にガラスゴブ52を係止せしめつつ
載置するとともにこれを一対の搬送部材38.39の挾
持部38α、39α間に挾持しつつ加熱炉34中に搬入
するとともに加熱炉34の予備加熱炉36および本加熱
炉37を介して、ガラスゴブ52を加熱軟化せしめた後
第4図示の状態のようにゴブ台31をNN台30上側に
載置し、ゴブ台31のガラスゴブ52を押圧成形用金型
20の上下両型21.22間に搬入する。
When molding the glass lens 50 using the molding apparatus having the above configuration while applying the molding method of the present invention, the glass gob 52 is placed while being locked on the receiving part 33 of the gob stand 31, and the glass gob 52 is placed in a pair. After carrying the glass gob 52 into the heating furnace 34 while being held between the holding parts 38α and 39α of the conveying members 38 and 39, the glass gob 52 is heated and softened through the preheating furnace 36 and the main heating furnace 37 of the heating furnace 34. As shown in the fourth figure, the gob stand 31 is placed on the upper side of the NN stand 30, and the glass gob 52 of the gob stand 31 is carried between the upper and lower molds 21 and 22 of the press molding die 20.

このガラスゴブ52の搬入に関連して、押圧成形用金型
20の上下両型21.22の駆動部が作動を開始し、ま
ず、上u21に先行して下型22が上型21との対向方
向にガイド部材26に沿って上動し、前記一対の搬送部
材38.39の挾持部38α、39αにて挾持されつつ
ゴブ台31の受部33に係止されているガラスゴブ52
を下型22の成形面22αにて受は止めつつゴブ台31
より突き上げる。
In connection with the conveyance of the glass gob 52, the driving parts of both the upper and lower molds 21 and 22 of the press molding die 20 start operating, and first, the lower mold 22 is moved opposite the upper mold 21 before the upper mold 21. The glass gob 52 moves upward along the guide member 26 in the direction of the glass gob 52 and is held by the holding portions 38α and 39α of the pair of conveying members 38 and 39, and is locked to the receiving portion 33 of the gob stand 31.
The gob stand 31 is stopped by the molding surface 22α of the lower mold 22.
Push up more.

この下型22の成形面22αに受は止めつつガラスゴブ
52をゴブ台31上より突き上げる下型22の上動に対
応して、前鉋上型21がガイド部材25に沿って下動し
、その上下両型21.22の成形面21α、22eL間
にてガラスゴブ52が押圧成形され、第5図αに示す通
り、ガラスレンズ50が成形される。
In response to the upward movement of the lower mold 22 that pushes up the glass gob 52 from above the gob stand 31 while retaining the receiver on the molding surface 22α of the lower mold 22, the front planer upper mold 21 moves downward along the guide member 25, and A glass gob 52 is press-molded between the molding surfaces 21α and 22eL of both the upper and lower molds 21.22, and a glass lens 50 is molded as shown in FIG. 5α.

そして、上下両型21.22の押圧成形後、第5図αに
示す通り、下型22の下動に関連して離型部24が下型
22の外周において上方に摺動し、その接触面244が
ガラスレンズ50の外周縁51に当接し、成形後のガラ
スレンズ50を下型22の成形部22αより離型する。
After the press molding of both the upper and lower molds 21 and 22, as shown in FIG. The surface 244 comes into contact with the outer peripheral edge 51 of the glass lens 50, and the molded glass lens 50 is released from the molding part 22α of the lower mold 22.

但し、この時、成形後のガラスレンズ50は上型21の
成形面21cL側に付着して保持されている。
However, at this time, the glass lens 50 after molding is attached and held on the molding surface 21cL side of the upper mold 21.

因で、前記上下両型21.22の協動によるガラスゴブ
52の押圧成形動作に関連して、前記一対の搬送部材3
8.39は加熱炉34および徐冷炉35内に後退すると
ともに、前記下型22の離型部材24によるガラスレン
ズ50の離型動作に伴って、下型22は上型21に先行
して再度下動し、第5図すに示す如く載置台30の下側
における第4図示の状態に復帰する。
Incidentally, in connection with the press-forming operation of the glass gob 52 by the cooperation of the upper and lower molds 21 and 22, the pair of conveying members 3
8.39 retreats into the heating furnace 34 and the slow cooling furnace 35, and as the mold release member 24 of the lower mold 22 releases the glass lens 50, the lower mold 22 is lowered again in advance of the upper mold 21. As shown in FIG. 5, it returns to the state shown in FIG. 4 below the mounting table 30.

また、この下型22がゴブ台31の通孔32中より下方
に下動するのを待って、徐冷炉35内より搬送部材40
が前方に移動し、その先端部40Gに備える受は台41
が上型21の下側にセットされ、同時に上型21の離型
部材23が、上型21の外周において下方に摺動し、そ
の当接面23αがガラスレンズ50の外周縁51に当接
してガラスレンズ50を成形面22αより離型する。
Further, after waiting for the lower die 22 to move downward from the inside of the through hole 32 of the gob stand 31, the conveying member 40 is moved from inside the lehr 35.
moves forward, and the receiver provided at the tip 40G is mounted on the stand 41.
is set on the lower side of the upper mold 21, and at the same time, the mold release member 23 of the upper mold 21 slides downward on the outer periphery of the upper mold 21, and its contact surface 23α abuts the outer peripheral edge 51 of the glass lens 50. Then, the glass lens 50 is released from the molding surface 22α.

従って、離型されたガラスレンズ50は、下側にセット
される搬送部材40の受は台41内にて受は止められ、
かつ搬送部材40の後退勤により徐冷炉35内に搬入さ
れて徐冷され、その後、図示しない搬出部材による所定
位置への搬出作業によりガラスレンズ50の成形を完了
することができ、以下同様にして連続したガラスレンズ
50の成形を遂行することができる。
Therefore, the released glass lens 50 is stopped in the tray 41 by the carrier member 40 set on the lower side.
When the conveying member 40 returns to work, the glass lens 50 is carried into the slow cooling furnace 35 and slowly cooled, and then carried out to a predetermined position by a carrying member (not shown) to complete the molding of the glass lens 50. The glass lens 50 can be formed using the following methods.

尚、前記ガラスレンズ50の徐冷炉35内における徐冷
は、除歪温度領域(転移温度より徐歪点温度に設定され
た領域)を15分間通過させることにより、20℃/−
で室温まで降温された。
The glass lens 50 is slowly cooled in the slow cooling furnace 35 at a temperature of 20° C./- by passing through a strain relief temperature region (a region set to a slow strain point temperature lower than the transition temperature) for 15 minutes.
The temperature was lowered to room temperature.

また、前記成形装置によるガラスレンズ50の成形に当
つ′ては、特に、以下に述べる実験結果により、押圧成
形を非酸化性雰囲気中にて遂行する、例えば、押圧成形
用金型20の成形部を脱気しつつヘリウム、アルゴン、
キセノン、窒素あるいは水素−窒素混合気体を導入する
ことにより非酸化性雰囲気を構成して成形を遂行する(
但し、前記実施例では窒素(Nりを5!/駆流入するこ
とにより実施した)とともに、ガラスゴブ52は側圧切
断した割断面又はダイレクトプレス等の加工方法により
予備成形された成形面を有するガラスゴブ52を使用し
、これを貫入法により求めた粘度一温度曲線のクニック
点付近の温度に加熱軟化し、さらに押圧成形用金型20
についてはガラス転移温度付近の温度に加熱しつつ遂行
することが成形条件として要求されることが判明した。
In addition, when molding the glass lens 50 using the molding apparatus, in particular, according to the experimental results described below, the press molding is carried out in a non-oxidizing atmosphere, for example, when molding the press mold 20. Helium, argon,
Molding is performed by creating a non-oxidizing atmosphere by introducing xenon, nitrogen, or a hydrogen-nitrogen mixed gas (
However, in the above embodiment, the glass gob 52 is a glass gob 52 having a cut surface cut by lateral pressure cutting or a molded surface preformed by a processing method such as direct pressing, in addition to nitrogen (this was carried out by injecting 5!/- of nitrogen). This is heated and softened to a temperature near the knick point of the viscosity-temperature curve determined by the penetration method, and then molded into a press molding die 20.
It has been found that the molding conditions require heating to a temperature close to the glass transition temperature.

すなわち、リヒートプレス法におけるガラス素材の成形
温度を決定するために各硝材について、貫入法により求
めた粘度一温度曲線のうち、重フリント系ガラス(SF
SOI)とバリウムランタン系ガラス(BcLLF3)
の特性を示すのが第2図α、bである。
In other words, among the viscosity-temperature curves obtained by the penetration method for each glass material in order to determine the molding temperature of the glass material in the reheat press method, heavy flint glass (SF
SOI) and barium lanthanum glass (BcLLF3)
Figure 2 α and b show the characteristics.

尚、貫入法の場合、貫入ピンおよびホルダーはニッケル
金属を用いた。
In the case of the penetration method, the penetration pin and holder were made of nickel metal.

第2図α、bより明らかな通り、PbO量のもつとも多
い重7リント系ガラス(SFSOl)は101・畠ポア
ズ付近にクニック点を示し、ノくリウムランタン系ガラ
ス(BgLF3)のクニック点の粘度は107・“ゴア
ズ付近であった。
As is clear from Figure 2 α and b, heavy 7-lint glass (SFSOl) with a large amount of PbO shows a knick point near 101 Hatake poise, and It was near 107・Gors.

加えて、各硝材によりクニック点の粘度は異なるが、ク
ニック点の粘度範囲はは!10“・1〜10?・1ポア
ズ内であった。
In addition, the viscosity at the knick point differs depending on the glass material, but the viscosity range at the knick point is ha! It was within 10"・1~10?・1 poise.

また、各硝材のクニック温度と成形用金型温度の関係を
下記の表Iに示す。
Further, Table I below shows the relationship between the knick temperature of each glass material and the mold temperature.

さらに、第3図は重7リント系ガラス(SFSol)の
各種材料に対する錦れ特性を示したもので、特に、5F
SO1の成形温度であるクニック点付近の温度490℃
での濡れ角は、各材料に対し、135°以上で滞れにく
いことを示している。
Furthermore, Figure 3 shows the brocade characteristics of heavy 7-lint glass (SFSol) for various materials, especially 5F.
The temperature near the knick point, which is the molding temperature of SO1, is 490°C
The wetting angle at 135° or more indicates that stagnation is difficult for each material.

つまり、これは、押圧成形用金型20の成形材料との関
係上、クニック点付近の粘度で成形するならば、押圧成
形用金型2Qに固着せずS型し易いことが判明した。
In other words, it has been found that due to the relationship with the molding material of the press molding die 20, if molding is performed with a viscosity near the knick point, it will not stick to the press molding die 2Q and will easily form an S shape.

また、成形温度を、第2図α、bの粘度一温度曲線のク
ニック点以上の温度に上がると濡れやすくなり、各材料
と固着し、離型しにくいこととなり、押圧成形後の光学
ガラス部品の面品質を劣化させることになる。
In addition, when the molding temperature is raised to a temperature higher than the knick point of the viscosity-temperature curve shown in Figure 2 α, b, it becomes easy to wet, adheres to each material, and becomes difficult to release from the mold. This results in deterioration of surface quality.

加えて、粘度一温度曲線のクニック点以上の温度では、
ガラス構造中の酸素アニオン状態が変化することがガラ
マン分光解析により確認され、ガラス成形の再現性は、
凝似ニュートニアン領域のはうが非ニュートニアン類域
での成形よりも優れていることが判明した。
In addition, at temperatures above the knick point of the viscosity-temperature curve,
It was confirmed by Galaman spectroscopic analysis that the oxygen anion state in the glass structure changes, and the reproducibility of glass forming is
It was found that the crawling in the condensed Newtonian region is superior to the shaping in the non-Newtonian region.

而して、か\る成形条件を適用しつつ、前記成形装置に
より、各ガラス素材、5FSO1(第5図a) 、Ba
LF3 (第6図A) 、Sr1 (蝉6図C> 、B
K7 (@6図d)を使用して成形したガラスレンズの
フィゾー干渉計による干渉像を第6図α〜dの各写真に
より示した。
While applying the above molding conditions, each glass material, 5FSO1 (Fig. 5a), Ba
LF3 (Fig. 6 A), Sr1 (Cicada Fig. 6 C>, B
The interference images of the glass lens molded using K7 (@Fig. 6 d) obtained by a Fizeau interferometer are shown in the photographs shown in Fig. 6 α to d.

か\る写真によって判明する如く、前記成形条件により
成形したガラスレンズは、押圧成形用金型の成形面か、
それ以上の面形状をもつことが明らかであるとともにこ
れを同じ屈折率の浸液につけ偏光顕微鏡で使討した結果
、歪が認められなかった。
As is clear from these photographs, the glass lens molded under the above molding conditions was formed on the molding surface of the press molding die.
It was clear that the surface shape was larger than that, and when it was immersed in an immersion liquid with the same refractive index and examined under a polarizing microscope, no distortion was observed.

さらに、5FSO1を成形素材として適用し、これのク
ニック点以上の温度、520℃に加熱軟化させて成形し
た場合の面形状には第7図αの写真に示される通り、ア
スが認められるとともにこれ以上の温度540℃にした
場合には成形後のガラスレンズの型への付着が認められ
た。
Furthermore, when 5FSO1 is applied as a molding material and molded by heating and softening it at a temperature above the knick point, 520°C, as shown in the photograph in Fig. 7 α, as shown in the photograph in Fig. When the temperature was set to 540° C., adhesion of the glass lens to the mold after molding was observed.

加えて、押圧成形用金型20の温度を、30℃低い温度
にして成形した場合、中おちしたフィゾー干渉像が得ら
れた。これを植1図6の写真にて示した。
In addition, when the temperature of the press molding die 20 was lowered by 30° C., a depressed Fizeau interference image was obtained. This is shown in the photograph in Plant 1 and Figure 6.

発明の効果 本発明の光学ガラス部品の成形方法によれば、成形粘度
が各種硝材の種類により異なるが10“・1鈴了ス以上
となり従来技術の溶融したガラスよりも高粘度であるこ
と及び粘度一温度曲線のクニック点以下の温度であるた
め、ガラス構造中の酸素アニオンが活性化せず、酸素ア
ニオンの金型に対する攻撃が少なく、その結果として金
型表面を強く酸化しないため金型寿命を延命化させ離型
性を向上させた。また、屏息ニュートニアン流体下の温
度により成形されるため、成形条件を一定にすれば安定
した光学特性の光学ガラス部品が得られるO 更に、金型温度をガラス転移温度付近に設定したことと
、ガラスの加熱温度を粘度一温度のクニック点に設定す
ることにより、成形素材としてのガラスの急激な構造変
化がなく、かつ金型温度が歪をとり易い温度に設定しで
あるため、従来技術よりも歪の少ない光学ガラス部品が
簡単に得られる。
Effects of the Invention According to the method for molding optical glass parts of the present invention, the molding viscosity varies depending on the type of glass material, but it is higher than 10".1 viscosity, which is higher than the molten glass of the prior art. Since the temperature is below the knick point of the temperature curve, oxygen anions in the glass structure are not activated, and the attack of oxygen anions on the mold is small.As a result, the mold surface is not strongly oxidized, which reduces the mold life. It extends life and improves mold releasability.In addition, since molding is performed at a temperature under a Newtonian fluid, optical glass parts with stable optical properties can be obtained by keeping molding conditions constant. By setting the temperature near the glass transition temperature and the heating temperature of the glass to the knick point where the viscosity is one temperature, there is no sudden structural change in the glass as a molding material, and the mold temperature is easily distorted. Since the temperature is set, optical glass components with less distortion than conventional techniques can be easily obtained.

以上の点を換言するに、第1に二二−トエアン流体で成
形されるため、従来技術に比してヒケや折れ込み及び泡
等の発生が防止できる。
To put the above point in another way, firstly, since it is molded using a 22-ton air fluid, the occurrence of sink marks, folds, bubbles, etc. can be prevented compared to the prior art.

嬉2に従来技術のように長時間徐冷する必要もなく、屈
折率調整をあまり必要としないため、短時間での成形を
可能ならしめる。
Secondly, there is no need for slow cooling for a long time as in the prior art, and there is no need for much adjustment of the refractive index, making it possible to mold in a short time.

桁3にこの成形方法によれば、従来技術のように溶融す
る程度まで加熱する必要がなく、従って上下型及びその
周辺装置部材を急激に酸化することなく部材の延命化が
できる。
According to this method of forming the girder 3, it is not necessary to heat the girder 3 to the extent that it melts as in the prior art, and therefore, the life of the upper and lower molds and their peripheral equipment members can be extended without rapidly oxidizing them.

第4に総合的な結果として、短時間で成形を可能とし、
再研磨等の後工程を必要とせず、製造コストを大幅に安
価にし品質の安定した光学ガラス部品の製造を可能にす
ることができる。
Fourth, as a comprehensive result, it is possible to mold in a short time,
There is no need for post-processes such as re-polishing, and the manufacturing cost can be significantly reduced, making it possible to manufacture optical glass parts with stable quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のガラスレンズの成形方法を示す成形装置
の斜視図、第2図α、bは5FSO1、BeLl、F3
の貫入法による粘度の温度依存性を示す線図、第3図は
5FSO1の各材料に対する語れ特性を示す線図、第4
図は本発明成形方法に使用する成形装置の概要図、第5
図α、bは押圧成形用金型による押圧成形状態と押圧成
形後のガラスレンズの離型状態を示す説明図、1g6図
α、b、C5cLは本発明成形方法によって得られた5
F801、BaLF3.3F8およびB K 7の各成
形素材により成形された各ガラスレンズにおける表面形
状の干渉像を示す写真、第7図α、bは、本発明成形方
法の成形条件よりずれた成形条件によって5FSO1を
成形素材として成形されたガラスレンズの表面形状の干
渉像を示す写真である。 20書O・押圧成形用金型 211」上 型 22・・・下 型 23.24・・・lIl型部材 25.26・#中ガイド部材 30・・・載置台 31・内・ゴブ台 32−・・通 孔 331」受 部 34@・・加熱炉 35−・−徐冷炉 36・・会予備加熱炉 37會・・本加熱炉 38.39.40@拳O搬送部材 41・・・受は台 50・・Φガラスレンズ 51・・・外周縁 52−・・ガラスゴプ 第4図 第5図 (、) (b) Σゴつニ°;ζ几嘗に変更なし) 第6図 ・(a)        (b) (c)(d) 図百の浄書(内容に変更なし) 第7図 (a)        (b) 手続補正書く方式) 昭和60年4月25日 1、事件の表示 昭和59年特許願第252588号 2、発明の名称 光学ガラス部品の成形方法 3、補正をする者 事件との関係  特許出願人 住 所  東京都渋谷区幡ケ谷2丁目43番2号4、代
理人 昭和60年3月6日 7、補正の内容 (1)明細書第24員第9行目及び同頁第7行目に夫々
記載する「写真、を「干渉パターン」と補正する。 (2)図面9第6図、第7図を別紙の通り補正する。 8、添付書類の目録 (1)補正図面       1通 手続補正書く自発) 特許庁長官  志 賀   学 殿 ■、事件の表示 昭和59年特許願第252588号 2、発明の名称 光学ガラス部品の成形方法 3、補正をする者 事件との関係  特許出願人 住 所  東京都渋谷区幡ケ谷2丁目43番2号4、代
理人 6、補正の対象 明細書の「発明の詳細な説明ヨの欄 7、補正の内容 (1)明細書第21頁第6行目、同頁第7行目、同頁第
7行目から第16行目に夫々記載する「写真」を「干渉
パターン、と補正する。 (2)明細書第22頁第1行目に記載する「写真、を「
干渉ノくターン、と補正する。
Figure 1 is a perspective view of a molding device showing a conventional glass lens molding method, Figure 2 α, b are 5FSO1, BeLl, F3
Figure 3 is a diagram showing the temperature dependence of viscosity according to the penetration method.
The figure is a schematic diagram of the molding apparatus used in the molding method of the present invention.
Figures α and b are explanatory diagrams showing the state of press molding by the press mold and the release state of the glass lens after press molding.
Photographs showing interference images of the surface shapes of glass lenses molded with F801, BaLF3.3F8, and BK 7 molding materials, Figure 7 α and b are molding conditions that are different from those of the molding method of the present invention 1 is a photograph showing an interference image of the surface shape of a glass lens molded using 5FSO1 as a molding material. 20 Book O・Pressure molding mold 211” Upper mold 22… Lower mold 23.24… IIl type member 25.26 #Medium guide member 30… Mounting table 31, Inner, Gob table 32-・・Through hole 331" Receiving part 34@... Heating furnace 35... 50... Φ Glass lens 51... Outer periphery 52 -... Glass gop Fig. 4 Fig. 5 (,) (b) ΣGotsuni°; No change in ζ几嘗) Fig. 6 (a) ( b) (c) (d) Engraving of Figure 100 (No change in content) Figure 7 (a) (b) Procedure amendment writing method) April 25, 1985 1, Indication of case 1988 Patent Application No. 252588 No. 2, Title of invention: Method for molding optical glass parts 3, Relationship with the amended case Patent applicant address: 2-43-2-4 Hatagaya, Shibuya-ku, Tokyo, Agent: March 6, 1985 7. Contents of amendment (1) "Photograph" written in line 9 of member 24 of the specification and line 7 of the same page is corrected to read "interference pattern." (2) Correct the figures 6 and 7 of Drawing 9 as shown in the attached sheet. 8. List of attached documents (1) Amended drawings (1 copy) Voluntary writing of procedural amendments) Mr. Manabu Shiga, Commissioner of the Japan Patent Office■, Indication of the case Patent Application No. 252588 filed in 1982 2. Name of the invention Method for molding optical glass parts 3 , Relationship with the case of the person making the amendment Patent applicant address 2-43-2-4 Hatagaya, Shibuya-ku, Tokyo, Agent 6 Contents (1) "Photograph" written in line 6, line 7 of page 21, and lines 7 to 16 of page 21 of the specification, respectively, is corrected to "interference pattern." (2 ) ``Photograph,'' stated in the first line of page 22 of the specification.
Correct the interference by turning.

Claims (10)

【特許請求の範囲】[Claims] (1)離型性の良い搬送台上に載置し、粘度−温度曲線
により求めた変曲点付近の温度に加熱した光学ガラス部
品の成形素材を、当該成形素材の転移温度付近の温度に
加熱した光学ガラス部品の成形用金型間に搬入するとと
もに前記成形素材を非酸化性雰囲気中で、前記成形用金
型により押圧成形した後、離型部材にて押圧成形品を離
型することにより成形することを特徴とする光学ガラス
部品の成形方法。
(1) The molding material for an optical glass component is placed on a conveyor table with good mold releasability and heated to a temperature near the inflection point determined by the viscosity-temperature curve, and then brought to a temperature near the transition temperature of the molding material. Carrying the heated optical glass component between molds and press-molding the molding material with the mold in a non-oxidizing atmosphere, and then releasing the press-molded product with a mold release member. 1. A method for molding optical glass parts, characterized in that the molding is performed by:
(2)前記成形素材は、側圧切断した割断面又はダイレ
クトプレス等の加工方法により予備成形された成形面を
備える成形素材を使用することを特徴とする特許請求の
範囲第1項記載の光学ガラス部品の成形方法。
(2) The optical glass according to claim 1, wherein the molding material is a molding material having a split surface cut by side pressure cutting or a molding surface preformed by a processing method such as direct pressing. How to form parts.
(3)前記成形素材は、球形、楕円形、円柱、三角柱、
またはその他の直方体あるいは立方体から成るガラスゴ
ブを使用することを特徴とする特許請求の範囲第1項記
載の光学ガラス部品の成形方法。
(3) The molding material may be spherical, oval, cylindrical, triangular prism,
The method for molding an optical glass component according to claim 1, characterized in that a glass gob made of a rectangular parallelepiped or a cube is used.
(4)前記成形素材は、予備加熱部と本加熱部にて、変
曲点付近の温度に加熱することを特徴とする特許請求の
範囲第1項記載の光学ガラス部品の成形方法。
(4) The method for molding an optical glass component according to claim 1, wherein the molding material is heated to a temperature near an inflection point in a preheating section and a main heating section.
(5)前記成形素材は、一旦前記変曲点付近の温度以上
に加熱して均質化した後、前記成形用金型間における押
圧成形時に、前記変曲点付近の温度にて成形することを
特徴とする特許請求の範囲第1項記載の光学ガラス部品
の成形方法。
(5) The molding material is once homogenized by heating to a temperature higher than the temperature near the inflection point, and then molded at a temperature around the inflection point during press molding between the molding dies. A method for molding an optical glass component according to claim 1.
(6)前記成形素材は、前記変曲点付近の温度の粘度が
10^5^・^6〜10^7^・^5ポアズの粘度にて
成形することを特徴とする特許請求の範囲第1項記載の
光学ガラス部品の成形方法。
(6) The molding material is molded at a viscosity of 10^5^,^6 to 10^7^,^5 poise at a temperature near the inflection point. A method for molding an optical glass component according to item 1.
(7)前記成形用金型は、窒化クロムまたは窒化チタン
の被膜にて被覆された13クロム系ステンレス部材また
はその他の超硬質部材にて形成された成形用金型を使用
することを特徴とする特許請求の範囲第1項記載の光学
ガラス部品の成形方法。
(7) The molding die is characterized in that a molding die formed of a 13 chromium stainless steel member or other ultra-hard member coated with a chromium nitride or titanium nitride film is used. A method for molding an optical glass component according to claim 1.
(8)前記押圧成形は、成形部を脱気するとともにヘリ
ウム、アルゴン、キセノン、窒素あるいは水素−窒素混
合気体を導入した非酸化性雰囲気中にて押圧成形するこ
とを特徴とする特許請求の範囲第1項記載の光学ガラス
部品の成形方法。
(8) The above-mentioned press molding is characterized in that the press molding is performed in a non-oxidizing atmosphere in which the molded part is deaerated and helium, argon, xenon, nitrogen, or a hydrogen-nitrogen mixed gas is introduced. 2. A method for molding an optical glass component according to item 1.
(9)前記押圧成形は、前記成形用金型間に数十秒〜数
分間保持して、ガラス歪を消失した後、離型部材により
離型することを特徴とする特許請求の範囲第1項記載の
光学ガラス部品の成形方法。
(9) The press molding is performed by holding the mold between the molds for several tens of seconds to several minutes to eliminate glass distortion, and then releasing the mold using a mold release member. A method for forming an optical glass component as described in Section 1.
(10)前記離型部材は、押圧成形後の成形品との接触
面にカーボンおよびガラス繊維から成る織布部またはア
ルミナウールから成る織布部を備える弾性の少ない剛体
部材にて形成した離型部材を使用することを特徴とする
特許請求の範囲第1項記載の光学ガラス部品の成形方法
(10) The mold release member is formed of a rigid member with low elasticity and has a woven fabric part made of carbon and glass fibers or a woven fabric part made of alumina wool on the contact surface with the molded product after press molding. A method for molding an optical glass component according to claim 1, characterized in that a member is used.
JP25258884A 1984-11-29 1984-11-29 Forming of optical glass part Granted JPS61132525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25258884A JPS61132525A (en) 1984-11-29 1984-11-29 Forming of optical glass part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25258884A JPS61132525A (en) 1984-11-29 1984-11-29 Forming of optical glass part

Publications (2)

Publication Number Publication Date
JPS61132525A true JPS61132525A (en) 1986-06-20
JPH0455980B2 JPH0455980B2 (en) 1992-09-07

Family

ID=17239456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25258884A Granted JPS61132525A (en) 1984-11-29 1984-11-29 Forming of optical glass part

Country Status (1)

Country Link
JP (1) JPS61132525A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250099A (en) * 1990-03-29 1993-10-05 Canon Kabushiki Kaisha Glass molding process and molding apparatus for the same
JP2010001163A (en) * 2008-06-18 2010-01-07 Konica Minolta Opto Inc Method for producing glass gob, method for producing glass molding, apparatus for producing glass gob and apparatus for producing glass molding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118639A (en) * 1983-11-29 1985-06-26 Hoya Corp Manufacture of pressed lens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118639A (en) * 1983-11-29 1985-06-26 Hoya Corp Manufacture of pressed lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250099A (en) * 1990-03-29 1993-10-05 Canon Kabushiki Kaisha Glass molding process and molding apparatus for the same
JP2010001163A (en) * 2008-06-18 2010-01-07 Konica Minolta Opto Inc Method for producing glass gob, method for producing glass molding, apparatus for producing glass gob and apparatus for producing glass molding

Also Published As

Publication number Publication date
JPH0455980B2 (en) 1992-09-07

Similar Documents

Publication Publication Date Title
US6564584B2 (en) Process for manufacturing glass optical elements
US5171347A (en) Method of manufacturing glass optical element
US5346523A (en) Method of molding chalcogenide glass lenses
JP3974200B2 (en) Glass optical element molding method
US5192353A (en) Method for press molding near net-shape glass articles
JPS61132525A (en) Forming of optical glass part
JPH0226843A (en) Mold for molding glass
JP3201887B2 (en) Optical element molding method
JPS61251529A (en) Method of high precision molding for glass optical part
JPS6121927A (en) Preparation of pressed lens
JP2875621B2 (en) Method for manufacturing optical glass molded body and method and apparatus for manufacturing optical glass element
JPS61291427A (en) Molded lens and production thererof
JP3246728B2 (en) Glass optical element molding method
JP3243219B2 (en) Method for manufacturing glass optical element
JP2892217B2 (en) Method and apparatus for manufacturing glass material
JPH0741327A (en) Optical element forming method
JPS6346010B2 (en)
JP2023127555A (en) Method for manufacturing flat-plate-like glass, device for manufacturing the same, and method for manufacturing glass substrate
JPH0372016B2 (en)
JPH0477320A (en) Method and device for producing optical glass element
JPH09118530A (en) Method for forming glass optical element
JP3229943B2 (en) Glass optical element molding method
JPH0489326A (en) Optical glass formed body, its production and production apparatus
JPS62297234A (en) Forming of glass lens
JP2001240419A (en) Molding method for glass optical element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term