JP2010281215A - Method for controlling air-fuel ratio of internal combustion engine - Google Patents

Method for controlling air-fuel ratio of internal combustion engine Download PDF

Info

Publication number
JP2010281215A
JP2010281215A JP2009132864A JP2009132864A JP2010281215A JP 2010281215 A JP2010281215 A JP 2010281215A JP 2009132864 A JP2009132864 A JP 2009132864A JP 2009132864 A JP2009132864 A JP 2009132864A JP 2010281215 A JP2010281215 A JP 2010281215A
Authority
JP
Japan
Prior art keywords
fuel
valve
amount
valve timing
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009132864A
Other languages
Japanese (ja)
Other versions
JP5178634B2 (en
Inventor
Morihito Asano
守人 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2009132864A priority Critical patent/JP5178634B2/en
Publication of JP2010281215A publication Critical patent/JP2010281215A/en
Application granted granted Critical
Publication of JP5178634B2 publication Critical patent/JP5178634B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that, in a variable valve timing mechanism controlled by a hydraulic fluid, for example, when the valve timing of an exhaust valve is controlled during transient operation such malfunctions that a delay in response is caused, an air-fuel ratio is made lean in deceleration, and the air-fuel ratio is shifted to a rich side can occur. <P>SOLUTION: The method for controlling the air-fuel ratio of an internal combustion engine controls an air-fuel ratio by detecting a difference between the target value of valve timing and the actually-measured value and varying a damping amount and an initial variation for fuel correction in correction control during a transient time according to the degree of the detected difference, in the case that the variable valve timing mechanism controls a valve overlap quantity when the exhaust valve and an intake valve are simultaneously opened according to an operating state in the internal combustion engine including the variable valve timing mechanism and a fuel injection valve supplying fuel through an intake port. The detected difference is compared with a predetermined value. As the result of comparison, when the detected difference is larger than a predetermined value, an initial variation for the fuel correction during the transient time is greatly corrected in comparison with a predetermined amount and the damping ratio of the damping amount is increased. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、可変バルブタイミング機構を備える、吸気ポート噴射式の内燃機関の空燃比制御方法に関するものである。   The present invention relates to an air-fuel ratio control method for an intake port injection type internal combustion engine having a variable valve timing mechanism.

従来、排気弁と吸気弁との少なくとも一方の開閉タイミングを変更する可変バルブタイミング機構を備え、吸気ポート内に燃料を噴射する構成の内燃機関では、噴射された燃料の一部が吸気ポートなど吸気系における内壁面などの表面に付着することが知られている。このような付着燃料が存在するために、種々の空燃比制御が行われている。   2. Description of the Related Art Conventionally, in an internal combustion engine having a variable valve timing mechanism for changing the opening / closing timing of at least one of an exhaust valve and an intake valve and injecting fuel into an intake port, a part of the injected fuel is taken into an intake port or the like. It is known to adhere to surfaces such as inner wall surfaces in the system. Due to the presence of such adhered fuel, various air-fuel ratio controls are performed.

例えば、特許文献1に示されるものでは、噴射された燃料の内、燃焼室内に直接輸送される直送燃料量と吸気系の表面に付着して形成された液膜から燃焼室に輸送される液膜輸送量とを算出し、算出した両者に基づいて燃焼室に実質的に輸送される燃料輸送総量を算出し、燃料輸送総量が運転状態に応じた適正量となるように燃料を制御するものである。この特許文献1のものでは、燃料の制御にあたっては、可変バルブタイミング機構の制御状態に応じて直送燃料量や液膜輸送量の割合を可変設定する構成である。   For example, in the technique disclosed in Patent Document 1, the amount of direct fuel transported directly into the combustion chamber and the liquid transported to the combustion chamber from the liquid film formed on the surface of the intake system among the injected fuel. Calculate the amount of membrane transport, calculate the total amount of fuel transported to the combustion chamber based on both calculated, and control the fuel so that the total amount of fuel transport is an appropriate amount according to the operating conditions It is. In this Patent Document 1, the fuel is controlled by variably setting the ratio of the direct feed fuel amount and the liquid film transport amount in accordance with the control state of the variable valve timing mechanism.

特開2006‐63924号公報JP 2006-63924 A

ところで、可変バルブタイミング機構は、一般的には、作動オイルに制御されるものであるが、このようなオイル制御を実施するものでは、過渡運転時において排気弁又は吸気弁のバルブタイミングを制御する場合に、制御信号を受けて実際に作動するまでに若干の応答の遅れが生じることがある。   By the way, the variable valve timing mechanism is generally controlled by the working oil, but in the case of performing such oil control, the valve timing of the exhaust valve or the intake valve is controlled during transient operation. In some cases, there may be a slight delay in response until the control signal is actually activated.

このような応答の遅れが生じると、排気弁と吸気弁との両方が一時的に開いた状態になる際のバルブオーバーラップ量が、通常とは異なる場合が生じる。このため、燃料の輸送や気化の状態が異なり、直送輸送量と液膜輸送量との割合が通常と異なり、その結果、減速時では空燃比が通常よりも過リッチになりその後通常よりも弱リーンになり、加速時には通常よりも過リーンになりその後通常よりも弱リッチ側にずれる、といった不具合を生じることがある。   When such a response delay occurs, the valve overlap amount when both the exhaust valve and the intake valve are temporarily opened may be different from the normal case. For this reason, the transport and vaporization conditions of the fuel are different, and the ratio between the direct transport amount and the liquid film transport amount is different from the normal amount.As a result, the air-fuel ratio becomes over-rich than usual during deceleration and then weaker than usual. There is a possibility that the engine becomes lean, becomes excessively lean at the time of acceleration, and then shifts to a slightly richer side than usual after that.

そこで本発明は、このような不具合を解消することを目的としている。   Therefore, the present invention aims to eliminate such problems.

すなわち、本発明の内燃機関の空燃比制御方法は、排気弁と吸気弁との少なくとも一方のバルブタイミングを制御する可変バルブタイミング機構と、吸気ポートを介して燃料を供給する燃料噴射弁とを備えてなる内燃機関において、可変バルブタイミング機構が運転状態に応じて排気弁と吸気弁とが同時に開く時のバルブオーバーラップ量を制御する場合に、過渡運転時におけるバルブタイミングの目標値と実測値とのずれを検出し、過渡時補正制御における燃料補正のための初期変化量と減衰量とを検出したずれの程度に応じて可変して空燃比を制御する内燃機関の空燃比制御方法であって、検出したずれと所定値とを比較し、比較の結果、検出したずれが所定値より大きい場合、過渡時の燃料補正の初期変化量を所定量より大きく補正し、かつ減衰量の減衰割合を大きくすることを特徴とする。   That is, an air-fuel ratio control method for an internal combustion engine according to the present invention includes a variable valve timing mechanism that controls the valve timing of at least one of an exhaust valve and an intake valve, and a fuel injection valve that supplies fuel via an intake port. When the variable valve timing mechanism controls the valve overlap amount when the exhaust valve and the intake valve are opened simultaneously according to the operating state, the target value and actual measured value of the valve timing during transient operation An air-fuel ratio control method for an internal combustion engine, in which an air-fuel ratio is controlled in a variable manner according to the degree of deviation detected by detecting an initial change amount and an attenuation amount for fuel correction in transient correction control. If the detected deviation is compared with the predetermined value and the detected deviation is larger than the predetermined value, the initial change amount of the fuel correction at the time of transition is corrected to be larger than the predetermined amount. And characterized by increasing the attenuation rate of the attenuation.

このような構成によれば、過渡運転時におけるバルブタイミングの目標値と実測値とのずれが所定値より大きいことを検出した場合に、初期変化量と減衰量の減衰割合とを大きくすることで、実際のバルブタイミングつまり実測値が目標値に達するまでの間に時間の遅れが生じても、排気ガスの吹き戻し又はその逆の現象により吸気ポートに付着した燃料に起因する空燃比の乱れを補正する。その結果、過渡運転時すなわち加減速時のドライバビリティの低下を抑制することが可能になる。   According to such a configuration, when it is detected that the deviation between the target value of the valve timing and the actual measurement value during the transient operation is larger than the predetermined value, the initial change amount and the attenuation ratio of the attenuation amount are increased. Even if there is a time delay before the actual valve timing, that is, the actual measurement value reaches the target value, the air-fuel ratio disturbance caused by the fuel adhering to the intake port due to the exhaust gas blow-back or vice versa to correct. As a result, it is possible to suppress a decrease in drivability during transient operation, that is, acceleration / deceleration.

本発明は、本発明は、以上説明したような構成であり、過渡運転時に、実際のバルブタイミングつまり実測値が目標値に達するまでの間に時間の遅れが生じても、排気ガスの吹き戻し又はその逆の現象により吸気ポートに付着した燃料に起因する空燃比の乱れを補正することができる。その結果、過渡運転時すなわち加減速時のドライバビリティの低下を抑制することができる。   The present invention is configured as described above, and the exhaust gas is blown back even if there is a time delay until the actual valve timing, that is, the actually measured value reaches the target value during transient operation. Alternatively, the air-fuel ratio disturbance caused by the fuel adhering to the intake port can be corrected by the reverse phenomenon. As a result, it is possible to suppress a decrease in drivability during transient operation, that is, acceleration / deceleration.

本発明の実施形態の概略構成を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS Structure explanatory drawing which shows schematic structure of embodiment of this invention. 同実施形態の制御手順の概略を示すフローチャート。The flowchart which shows the outline of the control procedure of the embodiment. 同実施形態の減速運転の際の作用説明図。Explanatory drawing at the time of the deceleration driving | operation of the embodiment. 同実施形態の加速運転の際の作用説明図。Explanatory drawing at the time of the acceleration driving | operation of the embodiment.

以下、本発明の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1に1気筒の構成を概略的に示した三気筒エンジン(以下、エンジンと記す)100は、例えば自動車に搭載されるものである。このエンジン100は、排気弁1の開閉タイミングを変更するための可変バルブタイミング機構2を備えている。可変バルブタイミング機構2は、いわゆる揺動シリンダ機構を利用したもので、吸気カムシャフト3に固定されたロータと、ロータの外側に嵌められるハウジングと、ロータに対してハウジングを回動させるための電磁式4方向切換制御弁であるオイルコントロールバルブ4と、互いに噛み合うように一方をハウジングに取り付けて他方を排気カムシャフト5に固定した一対のギア6,7と、吸気カムシャフト3の端部に取り付けられてクランク角度信号b及び気筒判別用信号を出力するクランク角センサ9と、排気カムシャフト5の端部に取り付けられて240°CA(クランク角度)回転する毎に排気カム角度信号cを出力するカム角センサ10とを備える構成である。   A three-cylinder engine (hereinafter referred to as an engine) 100 schematically showing the configuration of one cylinder in FIG. 1 is mounted on, for example, an automobile. The engine 100 includes a variable valve timing mechanism 2 for changing the opening / closing timing of the exhaust valve 1. The variable valve timing mechanism 2 uses a so-called oscillating cylinder mechanism, and includes a rotor fixed to the intake camshaft 3, a housing fitted outside the rotor, and an electromagnetic for rotating the housing with respect to the rotor. An oil control valve 4 that is a four-way switching control valve, a pair of gears 6 and 7 that are attached to the housing and fixed to the exhaust camshaft 5 so as to mesh with each other, and attached to the end of the intake camshaft 3 The crank angle sensor 9 that outputs the crank angle signal b and the cylinder discrimination signal, and the exhaust cam angle signal c is output every time it is attached to the end of the exhaust cam shaft 5 and rotates 240 ° CA (crank angle). The cam angle sensor 10 is provided.

エンジン100の吸気系11には、図示しないアクセルペダルに応じて開閉するスロットルバルブ12が設けてあり、そのスロットルバルブ12の下流には、サージタンク13を一体に有する吸気マニホルド14が取り付けてある。吸気マニホルド14の吸気ポート15側端部には、燃料噴射弁16が取り付けてある。この燃料噴射弁16は、後述する電子制御装置17により制御されて、燃料を吸気ポート15内部に噴射するものである。18は、吸気弁であり、この実施形態では、開閉タイミングは固定されている。一方、エンジン100の排気系20には、排気マニホルド21に三元触媒22が接続されて構成され、排気マニホルド21には空燃比を検出するためのO2センサ23が取り付けてある。 The intake system 11 of the engine 100 is provided with a throttle valve 12 that opens and closes in response to an accelerator pedal (not shown), and an intake manifold 14 that integrally has a surge tank 13 is attached downstream of the throttle valve 12. A fuel injection valve 16 is attached to the end of the intake manifold 14 on the intake port 15 side. The fuel injection valve 16 is controlled by an electronic control unit 17 described later, and injects fuel into the intake port 15. Reference numeral 18 denotes an intake valve. In this embodiment, the opening / closing timing is fixed. On the other hand, the exhaust system 20 of the engine 100 is configured by connecting a three-way catalyst 22 to an exhaust manifold 21, and an O 2 sensor 23 for detecting an air-fuel ratio is attached to the exhaust manifold 21.

このような構成において、排気弁1のバルブタイミング(開閉タイミング)は、電子制御装置17から出力される開閉タイミング信号により可変バルブタイミング機構2が作動して変更されるものである。すなわち、可変バルブタイミング機構2は、開閉タイミング信号を受けると、ハウジングに流出入する作動油の方向及び量をオイルコントロールバルブ4により制御する。これにより、ロータに対するハウジングの相対角度が変化し、吸気カムシャフト3と排気カムシャフト5との間に所望の回転位相差を生じさせて、バルブタイミングを可変制御するものである。つまり、クランクシャフトの回転に対して、吸気弁18を常に一定のタイミングで開閉させつつ、排気弁1の開閉タイミングを変化させることにより、吸気弁18の開閉タイミングと排気弁1の開閉タイミングとの相対位相差を所定角度範囲内で自在に変化させることができる。   In such a configuration, the valve timing (opening / closing timing) of the exhaust valve 1 is changed by the variable valve timing mechanism 2 being operated by the opening / closing timing signal output from the electronic control unit 17. In other words, when the variable valve timing mechanism 2 receives the opening / closing timing signal, the oil control valve 4 controls the direction and amount of hydraulic oil flowing into and out of the housing. As a result, the relative angle of the housing with respect to the rotor changes, and a desired rotational phase difference is generated between the intake camshaft 3 and the exhaust camshaft 5 to variably control the valve timing. That is, the opening / closing timing of the intake valve 18 and the opening / closing timing of the exhaust valve 1 are changed by changing the opening / closing timing of the exhaust valve 1 while always opening / closing the intake valve 18 with respect to the rotation of the crankshaft. The relative phase difference can be freely changed within a predetermined angle range.

電子制御装置17は、中央演算処理装置24と、記憶装置25と、入力インターフェース26と、出力インターフェース27とを備えてなるマイクロコンピュータシステムを主体に構成されている。中央演算処理装置24は、記憶装置25に格納された、以下に説明する種々のプログラムを実行して、エンジン100の運転を制御するものである。中央演算処理装置24には、エンジン100の運転制御に必要な情報が入力インターフェース26を介して入力されるとともに、中央演算処理装置24は、燃料制御弁16、オイルコントロールバルブ4などに対して制御信号を、出力インターフェース27を介して出力する。   The electronic control unit 17 is mainly configured by a microcomputer system including a central processing unit 24, a storage device 25, an input interface 26, and an output interface 27. The central processing unit 24 controls the operation of the engine 100 by executing various programs described below that are stored in the storage device 25. Information necessary for operation control of the engine 100 is input to the central processing unit 24 via the input interface 26, and the central processing unit 24 controls the fuel control valve 16, the oil control valve 4, and the like. The signal is output via the output interface 27.

具体的には、入力インターフェース26には、吸気マニホルド14に流入する空気の吸気圧を検出するための吸気圧センサ30から出力される吸入空気圧信号a、クランク角センサ9から出力されるクランク角度信号b、排気カムシャフト5の回転角度を検出するためのカム角センサ10から出力される排気カム角度信号c、スロットルバルブ12の開閉状態を検出するためのアイドルスイッチ31から出力されるIDL信号d、エンジン100の冷却水温度を検出するための水温センサ32から出力される水温信号e、O2センサ23から出力される電圧信号fなどが入力される。一方、出力インターフェース27からは、燃料制御弁16に対して燃料噴射信号g、点火プラグ28に対して点火信号h、可変バルブタイミング機構2のオイルコントロールバルブ4に対して開閉タイミング信号kなどが出力される。 Specifically, the input interface 26 has an intake air pressure signal a output from the intake pressure sensor 30 for detecting the intake pressure of the air flowing into the intake manifold 14, and a crank angle signal output from the crank angle sensor 9. b, an exhaust cam angle signal c output from the cam angle sensor 10 for detecting the rotation angle of the exhaust camshaft 5, an IDL signal d output from the idle switch 31 for detecting the open / closed state of the throttle valve 12. A water temperature signal e output from the water temperature sensor 32 for detecting the coolant temperature of the engine 100, a voltage signal f output from the O 2 sensor 23, and the like are input. On the other hand, the output interface 27 outputs a fuel injection signal g to the fuel control valve 16, an ignition signal h to the spark plug 28, an open / close timing signal k to the oil control valve 4 of the variable valve timing mechanism 2, and the like. Is done.

このような構成において、電子制御装置4は、吸気圧センサ30から出力される吸入空気圧信号aとクランク角センサ9から出力されるクランク角度信号bとを主な情報として、運転状態に応じて設定される基本燃料噴射量を、後述する過渡時補正量を含む各種の補正量を用いて補正して燃料噴射量を演算し、燃料噴射量に対応する燃料噴射時間つまり燃料噴射弁16に対する通電時間を決定し、その決定された通電時間により燃料噴射弁16を制御して、燃料を吸気ポート15に向けて噴射する。このような燃料噴射制御自体は、この分野で知られているものを適用するものであってよい。   In such a configuration, the electronic control unit 4 sets the intake air pressure signal a output from the intake pressure sensor 30 and the crank angle signal b output from the crank angle sensor 9 as main information according to the operating state. The fuel injection amount is calculated by correcting the basic fuel injection amount to be performed using various correction amounts including a transient correction amount described later, and the fuel injection time corresponding to the fuel injection amount, that is, the energization time for the fuel injection valve 16 The fuel injection valve 16 is controlled according to the determined energization time, and fuel is injected toward the intake port 15. Such fuel injection control itself may apply what is known in this field.

又、電子制御装置4には、可変バルブタイミング機構2が運転状態に応じて排気弁1と吸気弁18とが同時に開くバルブオーバーラップ量を制御する場合に、過渡運転時におけるバルブタイミングの目標値と実測値とのずれを検出し、過渡時補正制御における燃料補正のための初期変化量と減衰量とを検出したずれの程度に応じて可変して空燃比を制御するに際して、検出したずれと所定値とを比較し、比較の結果、検出したずれが所定値より大きい場合、過渡時の燃料補正の初期変化量を所定量より大きく補正し、かつ減衰量の減衰割合を大きくする空燃比制御プログラムが格納してある。   The electronic control unit 4 also has a valve timing target value during transient operation when the variable valve timing mechanism 2 controls the valve overlap amount that the exhaust valve 1 and the intake valve 18 open simultaneously according to the operating state. When the air-fuel ratio is controlled by changing the initial change amount and attenuation amount for fuel correction in the transient correction control according to the detected degree of deviation, Air-fuel ratio control that compares a predetermined value and, if the detected deviation is larger than the predetermined value, corrects the initial change amount of the fuel correction at the time of transition larger than the predetermined amount and increases the attenuation rate of the attenuation amount The program is stored.

図2に基づいて、この実施形態の空燃比制御プログラムの構成を説明する。なお、このエンジン100にあっては、上述した各種のセンサから出力される信号により検出した運転状態に応じて、電子制御装置4が可変バルブタイミング機構2を制御して、適正なバルブオーバーラップ量を維持することにより、燃料の気化を促進している。又、この空燃比プログラムは、エンジン100の運転状態が過渡運転時であると判定した場合に、燃料噴射量の演算タイミング毎に実行されるものである。過渡運転時の判定は、例えば吸入空気圧信号aに基づいて行い、吸入空気圧信号aが低くなる場合は、過渡運転が減速時過渡運転であると判定し、高くなる場合は、加速時過渡運転と判定する。   Based on FIG. 2, the structure of the air-fuel ratio control program of this embodiment will be described. In the engine 100, the electronic control unit 4 controls the variable valve timing mechanism 2 in accordance with the operation state detected by the signals output from the various sensors described above, so that an appropriate valve overlap amount is obtained. By maintaining this, fuel vaporization is promoted. The air-fuel ratio program is executed at every calculation timing of the fuel injection amount when it is determined that the operating state of the engine 100 is a transient operation. The determination at the time of transient operation is performed based on, for example, the intake air pressure signal a. When the intake air pressure signal a becomes low, it is determined that the transient operation is a transient operation at deceleration, and when it becomes high, the transient operation at acceleration is determined. judge.

まず、ステップS1では、バルブタイミングの目標値と実測値とのずれを検出する。実測値は、クランク角センサ9から出力されるクランク角度信号bとカム角センサ10から出力される排気カム角信号cとに基づいて求めるものである。目標値は、この時点の運転状態に応じて設定する。   First, in step S1, a deviation between the valve timing target value and the actual measurement value is detected. The actual measurement value is obtained based on the crank angle signal b output from the crank angle sensor 9 and the exhaust cam angle signal c output from the cam angle sensor 10. The target value is set according to the operating state at this time.

ステップS2では、検出したずれが、所定値より大きいか否かを判定する。所定値は、定常運転から過渡運転への移行が急激であった場合、実際に排気弁1のバルブタイミングが目標値に達するまでに時間を要し、ずれが大きくなることを考慮して、適合により設定する。ずれが所定値より大であると判定した場合は、ステップS3に進む。   In step S2, it is determined whether or not the detected deviation is larger than a predetermined value. Predetermined values conform to the fact that when the transition from steady operation to transient operation is abrupt, it takes time until the valve timing of the exhaust valve 1 actually reaches the target value, and the deviation becomes large. Set by. If it is determined that the deviation is greater than the predetermined value, the process proceeds to step S3.

ステップS3では、過渡時補正制御における基本燃料噴射量の補正量である初期変化量を所定量より大きくして設定する。初期変化量とは、バルブタイミングの目標値が切り替わった時点から所定時間内の変化量として設定するものである。初期変化量の所定量及び後述する減衰量の減衰割合それぞれは、その絶対値がバルブタイミングの目標値と実測値とのずれが大きくなるほど大きくなるように、エンジン100の負荷、回転数及びエンジン温度(冷却水温)をパラメータとして、例えば初期変化量マップ及び減衰割合マップに設定してある。ステップS3においては、初期変化量の所定量に、例えば係数を乗じることにより、所定量より大なる初期変化量を設定するものである。   In step S3, an initial change amount that is a correction amount of the basic fuel injection amount in the transient correction control is set to be larger than a predetermined amount. The initial change amount is set as a change amount within a predetermined time from the time when the target value of the valve timing is switched. The predetermined amount of the initial change amount and the attenuation rate of the attenuation amount, which will be described later, are increased such that the absolute value thereof increases as the deviation between the target value of the valve timing and the actually measured value increases. (Cooling water temperature) is set as a parameter, for example, in an initial variation map and an attenuation rate map. In step S3, an initial change amount larger than the predetermined amount is set by, for example, multiplying a predetermined amount of the initial change amount by a coefficient.

ステップS4では、初期変化量を運転領域に対応する所定量により設定する。したがって、この場合の初期変化量は、ステップS3におけるものより小さいものである。   In step S4, the initial change amount is set by a predetermined amount corresponding to the operation region. Accordingly, the initial change amount in this case is smaller than that in step S3.

ステップS5では、設定した初期変化量により基本燃料噴射量を補正して、過渡運転時のバルブタイミングの目標値と実測値とのずれがある場合の空燃比を制御する。基本燃料噴射量を補正する場合、減速運転である場合は、基本燃料噴射量から初期変化量を加算し、加速運転である場合は、初期変化量を減算して、それぞれ補正する。   In step S5, the basic fuel injection amount is corrected by the set initial change amount, and the air-fuel ratio when there is a deviation between the target value of the valve timing and the actual measurement value during transient operation is controlled. When the basic fuel injection amount is corrected, the initial change amount is added from the basic fuel injection amount in the case of the deceleration operation, and the initial change amount is subtracted in the acceleration operation to correct each.

ステップS6では、過渡時補正制御における初期変化量と減衰量との切換タイミングとなったか否かを判定する。切換タイミングは、過渡運転時の開始からの経過時間により設定する。したがって、ステップS6では、過渡運転開始より所定の経過時間が経過した場合に切換タイミングであると判定して、ステップS7に進む。   In step S6, it is determined whether or not the timing for switching between the initial change amount and the attenuation amount in the transient correction control has come. The switching timing is set by the elapsed time from the start of transient operation. Therefore, in step S6, it is determined that it is the switching timing when a predetermined elapsed time has elapsed from the start of the transient operation, and the process proceeds to step S7.

ステップS7では、経過時間後に検出したバルブタイミングのずれが所定値より大であるか否かを判定する。ずれが所定値より大であると判定した場合は、ステップS8に進む。   In step S7, it is determined whether or not the valve timing deviation detected after the elapsed time is larger than a predetermined value. If it is determined that the deviation is greater than the predetermined value, the process proceeds to step S8.

ステップS8では、この時点のずれに基づいて、初期変化量の場合と同様に、減衰量の減衰割合の所定値に計数を乗じて、減衰割合の所定割合より大なる減衰割合を設定するものである。   In step S8, as in the case of the initial change amount, based on the deviation at this time point, a predetermined value of the attenuation ratio of the attenuation amount is multiplied by a count to set an attenuation ratio larger than the predetermined ratio of the attenuation ratio. is there.

一方ステップS9では、減衰量の減衰割合を運転領域に対応する所定割合により設定する。この場合、ステップS4における初期変化量と同様に、ステップS8におけるものより小さいものである。   On the other hand, in step S9, the attenuation ratio of the attenuation amount is set by a predetermined ratio corresponding to the operation region. In this case, the initial change amount in step S4 is smaller than that in step S8.

ステップS10では、設定した減衰割合の減衰量により基本燃料噴射量を補正して、過渡運転時のバルブタイミングの目標値と実測値とのずれがある場合の空燃比を制御する。この場合にあっても、基本燃料噴射量を補正する場合、減速運転である場合は、基本燃料噴射量から設定した減衰割合の減衰量を加算し、加速運転である場合は、同減衰量を減算して、それぞれ補正する。具体的には、減速運転の場合、燃料噴射量は減速割合に応じて急速に減量され、加速運転の場合はその逆に、燃料噴射量は急速に増量される。   In step S10, the basic fuel injection amount is corrected by the attenuation amount of the set attenuation ratio, and the air-fuel ratio when there is a deviation between the target value of the valve timing during transient operation and the actually measured value is controlled. Even in this case, when correcting the basic fuel injection amount, in the case of the deceleration operation, the attenuation amount of the attenuation ratio set from the basic fuel injection amount is added, and in the case of the acceleration operation, the same attenuation amount is added. Subtract and correct each. Specifically, in the case of the deceleration operation, the fuel injection amount is rapidly decreased according to the deceleration rate, and in the acceleration operation, on the contrary, the fuel injection amount is rapidly increased.

このような構成において、例えば減速の過渡運転時に、検出したバルブタイミングの目標値と実測値とのずれが判定値より大きいと判定すると(ステップS1〜2)、初期変化量を所定量より大きく設定して、つまり燃料噴射量が減少するように基本燃料噴射量を補正(減量)し、かつ所定の経過時間後は減衰量の減衰割合を大きくすることで、急激に減衰つまり減量補正がなくなるように基本燃料噴射量を補正する。この結果、図3に示すように、減速の過渡運転時における燃料噴射量の減量補正において、バルブタイミングのずれが大きい場合に早期に燃料噴射量を少なくすることで、補正の初期において液膜燃料により空燃比が急速によりリッチ側になるのを防ぎ、その後は、減衰量の減衰割合を大きくすることで空燃比を安定させる。   In such a configuration, for example, when it is determined that the deviation between the detected valve timing target value and the actual measurement value is larger than the determination value during the transient operation of deceleration (steps S1 and S2), the initial change amount is set to be larger than the predetermined amount. That is, by correcting (decreasing) the basic fuel injection amount so that the fuel injection amount decreases, and increasing the attenuation rate of the attenuation amount after a predetermined elapsed time, the attenuation, that is, the decrease correction is suddenly lost. Correct the basic fuel injection amount. As a result, as shown in FIG. 3, in the fuel injection amount decrease correction during the deceleration transient operation, the liquid film fuel is reduced at the initial stage of correction by reducing the fuel injection amount early when the valve timing deviation is large. Thus, the air-fuel ratio is prevented from rapidly becoming richer, and thereafter the air-fuel ratio is stabilized by increasing the attenuation ratio of the attenuation amount.

このように空燃比を制御することにより、過渡運転時におけるバルブタイミング制御の際の吹き戻しで、吸気ポート15に付着していた液膜燃料が吸気マニホルド14に吹き飛んで、空燃比がリーン側に変化することによるショックを抑制することができる。なお、図3において、実線は、バルブタイミングのずれが大きい場合であり、一点鎖線は、ずれが所定値より小さい場合(ステップS4及びステップS9に対応)の、それぞれの空燃比の変化を示すものである。   By controlling the air-fuel ratio in this way, the liquid film fuel adhering to the intake port 15 is blown off to the intake manifold 14 by blowing back during valve timing control during transient operation, so that the air-fuel ratio becomes leaner. Shock due to change can be suppressed. In FIG. 3, the solid line indicates the case where the deviation of the valve timing is large, and the alternate long and short dash line indicates the change in the respective air-fuel ratios when the deviation is smaller than the predetermined value (corresponding to step S4 and step S9). It is.

同様にして、加速の過渡運転時では、検出したバルブタイミングの目標値と実測値とのずれが判定値より大きいと判定すると(ステップS1〜2)、初期変化量を所定量より大きく設定して、つまり燃料噴射量が増加するように基本燃料噴射量を補正(増量)し、かつ所定の経過時間後は減衰量の減衰割合を大きくすることで急激に減衰つまり減量するように基本燃料噴射量を補正する。この結果、図4に示すように、加速の過渡運転時における燃料噴射量の増量補正において、バルブタイミングのずれが大きい場合に燃料噴射量を早期に多くすることで、補正の初期において空燃比は急速によりリーン側になるのを防ぎ、その後は、減衰量の減衰割合が大きいことで急速にリッチ側に変化して空燃比を安定させる。   Similarly, during acceleration acceleration operation, if it is determined that the difference between the detected valve timing target value and the actual measurement value is larger than the determination value (steps S1 and S2), the initial change amount is set larger than the predetermined amount. That is, the basic fuel injection amount is corrected (increased) so that the fuel injection amount increases, and after a predetermined elapsed time, the attenuation rate of the attenuation amount is increased so that the basic fuel injection amount suddenly attenuates or decreases. Correct. As a result, as shown in FIG. 4, in the increase correction of the fuel injection amount during the transient operation of acceleration, when the deviation of the valve timing is large, the fuel injection amount is increased early so that the air-fuel ratio is The lean side is prevented from being rapidly increased, and thereafter, the damping ratio of the attenuation amount is large, so that it rapidly changes to the rich side to stabilize the air-fuel ratio.

このように空燃比を制御することにより、過渡運転時におけるバルブタイミング制御の際の吹き戻しによる吹き飛びが少なくなり、吸気ポート15に付着していた液膜燃料が燃焼室32に流入して、空燃比がリッチ側に変化することによるショックを抑制することができる。なお、図4において、実線は、バルブタイミングのずれが大きい場合であり、一点鎖線は、ずれが所定値より小さい場合(ステップS4及びステップS9に対応)の、それぞれの空燃比の変化を示すものである。   By controlling the air-fuel ratio in this way, the blow-off due to the blowback during the valve timing control during the transient operation is reduced, and the liquid film fuel adhering to the intake port 15 flows into the combustion chamber 32 and is emptied. Shock caused by the change of the fuel ratio to the rich side can be suppressed. In FIG. 4, the solid line shows the change in the air-fuel ratio when the valve timing deviation is large, and the alternate long and short dash line shows the change in the air-fuel ratio when the deviation is smaller than the predetermined value (corresponding to step S4 and step S9). It is.

なお、上述の実施形態においては、排気弁1のみがその開閉タイミングを制御できるものを説明したが、排気弁1と吸気弁との両方のバルブタイミングを制御できるものに適用するものであってもよい。   In the above-described embodiment, the description has been given of the case where only the exhaust valve 1 can control the opening / closing timing, but the present invention may be applied to the one capable of controlling the valve timing of both the exhaust valve 1 and the intake valve. Good.

また、初期変化量及び減衰量の減衰割合を大きくする補正するのに、それぞれの所定値に係数を乗じるものを説明したが、定数を加算するものや、補正後の値をマップにより設定するものであってもよい。   In addition, the correction for increasing the attenuation ratio of the initial change amount and the attenuation amount has been described by multiplying each predetermined value by a coefficient. However, a constant is added or a value after correction is set by a map. It may be.

その他、各部の具体的構成についても上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each part is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

本発明の活用例として、可変バルブタイミング機構を備え、燃料を吸気ポートに噴射する型式の内燃機関に適用されるものが挙げられる。   As an application example of the present invention, there is one that is applied to an internal combustion engine of a type that includes a variable valve timing mechanism and injects fuel into an intake port.

1…排気弁
2…可変バルブタイミング機構
15…吸気ポート
16…燃料噴射弁
17…電子制御装置
18…吸気弁
DESCRIPTION OF SYMBOLS 1 ... Exhaust valve 2 ... Variable valve timing mechanism 15 ... Intake port 16 ... Fuel injection valve 17 ... Electronic control unit 18 ... Intake valve

Claims (1)

排気弁と吸気弁との少なくとも一方のバルブタイミングを制御する可変バルブタイミング機構と、吸気ポートを介して燃料を供給する燃料噴射弁とを備えてなる内燃機関において、可変バルブタイミング機構が運転状態に応じて排気弁と吸気弁とが同時に開く時のバルブオーバーラップ量を制御する場合に、過渡運転時におけるバルブタイミングの目標値と実測値とのずれを検出し、過渡時補正制御における燃料補正のための初期変化量と減衰量とを検出したずれの程度に応じて可変して空燃比を制御する内燃機関の空燃比制御方法であって、
検出したずれと所定値とを比較し、
比較の結果、検出したずれが所定値より大きい場合、過渡時の燃料補正の初期変化量を所定量より大きく補正し、かつ減衰量の減衰割合を大きくする内燃機関の空燃比制御方法。
In an internal combustion engine including a variable valve timing mechanism that controls valve timing of at least one of an exhaust valve and an intake valve and a fuel injection valve that supplies fuel via an intake port, the variable valve timing mechanism is in an operating state. Accordingly, when controlling the valve overlap amount when the exhaust valve and the intake valve open simultaneously, the deviation between the target value of the valve timing during transient operation and the measured value is detected, and the fuel correction in the transient correction control is detected. An air-fuel ratio control method for an internal combustion engine, wherein the air-fuel ratio is controlled by varying the initial change amount and the attenuation amount in accordance with the detected degree of deviation,
Compare the detected deviation with a predetermined value,
An air-fuel ratio control method for an internal combustion engine, wherein, as a result of comparison, if the detected deviation is larger than a predetermined value, the initial change amount of fuel correction at the time of transition is corrected to be larger than a predetermined amount and the damping ratio of the damping amount is increased.
JP2009132864A 2009-06-02 2009-06-02 Air-fuel ratio control method for internal combustion engine Expired - Fee Related JP5178634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009132864A JP5178634B2 (en) 2009-06-02 2009-06-02 Air-fuel ratio control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009132864A JP5178634B2 (en) 2009-06-02 2009-06-02 Air-fuel ratio control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010281215A true JP2010281215A (en) 2010-12-16
JP5178634B2 JP5178634B2 (en) 2013-04-10

Family

ID=43538165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009132864A Expired - Fee Related JP5178634B2 (en) 2009-06-02 2009-06-02 Air-fuel ratio control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5178634B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2519600B (en) * 2013-10-28 2018-09-12 Jaguar Land Rover Ltd Gasoline Engine Knock Control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009014418B3 (en) * 2009-03-26 2010-04-15 Heraeus Quarzglas Gmbh & Co. Kg Drawing method for the production of cylindrical components made of quartz glass

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326846A (en) * 1989-06-22 1991-02-05 Toyota Motor Corp Air-fuel ratio controller for internal combustion engine
JPH0447134A (en) * 1990-06-14 1992-02-17 Daihatsu Motor Co Ltd Air-fuel ratio correction method during transient period
JPH04287846A (en) * 1991-03-18 1992-10-13 Toyota Motor Corp Control method of engine with variable valve timing device
JPH10169477A (en) * 1997-01-13 1998-06-23 Mazda Motor Corp Engine with valve timing control device
JPH10212991A (en) * 1997-01-29 1998-08-11 Toyota Motor Corp Fuel injection control device for internal combustion engine
JPH10331612A (en) * 1997-05-29 1998-12-15 Toyota Motor Corp Fuel injection controller for internal combustion engine
JP2002276431A (en) * 2001-03-19 2002-09-25 Unisia Jecs Corp Fuel injection control device for engine
JP2006063924A (en) * 2004-08-27 2006-03-09 Mitsubishi Motors Corp Fuel injection control device for internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326846A (en) * 1989-06-22 1991-02-05 Toyota Motor Corp Air-fuel ratio controller for internal combustion engine
JPH0447134A (en) * 1990-06-14 1992-02-17 Daihatsu Motor Co Ltd Air-fuel ratio correction method during transient period
JPH04287846A (en) * 1991-03-18 1992-10-13 Toyota Motor Corp Control method of engine with variable valve timing device
JPH10169477A (en) * 1997-01-13 1998-06-23 Mazda Motor Corp Engine with valve timing control device
JPH10212991A (en) * 1997-01-29 1998-08-11 Toyota Motor Corp Fuel injection control device for internal combustion engine
JPH10331612A (en) * 1997-05-29 1998-12-15 Toyota Motor Corp Fuel injection controller for internal combustion engine
JP2002276431A (en) * 2001-03-19 2002-09-25 Unisia Jecs Corp Fuel injection control device for engine
JP2006063924A (en) * 2004-08-27 2006-03-09 Mitsubishi Motors Corp Fuel injection control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2519600B (en) * 2013-10-28 2018-09-12 Jaguar Land Rover Ltd Gasoline Engine Knock Control

Also Published As

Publication number Publication date
JP5178634B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
JP4363398B2 (en) Air-fuel ratio control device for internal combustion engine
EP2284378B1 (en) Engine control apparatus
US7529613B2 (en) Controller for internal combustion engine
JP4605512B2 (en) Control device for internal combustion engine
JP4752636B2 (en) Control device for internal combustion engine
WO2012098661A1 (en) Control device for internal combustion engine
JP5178634B2 (en) Air-fuel ratio control method for internal combustion engine
JP2012202209A (en) Air-fuel ratio control device of internal combustion engine
JP2008138579A (en) Variable valve timing control device for internal combustion engine
JP5020361B2 (en) Engine fuel injection control device
JP4415864B2 (en) Control device for internal combustion engine
JP2004340065A (en) Control device for hydrogen engine
JP2010168931A (en) Ignition timing control device for spark ignition type internal combustion engine
JP2005344604A (en) Internal combustion engine control device
JP6361534B2 (en) Control device for internal combustion engine
JP2007077842A (en) Control device for internal combustion engine
JP2006214349A (en) Fuel injection control device of internal combustion engine
JP2011226311A (en) Method for correcting intake air amount of internal combustion engine
JP2009221886A (en) Method for controlling operation of internal combustion engine
JP6012646B2 (en) Fuel injection amount control device for internal combustion engine
JP4133288B2 (en) Variable valve timing control method for internal combustion engine
JP5249439B2 (en) Engine fuel injection control device
JP5249440B2 (en) Engine fuel injection control device
JP4484744B2 (en) Intake air amount control method for internal combustion engine
JP4844522B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130108

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees