JP2009221886A - Method for controlling operation of internal combustion engine - Google Patents

Method for controlling operation of internal combustion engine Download PDF

Info

Publication number
JP2009221886A
JP2009221886A JP2008064787A JP2008064787A JP2009221886A JP 2009221886 A JP2009221886 A JP 2009221886A JP 2008064787 A JP2008064787 A JP 2008064787A JP 2008064787 A JP2008064787 A JP 2008064787A JP 2009221886 A JP2009221886 A JP 2009221886A
Authority
JP
Japan
Prior art keywords
lean
injection amount
air
limit
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008064787A
Other languages
Japanese (ja)
Other versions
JP5398994B2 (en
Inventor
Morihito Asano
守人 浅野
幸一 ▲高▼橋
Koichi Takahashi
Mitsuhiro Izumi
光宏 泉
Shinobu Sugizaki
忍 杉崎
Hiroshi Enkai
博 鴛海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Diamond Electric Manufacturing Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Diamond Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd, Diamond Electric Manufacturing Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2008064787A priority Critical patent/JP5398994B2/en
Publication of JP2009221886A publication Critical patent/JP2009221886A/en
Application granted granted Critical
Publication of JP5398994B2 publication Critical patent/JP5398994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein change of an air-fuel ratio changes torque and causes rotation fluctuation when an internal combustion engine is started at an rich air-fuel ratio and the air-fuel ratio is made lean after that in order to avoid start failure in a cold start due to characteristics of gasoline. <P>SOLUTION: Fuel correction quantity and intake air correction quantity with which operation of the internal combustion engine can be surely continued under a rich air-fuel ratio condition after the start of the internal combustion engine are set as limit adaptation injection quantity and limit adaptation intake correction quantity. Fuel injection quantity in operation with fuel injection quantity less than the limit adaptation injection quantity is defined as lean adaptation injection quantity. Intake air correction quantity set larger as difference between the limit adaptation injection quantity and the lean adaptation injection quantity is larger is set as lean adaptation intake air correction quantity with corresponding to the limit adaptation injection quantity and the lean adaptation injection quantity. The internal combustion engine is operated using the lean adaptation injection quantity and the lean adaptation intake air correction quantity if it is possible to do so in operation of the internal combustion engine after the start. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、始動時に燃料噴射量を増量した後における内燃機関の運転制御方法に関するものである。   The present invention relates to an operation control method for an internal combustion engine after increasing a fuel injection amount at start-up.

従来、内燃機関であるガソリンを燃料とするエンジンでは、始動を良好にするために、燃料噴射量を一時的に多くして、その後は漸次燃料噴射量を減量して空燃比が理論空燃比となるように運転を制御することが知られている。この場合に、燃料噴射量を減量する量は、例えばガソリンの性状による影響やシステムのばらつきにより空燃比がリーンになり、回転変動が生じることを防止するために、そのような場合においても空燃比がリッチになるように設定してある。   Conventionally, in an engine using gasoline as an internal combustion engine as fuel, the fuel injection amount is temporarily increased in order to improve starting, and thereafter the fuel injection amount is gradually decreased so that the air-fuel ratio becomes the stoichiometric air-fuel ratio. It is known to control driving so that In this case, the amount by which the fuel injection amount is reduced is, for example, the air-fuel ratio in order to prevent the air-fuel ratio from becoming lean due to the influence of the properties of the gasoline or system variations and causing fluctuations in the rotation. Is set to be rich.

その一方で、始動時の、O2センサが活性するまでの間の、全炭化水素(THC)の排出量を低減するために、その間において空燃比をできる限りリーンにしてエンジンを運転する傾向にある。例えば、特許文献1に記載のものでは、エンジンの回転変動をモニタしながら、始動時に燃料噴射量を補正して増量し、その増量した燃料噴射量を減量することにより、冷間始動直後から空燃比をリーンにして、運転を制御するものである。この場合に、始動完了後の所定期間においては燃料噴射量の減量を、その所定期間の経過後の減量よりも多くするように設定している。
特開平10-184422号公報
On the other hand, in order to reduce the total hydrocarbon (THC) emissions until the O 2 sensor is activated at the time of starting, the engine tends to operate with the air-fuel ratio as lean as possible during that period. is there. For example, in the one disclosed in Patent Document 1, the fuel injection amount is corrected and increased at start-up while monitoring the engine rotational fluctuation, and the increased fuel injection amount is decreased, so that the empty fuel is discharged immediately after the cold start. The operation is controlled by making the fuel ratio lean. In this case, in the predetermined period after the completion of the start-up, the reduction in the fuel injection amount is set to be larger than that after the predetermined period has elapsed.
JP-A-10-184422

ところが、このような構成のものであると、燃料噴射量を減量するのみで空燃比がリーンになるように調整しているので、空燃比の変化によりトルクが変化し、回転変動を生じる場合がある。このような場合に、例えば重質ガソリンを利用している場合、上述のように燃料を減量すると、トルクが低下して回転変動を引き起こす可能性が生じる。このような場合、吸入空気量を補正する必要があるが、吸入空気量をフィードバック制御により補正しようとすると、補正した吸入空気がエンジンの運転に反映するまでに時間がかかるものとなった。   However, with such a configuration, since the air-fuel ratio is adjusted to be lean only by reducing the fuel injection amount, the torque may change due to the change in the air-fuel ratio, resulting in rotational fluctuations. is there. In such a case, for example, when heavy gasoline is used, if the amount of fuel is reduced as described above, there is a possibility that torque will decrease and rotational fluctuation will occur. In such a case, it is necessary to correct the intake air amount. However, if the intake air amount is to be corrected by feedback control, it takes time until the corrected intake air is reflected in the operation of the engine.

そこで本発明は、このような不具合を解消することを目的としている。   Therefore, the present invention aims to eliminate such problems.

すなわち、本発明の内燃機関の運転制御方法は、内燃機関の始動後、空燃比がリッチである状態で内燃機関の運転を確実に継続し得る燃料補正量及び吸入空気の補正値を限界適合噴射量及び限界適合吸気補正量として設定し、限界適合噴射量よりも少ない燃料噴射量で運転する場合の燃料噴射量をリーン適合噴射量とし、かつ限界適合噴射量とリーン適合噴射量との差に対応しその差が大きいほど多く設定する吸入空気の補正量をリーン適合吸気補正量と設定し、内燃機関の始動後における運転において可能である場合に、リーン適合噴射量とリーン適合吸気補正量とを用いて内燃機関を運転することを特徴とする。   That is, according to the internal combustion engine operation control method of the present invention, after the internal combustion engine is started, the fuel correction amount and the intake air correction value that can reliably continue the operation of the internal combustion engine in a state where the air-fuel ratio is rich are limit-adapted injection. The fuel injection amount when operating with a fuel injection amount smaller than the limit adaptation injection amount is set as the lean adaptation injection amount, and the difference between the limit adaptation injection amount and the lean adaptation injection amount is set. When the difference is larger and the difference is larger, the intake air correction amount that is set to be larger is set as the lean compatible intake correction amount, and when it is possible in the operation after starting the internal combustion engine, the lean compatible injection amount and the lean compatible intake correction amount are And operating an internal combustion engine.

このような構成によれば、限界適合噴射量を基準として、リーン適合噴射量との減量した燃料量に応じて吸入空気の補正量すなわちリーン適合吸気補正量により内燃機関を運転することにより、空燃比が変わった状態におけるトルクの差を、リーン適合吸気補正量にして把握するものである。したがって、内燃機関の回転を安定させることが可能になる。   According to such a configuration, by operating the internal combustion engine with the intake air correction amount, that is, the lean adaptive intake correction amount, in accordance with the fuel amount reduced from the lean adaptive injection amount with reference to the limit adaptive injection amount, The difference in torque when the fuel ratio is changed is grasped as a lean compatible intake correction amount. Therefore, it is possible to stabilize the rotation of the internal combustion engine.

本発明は、以上説明したような構成であり、始動後に空燃比をリーンにして、全炭化水素量を減少させるようにしても、トルクの変動に起因して機関回転が低下することを防止することができる。   The present invention is configured as described above, and even if the air-fuel ratio is made lean after starting and the total hydrocarbon amount is reduced, the engine rotation is prevented from lowering due to torque fluctuations. be able to.

以下、本発明の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1に概略的に示したエンジン100は、自動車用の火花点火式4サイクル4気筒のもので、その吸気系1には図示しないアクセルペダルに応動してモータを駆動して開閉するいわゆる電子式のスロットルバルブ2が配設され、その下流側にはサージタンク3が設けられている。サージタンク3に連通する一方の端部近傍には、さらに燃料噴射弁4が設けてあり、その燃料噴射弁4を、電子制御装置5により制御するようにしている。燃焼室6を形成するシリンダヘッド7には、吸気弁8及び排気弁9が配設されるとともに、火花を発生するスパークプラグ10が取り付けてある。また排気系11には、排気ガス中の酸素濃度を測定するための空燃比検出手段を構成するO2 センサ12が、図示しないマフラに至るまでの管路に配設された触媒である三元触媒13の上流の位置に取り付けられている。なお、図1にあっては、エンジン100の1気筒の構成を代表して図示している。 An engine 100 schematically shown in FIG. 1 is a spark ignition type four-cycle four-cylinder for an automobile, and the intake system 1 is a so-called electronic type that opens and closes by driving a motor in response to an accelerator pedal (not shown). The throttle valve 2 is disposed, and a surge tank 3 is provided downstream thereof. A fuel injection valve 4 is further provided in the vicinity of one end communicating with the surge tank 3, and the fuel injection valve 4 is controlled by the electronic control device 5. The cylinder head 7 forming the combustion chamber 6 is provided with an intake valve 8 and an exhaust valve 9, and a spark plug 10 that generates a spark is attached. Further, in the exhaust system 11, an O 2 sensor 12 that constitutes an air-fuel ratio detecting means for measuring the oxygen concentration in the exhaust gas is a ternary that is a catalyst disposed in a pipeline leading to a muffler (not shown). It is attached at a position upstream of the catalyst 13. In FIG. 1, the configuration of one cylinder of engine 100 is shown as a representative.

エンジン100の運転状態を検出して制御する電子制御装置5は、中央演算処理装置14と、記憶装置15と、入力インターフェース16と、出力インターフェース17とを具備してなるマイクロコンピュータシステムを主体に構成されている。入力インターフェース16には、サージタンク3内の圧力すなわち吸気管圧力を検出するための吸気圧センサ18から出力される吸気圧信号a、エンジン100の回転状態を検出するためのカムポジションセンサ19から出力される気筒判別信号G1とクランク角度基準位置信号G2とエンジン回転数信号b、車速を検出するための車速センサ20から出力される車速信号c、スロットルバルブ2の開閉状態を検出するためのアイドルスイッチ21から出力されるIDL信号d、エンジン100の冷却水温を検出するための水温センサ22から出力される水温信号e、上記したO2 センサ12から出力される電流信号h等が入力される。一方、出力インターフェース17からは、燃料噴射弁4に対して燃料噴射信号fが、またスパークプラグ10に対してイグニションパルスgが出力されるようになっている。 The electronic control unit 5 that detects and controls the operating state of the engine 100 is mainly composed of a microcomputer system including a central processing unit 14, a storage unit 15, an input interface 16, and an output interface 17. Has been. The input interface 16 outputs an intake pressure signal a output from an intake pressure sensor 18 for detecting the pressure in the surge tank 3, that is, an intake pipe pressure, and an output from a cam position sensor 19 for detecting the rotation state of the engine 100. Cylinder discriminating signal G1, crank angle reference position signal G2, engine speed signal b, vehicle speed signal c output from the vehicle speed sensor 20 for detecting the vehicle speed, idle switch for detecting the open / closed state of the throttle valve 2 The IDL signal d output from the engine 21, the water temperature signal e output from the water temperature sensor 22 for detecting the coolant temperature of the engine 100, the current signal h output from the O 2 sensor 12, and the like are input. On the other hand, from the output interface 17, a fuel injection signal f is output to the fuel injection valve 4 and an ignition pulse g is output to the spark plug 10.

電子制御装置5には、吸気圧センサ18から出力される吸気圧信号aとカムポジションセンサ19から出力される回転数信号bとを主な情報とし、エンジン100の運転状態に応じて決まる各種の補正係数で基本噴射時間(基本噴射量)を補正して燃料噴射弁開成時間すなわちインジェクタ最終通電時間Tを決定し、その決定された通電時間により燃料噴射弁4を制御して、エンジン負荷に応じた燃料を吸気系1に噴射させるためのプログラムが内蔵してある。また、このようにエンジン100の燃料噴射を制御する一方、エンジン100の始動後、空燃比がリッチである状態でエンジン100の運転を確実に継続し得る燃料補正量及び吸入空気の補正値を限界適合噴射量及び限界適合吸気補正量として設定し、限界適合噴射量よりも少ない燃料噴射量で運転する場合の燃料噴射量をリーン適合噴射量とし、かつ限界適合噴射量とリーン適合噴射量との差に対応しその差が大きいほど多く設定する吸入空気の補正量をリーン適合吸気補正量と設定し、エンジン100の始動後における運転において可能である場合に、リーン適合噴射量とリーン適合吸気補正量とを用いて内燃機関を運転する運転制御プログラムが、電子制御装置5に内蔵してある。   The electronic control unit 5 uses the intake pressure signal a output from the intake pressure sensor 18 and the rotation speed signal b output from the cam position sensor 19 as main information, and various kinds of information determined according to the operating state of the engine 100. The basic injection time (basic injection amount) is corrected by the correction coefficient to determine the fuel injection valve opening time, that is, the final injector energization time T, and the fuel injection valve 4 is controlled based on the determined energization time to correspond to the engine load. A program for injecting fuel into the intake system 1 is incorporated. Further, while the fuel injection of the engine 100 is controlled in this way, after the engine 100 is started, the fuel correction amount and the correction value of the intake air that can reliably continue the operation of the engine 100 with the air-fuel ratio being rich are limited. The fuel injection amount that is set as the adaptive injection amount and the limit adaptive intake correction amount, the fuel injection amount when operating with a fuel injection amount that is smaller than the limit adaptive injection amount is the lean adaptive injection amount, and the limit adaptive injection amount and the lean adaptive injection amount The correction amount of intake air that is set to be larger as the difference is larger is set as the lean compatible intake correction amount, and when it is possible to operate after the engine 100 is started, the lean compatible injection amount and the lean compatible intake correction An operation control program for operating the internal combustion engine using the amount is built in the electronic control unit 5.

図4のフローチャートを交えて、この運転時期制御プログラムの動作を説明する。なお、この運転時期制御プログラムは、エンジン100が始動された後、O2センサ12が活性して空燃比フィードバック制御を実行するまでの間、所定間隔を置いて繰り返し実行されるものである。この運転制御プログラムには、始動時における制御データとして、冷却水温度もしくは機関温度、負荷(吸入空気量又は吸入空気圧)、エンジン回転数に対応して、燃料噴射量及び吸気補正量の初期値を、例えばマップにして設定してある。マップは、限界適合噴射量及び限界適合吸気補正量のためのものと、リーン適合噴射量のためのものとを備えるものである。 The operation of this operation timing control program will be described with reference to the flowchart of FIG. The operation timing control program is repeatedly executed at predetermined intervals after the engine 100 is started and until the O 2 sensor 12 is activated and the air-fuel ratio feedback control is executed. In this operation control program, initial values of the fuel injection amount and the intake correction amount corresponding to the coolant temperature or engine temperature, the load (intake air amount or intake air pressure), and the engine speed are set as control data at the time of starting. For example, it is set as a map. The map includes a limit adaptation injection amount and a limit adaptation intake correction amount, and a lean adaptation injection amount.

限界適合噴射量及び限界適合吸気補正量は、冷間始動において、燃料である一般的に使用可能なガソリンの性状の如何によらず、エンジン100を始動し、かつO2センサ12が活性して空燃比フィードバック制御を実行し得る状態まで、エンジン100を運転し続けることができる量に演算により設定するものである。特には、例えば、重質ガソリンを使用する場合においても、冷間時においてエンジン100を始動することができ、しかも始動後、例えばアイドル運転が継続されて理論空燃比になるように空燃比フィードバック制御を実行し得るような空燃比を維持するように、限界適合噴射量及び限界適合吸気補正量を設定するものである。したがって、請求項1における、空燃比がリッチである状態とは、エンジン100を始動し得るに十分な燃料量による空燃比の状態であればよく、理論空燃比を中心としてリッチである状態と若干リーンである状態とを包含し、必ずしも空燃比が理論空燃比に対してリッチである状態だけに限定するものではない。図2において、実線により限界適合噴射量を噴射した場合の空燃比の変化を示す。 The limit adaptation injection amount and the limit adaptation intake correction amount are determined when the engine 100 is started and the O 2 sensor 12 is activated in the cold start regardless of the property of gasoline that can be generally used as a fuel. The amount is set so that the engine 100 can be continuously operated until the air-fuel ratio feedback control can be executed. In particular, for example, even when heavy gasoline is used, the engine 100 can be started in the cold state, and after the start, for example, the air-fuel ratio feedback control is performed so that the idling operation is continued to become the stoichiometric air-fuel ratio. The limit-adapted injection amount and the limit-adapted intake correction amount are set so as to maintain an air-fuel ratio that can execute the above. Therefore, the state in which the air-fuel ratio is rich in claim 1 may be an air-fuel ratio state with a fuel amount sufficient to start the engine 100, and is slightly different from a state in which the air-fuel ratio is rich with respect to the theoretical air-fuel ratio. Including a lean state, and is not necessarily limited to a state where the air-fuel ratio is richer than the stoichiometric air-fuel ratio. In FIG. 2, the change in the air-fuel ratio when the limit-fit injection amount is injected is shown by a solid line.

一方、リーン適合噴射量は、限界適合噴射量及び限界適合吸気補正量により始動した直後から、O2センサ12が活性するまでの期間において、できうる限り早期に空燃比を理論空燃比近傍から若干リーンになるように演算により設定するもので、最も空燃比をリッチにする時点までは、限界適合噴射量と同等である。特には、例えば、重質ガソリンとは反対の性状の良質のガソリンを使用する場合において、限界適合噴射量の変化より急激に噴射量を減量しても、アイドル運転を継続し得るように、リーン適合噴射量を設定するものである。図2において、点線によりリーン適合噴射量を噴射した場合の空燃比の変化を示す。 On the other hand, the lean compatible injection amount is slightly changed from the vicinity of the theoretical air fuel ratio as soon as possible in the period from immediately after starting with the limit compatible injection amount and the limit compatible intake correction amount until the O 2 sensor 12 is activated. It is set by calculation so as to become lean, and is equivalent to the limit-adapted injection amount up to the point when the air-fuel ratio is made the richest. In particular, for example, when using high-quality gasoline opposite to heavy gasoline, lean operation can be continued even if the injection amount is reduced more rapidly than the change in the limit-fit injection amount. An appropriate injection amount is set. In FIG. 2, the change of the air-fuel ratio when the lean compatible injection amount is injected is shown by a dotted line.

運転制御プログラムを実行すると、まずステップS1では、限界適合噴射量及び限界適合吸気補正量を演算する。この演算に際しては、限界適合噴射量及び限界適合吸気補正量の初期値を、この時点の冷却水温度及び負荷に基づいて決定した後、そのそれぞれの初期値に基づいて演算するものである。   When the operation control program is executed, first, in step S1, a limit compatible injection amount and a limit compatible intake correction amount are calculated. In this calculation, the initial values of the limit-adapted injection amount and the limit-adapted intake correction amount are determined based on the coolant temperature and the load at this time, and then calculated based on the respective initial values.

次に、ステップS2では、限界適合噴射量の演算と同様にして、リーン適合噴射量を演算する。ステップS3では、演算して得られた限界適合噴射量とリーン適合燃料噴射量との差分を演算する。   Next, in step S2, the lean compatible injection amount is calculated in the same manner as the calculation of the limit compatible injection amount. In step S3, the difference between the limit compatible injection quantity obtained by calculation and the lean compatible fuel injection quantity is calculated.

ステップS4では、得られた差分が0か否かを判定する。そして差分が0でないならステップS5に進み、0ならステップS6に進む。   In step S4, it is determined whether or not the obtained difference is zero. If the difference is not 0, the process proceeds to step S5, and if it is 0, the process proceeds to step S6.

ステップS5では、得られた差分に基づいてリーン適合吸気補正量を演算する。この場合に、リーン適合吸気補正量は、例えばマップにより設定するものであってよい。そして、例えば図3に示すように、差分が大きい程、吸気補正量が多くなる、すなわちアイドル回転制御(ISC)における吸入空気量を増量する補正量が多くなるように設定してある。一方、ステップS6では、演算した限界適合噴射量及び限界適合吸気補正量によりエンジン100を運転制御する。   In step S5, a lean adaptive intake correction amount is calculated based on the obtained difference. In this case, the lean adaptive intake correction amount may be set by a map, for example. For example, as shown in FIG. 3, the larger the difference is, the larger the intake correction amount, that is, the correction amount for increasing the intake air amount in idle rotation control (ISC) is set to be larger. On the other hand, in step S6, the operation of the engine 100 is controlled based on the calculated limit adaptive injection amount and limit adaptive intake correction amount.

ステップS7では、リーン適合噴射量の燃料を噴射するとともに、リーン適合吸気補正量に基づいて吸入空気量を補正して、内燃機関を運転する。   In step S7, the fuel of the lean compatible injection amount is injected, the intake air amount is corrected based on the lean compatible intake correction amount, and the internal combustion engine is operated.

このような構成において、エンジン100を始動し、演算した限界適合噴射量とリーン適合噴射量との差分が0である場合は、制御は、ステップS1〜ステップS4、ステップS6と進んで、限界適合噴射量及び限界適合吸気補正量によりエンジン100を運転する。これにより、エンジン100は、空燃比がリッチである状態で運転されることになるので、失火することなくエンジン100を確実に始動することができる。   In such a configuration, when the engine 100 is started and the difference between the calculated limit adaptive injection amount and the lean optimal injection amount is 0, the control proceeds to step S1 to step S4 and step S6, and the limit compliance is achieved. The engine 100 is operated with the injection amount and the limit adaptive intake correction amount. As a result, engine 100 is operated in a state where the air-fuel ratio is rich, and therefore engine 100 can be reliably started without misfire.

そしてこのように空燃比がリッチである状態で運転が継続され、差分が0でない、つまり0を上回っていると判定した場合は、ステップS1〜ステップS5及びステップS7を実行して、差分に基づいて演算したリーン適合吸気補正量とリーン適合噴射量とによりエンジン100を運転する。この場合、リーン適合噴射量は限界適合噴射量より少なくなるようにその初期値が設定してあるので、リーン適合噴射量及びリーン適合吸気補正量により運転する場合は、限界適合噴射量及び限界適合吸気補正量により運転している場合に比較して空燃比がリーンとなる。この場合に、差分が多い程リーン適合吸気補正量は多くなり、したがって吸入空気量はアイドル回転制御において増量されるものである。   If the operation is continued with the air-fuel ratio being rich in this way and the difference is not 0, that is, it is determined that the difference is greater than 0, Steps S1 to S5 and Step S7 are executed, and the difference is determined. The engine 100 is operated based on the lean-adapted intake correction amount and the lean-adapted injection amount calculated in the above. In this case, since the initial value is set so that the lean compatible injection amount is less than the limit compatible injection amount, when operating with the lean compatible injection amount and the lean compatible intake correction amount, the limit compatible injection amount and the limit compatible injection amount are set. The air-fuel ratio becomes leaner than when operating with the intake correction amount. In this case, the lean adaptive intake correction amount increases as the difference increases, and therefore the intake air amount is increased in the idle rotation control.

したがって、リーン適合噴射量は、限界適合噴射量より減量するものの、吸入空気量が増加するため、空燃比の変化によるトルクの低下を抑制することができる。したがって、安定した回転でエンジン100を運転することができるとともに、空燃比を限界適合噴射量によるリッチな空燃比より理論空燃比に近くすることができるので、全炭化水素の排出量も減らすことができる。   Therefore, although the lean adaptive injection amount is decreased from the limit adaptive injection amount, the intake air amount increases, so that a decrease in torque due to a change in the air-fuel ratio can be suppressed. Therefore, the engine 100 can be operated with stable rotation, and the air-fuel ratio can be made closer to the stoichiometric air-fuel ratio than the rich air-fuel ratio by the limit-fit injection quantity, so that the total hydrocarbon emissions can also be reduced. it can.

なお、本発明は、上述の実施形態に限定されるものではない。   In addition, this invention is not limited to the above-mentioned embodiment.

上述の実施形態においては、限界適合噴射量とリーン適合噴射量との差分により、リーン適合吸気補正量を演算したが、この差分をリーン適合噴射量の補正限界量とするものであってもよい。すなわち、リーン適合噴射量を演算するに際して、差分に基づいて設定される補正限界量により、リーン適合噴射量の減量を規制して、リーン適合噴射量が過度に少なくなることを防止するものである。補正限界量は、差分が大きくなりに応じて大きく設定するものである。   In the above-described embodiment, the lean adaptive intake correction amount is calculated based on the difference between the limit adaptive injection amount and the lean adaptive injection amount. However, this difference may be used as the correction limit amount of the lean adaptive injection amount. . That is, when calculating the lean compatible injection amount, the lean limit injection amount is regulated by the correction limit amount set based on the difference to prevent the lean compatible injection amount from being excessively reduced. . The correction limit amount is set larger as the difference becomes larger.

したがって、例えば、重質ガソリンを使用する場合に、リーン適合噴射量により回転数が低下したりしても、補正限界量によりリーン適合噴射量を補正して設定することにより、最大、限界適合噴射量により燃料を噴射することで、トルクの変動による回転変動を抑制することができる。したがって、O2センサが活性するまでの間において、空燃比の状態を検知することなく、エンジンの運転を制御することができる。 Therefore, for example, when heavy gasoline is used, even if the rotational speed decreases due to the lean compatible injection amount, the maximum and limit compatible injection can be achieved by correcting and setting the lean compatible injection amount using the correction limit amount. By injecting the fuel according to the amount, rotation fluctuation due to torque fluctuation can be suppressed. Therefore, the engine operation can be controlled without detecting the air-fuel ratio until the O 2 sensor is activated.

上述の実施形態においては、アイドル回転制御をスロットルバルブの開度を調整することにより行ったが、スロットルバルブを迂回する迂回路を設け、その迂回路に電磁開閉弁を設け、迂回路を通過する空気量を増減する構成であってもよい。   In the above-described embodiment, the idle rotation control is performed by adjusting the opening of the throttle valve. However, a bypass route that bypasses the throttle valve is provided, and an electromagnetic on-off valve is provided in the bypass route, and passes through the bypass route. The structure which increases / decreases air quantity may be sufficient.

その他、各部の具体的構成についても上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each part is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

本発明の実施形態のエンジンの概略構成を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS Structure explanatory drawing which shows schematic structure of the engine of embodiment of this invention. 同実施形態の限界適合噴射量及びリーン適合噴射量を噴射した場合の空燃比の変化を示すグラフ。The graph which shows the change of the air fuel ratio at the time of injecting the limit adaptation injection quantity and lean adaptation injection quantity of the embodiment. 同実施形態のリーン適合吸気補正量と差分との関係を示すグラフ。The graph which shows the relationship between the lean compatible intake correction amount and difference of the embodiment. 同実施形態の制御手順を示すフローチャート。The flowchart which shows the control procedure of the embodiment.

符号の説明Explanation of symbols

14…中央演算装置
15…記憶装置
16…入力インターフェース
17…出力インターフェース
14 ... Central processing unit 15 ... Storage device 16 ... Input interface 17 ... Output interface

Claims (1)

内燃機関の始動後、空燃比がリッチである状態で内燃機関の運転を確実に継続し得る燃料補正量及び吸入空気の補正値を限界適合噴射量及び限界適合吸気補正量として設定し、
限界適合噴射量よりも少ない燃料噴射量で運転する場合の燃料噴射量をリーン適合噴射量とし、かつ限界適合噴射量とリーン適合噴射量との差に対応しその差が大きいほど多く設定する吸入空気の補正量をリーン適合吸気補正量と設定し、
内燃機関の始動後における運転において可能である場合に、リーン適合噴射量とリーン適合吸気補正量とを用いて内燃機関を運転する内燃機関の運転制御方法。
After starting the internal combustion engine, set the fuel correction amount and intake air correction value that can reliably continue the operation of the internal combustion engine in a state where the air-fuel ratio is rich, as the limit adaptation injection amount and the limit adaptation intake correction amount,
The fuel injection amount when operating with a fuel injection amount smaller than the limit adaptation injection amount is set as the lean adaptation injection amount, and the intake corresponding to the difference between the limit adaptation injection amount and the lean adaptation injection amount is set to be larger as the difference is larger Set the air correction amount as the lean compatible intake correction amount,
An operation control method for an internal combustion engine, wherein the internal combustion engine is operated using a lean compatible injection amount and a lean compatible intake correction amount when the internal combustion engine can be operated after starting.
JP2008064787A 2008-03-13 2008-03-13 Operation control method for internal combustion engine Active JP5398994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008064787A JP5398994B2 (en) 2008-03-13 2008-03-13 Operation control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008064787A JP5398994B2 (en) 2008-03-13 2008-03-13 Operation control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2009221886A true JP2009221886A (en) 2009-10-01
JP5398994B2 JP5398994B2 (en) 2014-01-29

Family

ID=41238933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008064787A Active JP5398994B2 (en) 2008-03-13 2008-03-13 Operation control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5398994B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214667A (en) * 2013-04-25 2014-11-17 ダイハツ工業株式会社 Control device of internal combustion engine
WO2019097999A1 (en) * 2017-11-20 2019-05-23 日野自動車株式会社 Control device for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267340A (en) * 1989-04-10 1990-11-01 Mitsubishi Motors Corp Air-fuel ratio control device for internal combustion engine
JPH10184422A (en) * 1996-12-26 1998-07-14 Mitsubishi Motors Corp Fuel controller of internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267340A (en) * 1989-04-10 1990-11-01 Mitsubishi Motors Corp Air-fuel ratio control device for internal combustion engine
JPH10184422A (en) * 1996-12-26 1998-07-14 Mitsubishi Motors Corp Fuel controller of internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214667A (en) * 2013-04-25 2014-11-17 ダイハツ工業株式会社 Control device of internal combustion engine
WO2019097999A1 (en) * 2017-11-20 2019-05-23 日野自動車株式会社 Control device for internal combustion engine
JP2019094805A (en) * 2017-11-20 2019-06-20 日野自動車株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP5398994B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
US7287500B2 (en) Start controller for internal combustion engine
JP4363398B2 (en) Air-fuel ratio control device for internal combustion engine
JP5209454B2 (en) Device for controlling when ignition is stopped when the internal combustion engine is stopped
WO2012173177A1 (en) Engine control device
JP2008309036A (en) Fuel estimation device
JP2009250058A (en) Deterioration determining device and deterioration determining system for oxygen concentration sensor
JP5868073B2 (en) Control device for internal combustion engine
JP5398994B2 (en) Operation control method for internal combustion engine
JP2009144574A (en) Air-fuel ratio control device for internal combustion engine
US20090105931A1 (en) Controller for internal combustion engine
JP5178634B2 (en) Air-fuel ratio control method for internal combustion engine
JP2007187119A (en) Air-fuel ratio control method of internal combustion engine
JP5164619B2 (en) Operation control method for internal combustion engine
US20060150962A1 (en) Air-fuel ratio feedback control apparatus for engines
JP5004935B2 (en) Air-fuel ratio control method for internal combustion engine
JP4357388B2 (en) Control method for internal combustion engine
JP5077047B2 (en) Control device for internal combustion engine
JP4133288B2 (en) Variable valve timing control method for internal combustion engine
JP4484744B2 (en) Intake air amount control method for internal combustion engine
JP2003343318A (en) Exhaust emission control device of internal combustion engine
JP2001107760A (en) Air-fuel ratio control method of internal combustion engine
JP5084708B2 (en) Air-fuel ratio control method for internal combustion engine
JP6245940B2 (en) Control device for internal combustion engine
JP2004293351A (en) Control method of cutting engine fuel
JP2012211534A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121004

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121107

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131023

R150 Certificate of patent or registration of utility model

Ref document number: 5398994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250