JPH0453229A - Manufacture device of semiconductor device - Google Patents

Manufacture device of semiconductor device

Info

Publication number
JPH0453229A
JPH0453229A JP16203790A JP16203790A JPH0453229A JP H0453229 A JPH0453229 A JP H0453229A JP 16203790 A JP16203790 A JP 16203790A JP 16203790 A JP16203790 A JP 16203790A JP H0453229 A JPH0453229 A JP H0453229A
Authority
JP
Japan
Prior art keywords
plasma
chamber
processing chamber
gas
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16203790A
Other languages
Japanese (ja)
Inventor
Tsutomu Saito
勉 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16203790A priority Critical patent/JPH0453229A/en
Publication of JPH0453229A publication Critical patent/JPH0453229A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably produce plasma for the formation of excellent and stable CVD film without using microwaves by a method wherein a wafer is arranged in a processing chamber within the main chamber comprising a plasma chamber and the processing chamber connected to each other; a magnetic field periodically changing and specifying the frequency and the amplitude diverging toward the processing chamber is formed in the plasma chamber; simultaneously plasma gas is fed to feed a reaction gas to the processing chamber. CONSTITUTION:When N2 is fed from a gas feed pipe 3 to a plasma chamber 1a while SiH4 is fed from another gas feed pipe 4 to a processing chamber 1b furthermore, alternate current of 2.45GHz is supplied for coils 2 at the gas pressure of 5X10<-4>Torr in the chamber 1 and at the amplitude of 875G in the magnetic field B and the electric field E formed in the plasma chamber 1a so that the electrons may collide with molecules to produce plasma. Next, the plasma is shifted to the processing chamber 1b along the divergence direction to be reacted with the reaction gas SiH4 to deposit Si3N4 on a wafer 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はプラズマと反応ガスとの反応に基づいてCV
D膜を形成するCVD装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is based on the reaction between plasma and reactive gas.
The present invention relates to a CVD apparatus for forming a D film.

半導体装置の製造工程においてウェハ上にプラズマを利
用したCVD膜を形成する工程がある。
2. Description of the Related Art In the manufacturing process of semiconductor devices, there is a step of forming a CVD film using plasma on a wafer.

近年の半導体装置の高集積化、高速化あるいはウェハの
大口径化にともなって安定したCVD膜の形成が要請さ
れている。
2. Description of the Related Art In recent years, as semiconductor devices have become more highly integrated and faster, and wafers have become larger in diameter, stable CVD film formation has been required.

〔従来の技術〕[Conventional technology]

従来、ウェハ上にCV D膜を形成する一方法としてE
CRプラズマを用いたものが実用化されている。このE
CRプラズマはチャンバーの周囲に配設されるコイルに
より同チャンバー内に形成される定常磁場と、チャンバ
ー外のマグネトロンから透明な石英ガラス等のシールド
板を介して同チャンバー内に打ち込まれるマイクロ波に
より形成される電場との相互作用によりチャンバー内に
供給された界隈ガスから発生され、そのプラズマと反応
ガスとが反応してウェハ上にCVD膜が形成される。
Conventionally, one method for forming a CVD film on a wafer is E.
Those using CR plasma have been put into practical use. This E
CR plasma is generated by a constant magnetic field created within the chamber by a coil placed around the chamber, and by microwaves that are injected into the chamber from a magnetron outside the chamber through a shield plate made of transparent quartz glass, etc. The plasma is generated from the ambient gas supplied into the chamber due to the interaction with the electric field, and the plasma reacts with the reactive gas to form a CVD film on the wafer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記のようなプラズマを利用したCVD装置
ではマイクロ波とチャンバーとのインピータンスを整合
させる必要があるが、特にチャンバー内の真空度を一]
二けるにしたがってインピーダンスを整合させることが
困難となるため、CV I)膜の膜圧の制御あるいは安
定化が困難となる。
However, in the above-mentioned CVD apparatus using plasma, it is necessary to match the impedance between the microwave and the chamber, and in particular, it is necessary to match the impedance between the microwave and the chamber.
Since it becomes difficult to match the impedance as the temperature decreases, it becomes difficult to control or stabilize the film pressure of the CVI film.

また、マイクロ波を打ち込むシールド板にもCVD膜か
付着して、その使用につれてシールド板を透過するマイ
クロ波の透過効率が低下するため、CVD膜成長速度か
低下するという問題点があった。
Furthermore, the CVD film also adheres to the shield plate into which microwaves are applied, and as the shield plate is used, the transmission efficiency of the microwaves passing through the shield plate decreases, resulting in a reduction in the growth rate of the CVD film.

この発明の目的は、マイクロ波を使用することなくプラ
ズマを安定して発生させて良質かつ安定したCVD膜を
形成し得るCVD装置を提供するにある。
An object of the present invention is to provide a CVD apparatus that can stably generate plasma and form a high-quality and stable CVD film without using microwaves.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理説明図である。すなわち、チャン
バー1内でプラズマを発生させ、そのプラズマと反応ガ
スとを反応させてウェハ6」二にCVD膜を形成するプ
ラズマCVD装置で、チャンバー1は互いに連なるプラ
ズマ室]、aと処理室11)とから構成して前記ウェハ
6を処理室に設置し、プラズマ室1aには時間的に変化
し、かつ処理室11〕に向かって発散する磁場Bを形成
する。そ(7て、プラズマ界隈ガスg1を供給し、処理
室1bには反応ガスg2を供給している。
FIG. 1 is a diagram explaining the principle of the present invention. That is, it is a plasma CVD apparatus that generates plasma in a chamber 1 and reacts the plasma with a reaction gas to form a CVD film on a wafer 6''. ), the wafer 6 is placed in a processing chamber, and a magnetic field B that changes over time and diverges toward the processing chamber 11 is formed in the plasma chamber 1a. (7) Plasma surrounding gas g1 is supplied, and reaction gas g2 is supplied to the processing chamber 1b.

また、前記磁場Bは周波数2.45GHz、振幅875
Gとしている。
Further, the magnetic field B has a frequency of 2.45 GHz and an amplitude of 875 GHz.
It is called G.

〔作用〕[Effect]

プラズマ室la内では時間的に変化する磁場Bによりそ
の磁場Bと直交する方向に電場が形成され、その電場に
よって螺旋運動する電子とプラズマ界隈ガスg1の分子
とが衝突してプラズマか発生し、そのプラズマが処理室
1bに移動して反応ガスg2と反応してウェハ6上にC
VD膜が形成される。
In the plasma chamber la, an electric field is formed in a direction perpendicular to the magnetic field B due to the temporally changing magnetic field B, and due to the electric field, the electrons moving in a spiral collide with the molecules of the plasma field gas g1, and a plasma is generated. The plasma moves to the processing chamber 1b, reacts with the reaction gas g2, and forms C on the wafer 6.
A VD film is formed.

〔実施例〕〔Example〕

以下、この発明を具体化した−・実施例を図面に従って
説明する。
Embodiments embodying this invention will be described below with reference to the drawings.

第2図はCVD装置を示し、チャンバー1はプラズマ室
1aと処理室1. I)とから構成され、プラズマ室1
aの周囲にはコ・イル2が配設されている。
FIG. 2 shows a CVD apparatus, in which a chamber 1 includes a plasma chamber 1a and a processing chamber 1. I) consists of a plasma chamber 1
A coil 2 is arranged around a.

コイル2には例えば2. 45 GI−1zの周波数の
交流電流が通電され、プラズマ室1a内には同周波数で
時間的に変化し、かつ処理室11〕に向かって発散する
磁場Bが形成される。なお、交流電流の電流値は磁場B
を構成する磁界の振幅が例えば875Gとなるように設
定されている。また、第3図に示すように時間的に変化
する磁場Bにはファラデーの電磁誘導によりその磁場B
と直交する方向に電場Eが形成される。
For example, the coil 2 has 2. An alternating current with a frequency of 45 GI-1z is applied, and a magnetic field B is formed in the plasma chamber 1a that changes over time at the same frequency and diverges toward the processing chamber 11]. Note that the current value of the alternating current is the magnetic field B
The amplitude of the magnetic field constituting the is set to be, for example, 875G. Furthermore, as shown in Figure 3, the magnetic field B changes over time due to Faraday's electromagnetic induction.
An electric field E is formed in a direction perpendicular to .

プラズマ室1aにはガス供給管3から界隈ガスとしての
N2か供給され、前記磁場Bと電場Eとの相互作用によ
りそのN2からプラズマが発生し、磁場Bの発散方向す
なわち処理室1b方向に移動する。
N2 as a surrounding gas is supplied to the plasma chamber 1a from the gas supply pipe 3, and plasma is generated from the N2 due to the interaction between the magnetic field B and the electric field E, and moves in the direction of divergence of the magnetic field B, that is, in the direction of the processing chamber 1b. do.

処理室11〕にはガス供給管4から反応ガスとしてSi
H+が供給されるとともに、ウェハ保持装置5が形成さ
れてウェハ6を保持可能となっている。処理室11〕に
は排気管7が接続され、同排気管7に接続された吸気ポ
ンプ8により処理室l b内の圧力を調節可能であり、
かつ処理室Ib内の廃ガスを排気可能となっている。ま
た、処理室lbに隣接[、てロードロック装置9が配設
され、ウェハ保持装置5に対しウェハ6を給送あるいは
排送するようになっている。
Processing chamber 11] is supplied with Si as a reaction gas from the gas supply pipe 4.
While H+ is supplied, a wafer holding device 5 is formed to be able to hold a wafer 6. An exhaust pipe 7 is connected to the processing chamber 11], and the pressure inside the processing chamber lb can be adjusted by an intake pump 8 connected to the exhaust pipe 7.
Moreover, the waste gas in the processing chamber Ib can be exhausted. Further, a load lock device 9 is disposed adjacent to the processing chamber lb, and is adapted to feed or eject the wafer 6 to or from the wafer holding device 5.

さて、このように構成されたCVD装置ではガス供給管
3からプラズマ室la内にN2を供給し、ガス供給管4
から処理室Ib内にSiH4を供給し、かつチャンバー
1内のガス圧を5 X 10−’t。
Now, in the CVD apparatus configured in this way, N2 is supplied from the gas supply pipe 3 into the plasma chamber la, and the gas supply pipe 4
SiH4 was supplied into the processing chamber Ib from 1 to 4, and the gas pressure in the chamber 1 was set to 5×10−'t.

rrとした状態でコイル2に前記交流電流を通電すると
、プラズマ室1aで形成される磁場B及び電場Eにより
電子が螺旋運動を起こし、この電子かN2分子と衝突し
てプラズマが発生する。そして、そのプラズマが磁場B
の発散方向に沿って処理室1bに移動し、同処理室lb
内で反応ガスSiH4と反応してウェハ61にはSi3
N4が堆積される。
When the alternating current is applied to the coil 2 in a state of rr, the magnetic field B and electric field E formed in the plasma chamber 1a cause electrons to spiral, and the electrons collide with N2 molecules to generate plasma. Then, the plasma is in the magnetic field B
moves to the processing chamber 1b along the divergence direction of the processing chamber lb.
Si3 reacts with the reactive gas SiH4 in the wafer 61.
N4 is deposited.

従って、マイクロ波を使用することなく電場Eが形成さ
れるので、マイクロ波に対するチャンバーのインピーダ
ンスやチャンバー内の真空度あるいはマイクロ波の透過
効率に影響されることなく安定してプラズマを発生させ
ることができるので、良質かつ安定したCVD膜を形成
することができる。
Therefore, since the electric field E is generated without using microwaves, plasma can be generated stably without being affected by the impedance of the chamber to microwaves, the degree of vacuum in the chamber, or the transmission efficiency of microwaves. Therefore, a high quality and stable CVD film can be formed.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、この発明はマイクロ波を使用する
ことなくプラズマを安定して発生させて良質かつ安定し
たCVD膜を形成することができる優れた効果を発揮す
る。
As described in detail above, the present invention exhibits the excellent effect of stably generating plasma and forming a high-quality and stable CVD film without using microwaves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、 第2図は本発明の一実施例を示す概略図、第3図は磁場
と電場を示す説明図である。 図中、 1はチャンバー、 1aはプラズマ室、 11〕は処理室、 6はウェハ、 Bは磁場、 glは界隈ガス、 g2は反応ガスである。 第1図 本発明の詳細な説明図 第2図 本発明の一実1!i!Iを示す概略図 第3図 磁甥と電場を示す説明図
FIG. 1 is an explanatory diagram of the principle of the present invention, FIG. 2 is a schematic diagram showing an embodiment of the present invention, and FIG. 3 is an explanatory diagram showing a magnetic field and an electric field. In the figure, 1 is a chamber, 1a is a plasma chamber, 11 is a processing chamber, 6 is a wafer, B is a magnetic field, gl is a surrounding gas, and g2 is a reaction gas. Figure 1: Detailed explanation of the present invention Figure 2: Part 1 of the present invention! i! Schematic diagram showing I Figure 3 Explanatory diagram showing magnetic field and electric field

Claims (1)

【特許請求の範囲】 1、チャンバー(1)内でプラズマを発生させ、そのプ
ラズマと反応ガスとを反応させてウェハ(6)上にCV
D膜を形成するプラズマCVD装置であって、 チャンバー(1)は互いに連なるプラズマ室(1a)と
処理室(1b)とから構成して前記ウェハ(6)を処理
室に設置し、プラズマ室(1a)には時間的に変化し、
かつ処理室(1b)に向かって発散する磁場(B)を形
成するとともにプラズマ界離ガス(g1)を供給し、処
理室(1b)には反応ガス(g2)を供給することを特
徴とする半導体装置の製造装置。 2、前記磁場(B)は周波数2.45GHz、振幅87
5Gとしたことを特徴とする請求項1記載の半導体装置
の製造装置。
[Claims] 1. Generate plasma in the chamber (1), cause the plasma to react with a reactive gas, and create CV on the wafer (6).
A plasma CVD apparatus for forming a D film, the chamber (1) is composed of a plasma chamber (1a) and a processing chamber (1b) that are connected to each other, the wafer (6) is placed in the processing chamber, and the plasma chamber (1) is 1a) changes over time,
It is characterized by forming a magnetic field (B) that diverges toward the processing chamber (1b), supplying a plasma field gas (g1), and supplying a reaction gas (g2) to the processing chamber (1b). Manufacturing equipment for semiconductor devices. 2. The magnetic field (B) has a frequency of 2.45 GHz and an amplitude of 87
2. The semiconductor device manufacturing apparatus according to claim 1, wherein the semiconductor device manufacturing apparatus is 5G.
JP16203790A 1990-06-20 1990-06-20 Manufacture device of semiconductor device Pending JPH0453229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16203790A JPH0453229A (en) 1990-06-20 1990-06-20 Manufacture device of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16203790A JPH0453229A (en) 1990-06-20 1990-06-20 Manufacture device of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0453229A true JPH0453229A (en) 1992-02-20

Family

ID=15746883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16203790A Pending JPH0453229A (en) 1990-06-20 1990-06-20 Manufacture device of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0453229A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681144A (en) * 1992-03-20 1994-03-22 Internatl Business Mach Corp <Ibm> Method and device for filling package

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681144A (en) * 1992-03-20 1994-03-22 Internatl Business Mach Corp <Ibm> Method and device for filling package

Similar Documents

Publication Publication Date Title
JP4025636B2 (en) Inductively coupled plasma device
JPS593018A (en) Manufacture of silicon-base film by plasma deposition
US5366586A (en) Plasma formation using electron cyclotron resonance and method for processing substrate by using the same
US6592664B1 (en) Method and device for epitaxial deposition of atoms or molecules from a reactive gas on a deposition surface of a substrate
US6674241B2 (en) Plasma processing apparatus and method of controlling chemistry
JPS61213377A (en) Method and apparatus for plasma deposition
JPH02167891A (en) Gas-phase synthetic device of diamond film
JP2524461B2 (en) High density plasma processing equipment
JPH0453229A (en) Manufacture device of semiconductor device
JP3093718B2 (en) Microwave introduction device and surface treatment method
JPS61241930A (en) Plasma chemical vapor deposition device
JPH0521983B2 (en)
JPH07130494A (en) Microwave plasma processing device
JPS63301517A (en) Dry type thin film processor
JP2969651B2 (en) ECR plasma CVD equipment
JPS611024A (en) Manufacturing apparatus of semiconductor circuit
JPH05117866A (en) Microwave plasma cvd device
JPH0340422A (en) Film formation device
JP2805506B2 (en) Diamond film synthesizer by microwave plasma CVD
JP3193178B2 (en) Thin film formation method
JPS63276231A (en) Microwave plasma treating equipment
JP2001115267A (en) Plasma treatment system and method
JPH0891988A (en) Apparatus for microwave plasma chemical vapor deposition
JPS6379986A (en) Plasma controller
JPH01298174A (en) Formation of thin film using ion cyclotron resonance and device therefor