JPH0447134A - Air-fuel ratio correction method during transient period - Google Patents

Air-fuel ratio correction method during transient period

Info

Publication number
JPH0447134A
JPH0447134A JP15592490A JP15592490A JPH0447134A JP H0447134 A JPH0447134 A JP H0447134A JP 15592490 A JP15592490 A JP 15592490A JP 15592490 A JP15592490 A JP 15592490A JP H0447134 A JPH0447134 A JP H0447134A
Authority
JP
Japan
Prior art keywords
fuel
acceleration
air
fuel ratio
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15592490A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kajitani
梶谷 勝之
Yoichi Iwakura
洋一 岩倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP15592490A priority Critical patent/JPH0447134A/en
Publication of JPH0447134A publication Critical patent/JPH0447134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To effectively suppress disturbance of an air-fuel ratio during acceleration by gradually damping an acceleration increase amount of fuel to be fed during acceleration at each feed period, in a device which transiently increases and corrects fuel according to an acceleration state. CONSTITUTION:An electronic control device 4 inputs output signals (d) from a crank angle sensor 10 and a pressure sensor 11 and outputs a fuel injection signal (a) to an injector 3 mounted on an intake air pipe 5. The electronic control device decides a fundamental injection time based on an intake air amount determined from the number of revolutions of an engine and an intake air pressure. Based on an intake air pressure change amount rapidly changed when an engine 1 is shifted to an acceleration state, a transient air-fuel ratio correction factor is decided, a fundamental injection time is corrected by means of a correction factor, and injection of fuel is effected at a given fuel injection period. When an acceleration state is continued, a transient air-fuel ratio correcting factor is damped according to an acceleration deciding circuit at a next fuel feed period, and a fundamental injection time is increased and corrected by means of the value.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、主として自動車のエンジンに適用される過渡
時の空燃比補正方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a transient air-fuel ratio correction method mainly applied to automobile engines.

[従来の技術] 一般に、エンジンが定常状態から加速状態に移行すると
、−時的に空気過剰・燃料不足状態となる。そのため、
本発明の先行技術として、例えば、特開昭61−255
237号公報に示されるように、エンジンの加速状態を
検出し、その加速状態に応じて過渡的に燃料を増量補正
するまうにしている。燃料供給装置として、インジェク
を用いているものでは、第4図に示すように、過渡時空
燃比補正係数FAEWを設定しておき、吸気JEEPM
の変化量へPH等により加速状態を検出し、その加速状
態に応じて前記過渡時空燃比補正係数PAEWを適度な
値に決定することにより、燃料の加速増量分を調節する
ようにしている。
[Prior Art] Generally, when an engine transitions from a steady state to an accelerated state, the engine temporarily enters a state of excess air and insufficient fuel. Therefore,
As prior art of the present invention, for example, Japanese Patent Application Laid-Open No. 61-255
As shown in Japanese Patent No. 237, the acceleration state of the engine is detected and the amount of fuel is temporarily increased in accordance with the acceleration state. In a device that uses an injector as a fuel supply device, as shown in Fig. 4, a transient air-fuel ratio correction coefficient FAEW is set, and the intake JEEPM
The acceleration state is detected by PH, etc., and the transient air-fuel ratio correction coefficient PAEW is determined to be an appropriate value in accordance with the acceleration state, thereby adjusting the amount of fuel increase due to acceleration.

[発明か解決しようとする課題] ところか、iJ来の手法では、加速状態に応じて加速増
量分か決定されると、加速の開始直後から加速か終了す
るまで引き続いて前記加速増量分により燃料の増量補正
が行われる。すなわち、第4図に示すように、加速状態
か連続している場合は、燃料供給毎に前記加速増量分に
より燃料の増量調節か続行される。このため、加速開始
直後の最初の燃料供給においては、要求量と燃料供給量
とが適合し得るか、基本噴射量か加速状態に追随して増
加してくる加速の途中から加速の後半付近では、燃料供
給量か要求量を上回り、燃料過多になり易い。その結果
、加速途中から加速が終了する付近にかけては、空燃比
A/Fがリッチ側に変化して、エミッションが悪化して
しまう。
[Invention or Problem to be Solved] However, in the conventional method of iJ, once the acceleration amount increase is determined according to the acceleration state, the fuel is continuously increased by the acceleration amount from immediately after the start of acceleration until the end of acceleration. An increase in the amount is corrected. That is, as shown in FIG. 4, if the acceleration state continues, the fuel increase adjustment is continued by the acceleration increase amount every time fuel is supplied. For this reason, in the first fuel supply immediately after the start of acceleration, it is necessary to check whether the required amount and the fuel supply amount can match. , the amount of fuel supplied exceeds the amount requested, which tends to result in excess fuel. As a result, the air-fuel ratio A/F changes to the rich side from midway through acceleration to near the end of acceleration, resulting in worsening of emissions.

本発明は、以上のような不具合を解消することを目的と
している。
The present invention aims to solve the above-mentioned problems.

[課題を解決するための手段] 本発明は、このような目的を達成するために、次のよう
な手段を講じたものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention takes the following measures.

すなわち、本発明に係る過渡時の空燃比補正方法は、エ
ンジンが加速状態に移行した場合に燃焼室に供給する燃
料を加速状態に応じて過渡的に増量補正するようにした
過渡時の空燃比補正方法において、加速時に供給すべき
燃料の加速増量分を燃料の供給時期毎に徐々に減衰する
ようにしたことを特徴とする。
That is, the transient air-fuel ratio correction method according to the present invention corrects the transient air-fuel ratio by transiently increasing the amount of fuel supplied to the combustion chamber when the engine shifts to an acceleration state, depending on the acceleration state. The correction method is characterized in that the acceleration increase amount of fuel to be supplied during acceleration is gradually attenuated at each fuel supply timing.

[作用] このような構成によれば、加速が行われると、その加速
状態に応じて燃料の加速増量分が決定され、空気過剰に
なりがちな加速の開始初期には、前記加速増i分により
燃料が増量補正される。弓き続いて加速が行われていれ
ば、前記加速増量分が燃料の供給時期毎に徐々に減衰さ
れる。このため、燃焼室に供給される燃料の加速増量分
は、加速が連続するに伴って徐々に減少することになる
[Function] According to such a configuration, when acceleration is performed, the acceleration increase amount of fuel is determined according to the acceleration state, and at the beginning of acceleration where excess air tends to occur, the acceleration increase amount i is determined. The amount of fuel is corrected by increasing the amount. If the engine continues to accelerate, the increased amount of acceleration will be gradually attenuated at each fuel supply period. Therefore, the increased amount of fuel supplied to the combustion chamber due to acceleration gradually decreases as the acceleration continues.

[実施例コ 以下、本発明の一実施例を第1図〜第3図を参照して説
明する。
[Example 1] An example of the present invention will be described below with reference to FIGS. 1 to 3.

第1図に概略的に示したエンジン1は、自動車のもので
、電子制御燃料噴射装置2を備えている。
The engine 1 shown schematically in FIG. 1 is of a motor vehicle and is equipped with an electronically controlled fuel injection system 2.

この電子制御燃料噴射装置2は、吸気圧とエンジン回転
数により吸入空気量を検出するように構成されたもので
、インジェクタ3と、電子制御装置4とを備えている。
The electronically controlled fuel injection device 2 is configured to detect the amount of intake air based on the intake pressure and engine speed, and includes an injector 3 and an electronic control device 4.

インジェクタ3は、吸気管5に装着してあり、電磁コイ
ル等を内蔵している。そして、その電磁コイルに前記電
子制御装置4から燃料噴射信号aが印加されると、その
印加時間に相当する量の燃料を吸気ポート付近に噴射す
るようになっている。
The injector 3 is attached to the intake pipe 5 and has a built-in electromagnetic coil and the like. When a fuel injection signal a is applied to the electromagnetic coil from the electronic control device 4, an amount of fuel corresponding to the application time is injected into the vicinity of the intake port.

電子制御装置4は、中央演算処理装置6と、メモリー7
と、入力インターフェース8と、出力インターフェース
9とを具備したマイクロコンピュタユニットであり、各
種センサからの情報に基づいて、前記インジェクタ3か
ら噴射する燃料の量を調節する等の役割を担っている。
The electronic control device 4 includes a central processing unit 6 and a memory 7.
It is a microcomputer unit equipped with an input interface 8 and an output interface 9, and plays the role of adjusting the amount of fuel injected from the injector 3 based on information from various sensors.

前記入力インターフェース8には、少な(とも、クラン
ク角センサ10からのエンジン回転信号すおよびクラン
ク角信号Cと、圧力センサ11からの吸気圧信号dとか
それぞれ入力され、出力インターフニス9からは、前記
インジェクタ3に燃料噴射信号aか出力されるようにな
っている。クランク角センサ10は、ディストリビュー
タ12に内蔵してあり、通常のものと同様にクランク角
に対応するパルスを発生するようになっている。圧力セ
ンサ11は、サージタンク13に設けてあり、吸気圧に
比例して電気信号を出力するようになっている。
The input interface 8 receives inputs such as an engine rotation signal and a crank angle signal C from the crank angle sensor 10, and an intake pressure signal d from the pressure sensor 11. A fuel injection signal a is output to the injector 3.The crank angle sensor 10 is built into the distributor 12, and generates a pulse corresponding to the crank angle like a normal sensor. The pressure sensor 11 is provided in the surge tank 13 and outputs an electrical signal in proportion to the intake pressure.

電子制御装置4は、エンジン回転数と吸気圧から吸入空
気量を求め、その吸入空気量に基づいて基本噴射時間T
Pを決定する。次いで、基本噴射時間TPをエンジン状
況に応じて決まる各種の補正係数にや無効噴射時間TA
tJVで補正して、燃料供給時期毎に前記インジェクタ
3を開弁させる最終噴射時間Tを決定する。
The electronic control device 4 determines the amount of intake air from the engine speed and intake pressure, and determines the basic injection time T based on the amount of intake air.
Determine P. Next, the basic injection time TP is adjusted to various correction coefficients determined depending on the engine condition, and the invalid injection time TA is adjusted.
The final injection time T for opening the injector 3 is determined for each fuel supply timing by correcting it by tJV.

また、前記電子制御装置4には、第2図に概略的に示す
ようなプログラムを設定しである。ステップ51では、
クランク角信号Cに基づいて、燃料の噴射タイミングか
否かを判別し、燃料の噴射タイミンクである場合にはス
テップ52に進む。
Further, a program as schematically shown in FIG. 2 is set in the electronic control device 4. In step 51,
Based on the crank angle signal C, it is determined whether or not it is the fuel injection timing, and if it is the fuel injection timing, the process proceeds to step 52.

ステップ52では、吸気圧(絶対圧)の変化量に基つい
て、エンジン1が加速状態に移行したか否かを判別し、
加速状態に移行した場合にはステップ53に進み、加速
状態に移行していない場合にはステップ56に進む。ス
テップ53では、加速判定回数カウンタCACCを1だ
け増加して、ステップ54に進む。ステップ54では、
吸気圧の変化量に応して過渡時空燃比補正係数FAEW
を計算し、ステップ55に進む。ステップ55では、加
速判定回数カウンタCACCの値に応じて、過渡時空燃
比補正係数FAEWをN分の1の値に設定した後、ステ
ップ57に進む。ステップ56では、加速判定回数カウ
ンタCACCをクリアしてステップ57に進む。
In step 52, based on the amount of change in intake pressure (absolute pressure), it is determined whether the engine 1 has transitioned to an acceleration state,
If the acceleration state has been entered, the process proceeds to step 53; if the acceleration state has not been entered, the process proceeds to step 56. In step 53, the acceleration determination counter CACC is incremented by 1, and the process proceeds to step 54. In step 54,
The transient air-fuel ratio correction coefficient FAEW is adjusted according to the amount of change in intake pressure.
is calculated, and the process proceeds to step 55. In step 55, the transient air-fuel ratio correction coefficient FAEW is set to a value of 1/N according to the value of the acceleration determination counter CACC, and then the process proceeds to step 57. In step 56, the acceleration determination counter CACC is cleared and the process proceeds to step 57.

ステップ57では、次式に基づいて最終噴射時間Tを決
定し、ステップ58に進む。
In step 57, the final injection time T is determined based on the following equation, and the process proceeds to step 58.

T =TPX (1+FAEW) XK +TAUVス
テップ58では、最終噴射時間Tに相当する時間だけイ
ンジェクタ3を開弁させて、燃料噴射を実行する。なお
、以上の制御は、エンジン運転中に繰り返し実行される
ようになっている。
T = TPX (1+FAEW) XK +TAUV In step 58, the injector 3 is opened for a time corresponding to the final injection time T to perform fuel injection. Note that the above control is repeatedly executed during engine operation.

このような構成によると、エンジン1が加速状態に移行
した場合には、第3図に示すように、吸気圧PM75(
急速に変化する。そして、その変化量ΔPHに基づいて
、過渡時空燃比補正係数FAEWが決定されるとともに
、この過渡時空燃比補正係数FAEWにより基本噴射時
間TPが補正され、所定の燃料噴射時期に前記インジェ
クタ3から燃料噴射が行われる。加速状態が連続してい
る場合、次回の燃料供給時期には、前記過渡時空燃比補
正係数FAEWが加速判定回数Nに応じて減衰され、そ
の値でもって基本噴射時間TPが増量補正される。加速
状態が連続していれば、さらに、前記過渡時空燃比補正
係数PAEWが、前述のように燃料噴射時期毎に減衰さ
れる。このため、過渡時空燃比補正係数FAEWに対応
する過渡的な燃料増量分は、加速の途中から加速の終了
付近にかけて徐々に減少することになる。
According to such a configuration, when the engine 1 shifts to an acceleration state, the intake pressure PM75 (
Change rapidly. Then, based on the amount of change ΔPH, a transient air-fuel ratio correction coefficient FAEW is determined, and the basic injection time TP is corrected by this transient air-fuel ratio correction coefficient FAEW, and the fuel is injected from the injector 3 at a predetermined fuel injection timing. will be held. When the acceleration state continues, at the next fuel supply timing, the transient air-fuel ratio correction coefficient FAEW is attenuated in accordance with the number of acceleration determinations N, and the basic injection time TP is increased by the value. If the acceleration state continues, the transient air-fuel ratio correction coefficient PAEW is further attenuated at each fuel injection timing as described above. Therefore, the transient fuel increase amount corresponding to the transient air-fuel ratio correction coefficient FAEW gradually decreases from the middle of acceleration to near the end of acceleration.

したがって、このような構成によれば、−時的に空気過
剰になりがちな加速の開始初期には、速やかに要求量の
燃料を燃焼室14に供給することができるので、加速開
始初期の空気過剰・燃料不足状態を有効に抑制すること
ができる。また、加速状態が引き続いて連続すると、過
渡的な燃料増量分が徐々に絞られるため、基本噴射量が
加速状態に追随して増加してくる加速の途中から後半付
近にかけては、燃料供給量が要求量を上回って燃料過多
になるのが抑制できる。その結果、第3図に示すように
、加速時に空燃比A/Fが乱れるのを有効に抑制するこ
とができるとともに、エミッションが悪化するのを回避
できる。
Therefore, according to such a configuration, the required amount of fuel can be quickly supplied to the combustion chamber 14 at the beginning of acceleration when there is a tendency to have excess air. Excess/fuel shortage conditions can be effectively suppressed. In addition, as the acceleration state continues, the transient increase in fuel amount is gradually reduced, so the fuel supply amount decreases from the middle to the latter half of acceleration when the basic injection amount increases following the acceleration state. It is possible to prevent excess fuel from exceeding the required amount. As a result, as shown in FIG. 3, it is possible to effectively suppress disturbances in the air-fuel ratio A/F during acceleration, and to avoid deterioration of emissions.

なお、本発明は、エアフロメータ等で直接に吸入空気量
を計測する場合にも有効に適用可能である。
Note that the present invention can also be effectively applied to cases where the amount of intake air is directly measured using an air flow meter or the like.

[発明の効果コ 以上のような構成からなる本発明によれば、加速時に空
燃比が乱れるのを有効に抑制することができるので、加
速時のエミッションを有効に低減することができる制御
精度に優れた過渡時の空燃比補正方法を提供することが
できる。
[Effects of the Invention] According to the present invention configured as described above, it is possible to effectively suppress disturbances in the air-fuel ratio during acceleration, thereby achieving control accuracy that can effectively reduce emissions during acceleration. An excellent transient air-fuel ratio correction method can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の一実施例を示し、第1図は概
略的な全体構成図、第2図は制御手順を概略的に示すフ
ローチャート図、第3図は作用説明図である。第4図は
従来例を示す第3図相当の作用説明図である。 1・・・エンジン 3・・・インジェクタ 4・・・電子制御装置 11・・・圧力センサ 14・・・燃焼室 FAEW・・・過渡時空燃比補正係数
1 to 3 show one embodiment of the present invention, FIG. 1 is a schematic overall configuration diagram, FIG. 2 is a flowchart diagram schematically showing a control procedure, and FIG. 3 is an action explanatory diagram. be. FIG. 4 is an operational explanatory diagram corresponding to FIG. 3 showing a conventional example. 1...Engine 3...Injector 4...Electronic control unit 11...Pressure sensor 14...Combustion chamber FAEW...Transient air-fuel ratio correction coefficient

Claims (1)

【特許請求の範囲】[Claims]  エンジンが加速状態に移行した場合に燃焼室に供給す
る燃料を加速状態に応じて過渡的に増量補正するように
した過渡時の空燃比補正方法において、加速時に供給す
べき燃料の加速増量分を燃料の供給時期毎に徐々に減衰
するようにしたことを特徴とする過渡時の空燃比補正方
法。
In a transient air-fuel ratio correction method in which the amount of fuel supplied to the combustion chamber is temporarily increased depending on the acceleration state when the engine shifts to an acceleration state, the increase in fuel to be supplied during acceleration is A method for correcting an air-fuel ratio during a transient period, characterized by gradually attenuating the fuel at each fuel supply period.
JP15592490A 1990-06-14 1990-06-14 Air-fuel ratio correction method during transient period Pending JPH0447134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15592490A JPH0447134A (en) 1990-06-14 1990-06-14 Air-fuel ratio correction method during transient period

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15592490A JPH0447134A (en) 1990-06-14 1990-06-14 Air-fuel ratio correction method during transient period

Publications (1)

Publication Number Publication Date
JPH0447134A true JPH0447134A (en) 1992-02-17

Family

ID=15616488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15592490A Pending JPH0447134A (en) 1990-06-14 1990-06-14 Air-fuel ratio correction method during transient period

Country Status (1)

Country Link
JP (1) JPH0447134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281215A (en) * 2009-06-02 2010-12-16 Daihatsu Motor Co Ltd Method for controlling air-fuel ratio of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281215A (en) * 2009-06-02 2010-12-16 Daihatsu Motor Co Ltd Method for controlling air-fuel ratio of internal combustion engine

Similar Documents

Publication Publication Date Title
JP3498817B2 (en) Exhaust system failure diagnosis device for internal combustion engine
KR0166978B1 (en) Method of electronic engine control for internal combustion engine having a plurality of cylinders
JPS6165038A (en) Air-fuel ratio control system
JPH0251056B2 (en)
US4550705A (en) Electrical fuel injector
US4953532A (en) Ignition timing control unit for internal combustion engine
JP3267217B2 (en) Fuel injection control device for internal combustion engine
US5479910A (en) Method and device for controlling an internal combustion engine
JPH0447134A (en) Air-fuel ratio correction method during transient period
KR900001628B1 (en) Apparatus for controlling revolution of engine idle for automobile
JP2007023796A (en) Fuel injection device
CA1261430A (en) Engine control system
JPH0512538B2 (en)
KR900000149B1 (en) Fuel injection control method for internal combustion engine
JPS63124842A (en) Electronic control fuel injection device
JPH057546B2 (en)
JPH0385345A (en) Transitional fuel compensation
US5103788A (en) Internal combustion engine ignition timing device
US5050561A (en) Air/fuel ratio control system for internal combustion engine with a high degree of precision in derivation of engine driving condition dependent correction coefficient for air/fuel ratio control
JPS63140867A (en) Engine controller
JPH059620B2 (en)
JPH0372824B2 (en)
JPH0510490B2 (en)
JPH0783104A (en) Ignition timing control method
JPH0368221B2 (en)