JPH0385345A - Transitional fuel compensation - Google Patents

Transitional fuel compensation

Info

Publication number
JPH0385345A
JPH0385345A JP22007689A JP22007689A JPH0385345A JP H0385345 A JPH0385345 A JP H0385345A JP 22007689 A JP22007689 A JP 22007689A JP 22007689 A JP22007689 A JP 22007689A JP H0385345 A JPH0385345 A JP H0385345A
Authority
JP
Japan
Prior art keywords
amount
transient
transitional
fuel
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22007689A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kajitani
梶谷 勝之
Yoichi Iwakura
洋一 岩倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP22007689A priority Critical patent/JPH0385345A/en
Publication of JPH0385345A publication Critical patent/JPH0385345A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve transitional driving property in a condition where reference injection time is compensated by a coefficient of transitional air fuel ratio compensation, by determining the coefficient based on the variation of intake air quantity at the time of transitional phase of an engine. CONSTITUTION:An electronic controller 4 by which a fuel injection valve 3 installed on an intake tube 2 is controlled based on the information from each sensor and so on, calculates the amount of reference injection based on an engine rotation signal (b) by a crank angle sensor 10 and on an intake pressure signal (c) by a pressure sensor 11. At the transitional state such as the engine acceleration, the amount of intake air at the time of fuel injection by one rotation prior to the last is subtracted from the last intake air amount so as to determine the variation of the amount of intake air, which is multiplied by a predetermined coefficient determined according to the warming condition, so as to determine a coefficient of transitional air fuel ratio compensation. The amount of reference injection is compensated by the coefficient of transitional air fuel ratio compensation and so on, so as to determine the amount of fuel injection.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電子制御燃料噴射装置を備えた自動車等のエ
ンジンに好適に採用可能な過渡時の燃料補正方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a transient fuel correction method that can be suitably employed in engines such as automobiles equipped with an electronically controlled fuel injection device.

[従来の技術] この種のエンジンには、本発明の先行技術として、例え
ば、特開昭62−38840号公報に示されるように、
吸気圧の変化量に基づいてエンジンの過渡状態を検出し
、その検出結果に基づいて燃料の加速増量若しくは減速
減量を行うようにしているものが少なくない。このよう
な構成のものでは、検出した吸気圧の変化量に基づいて
過渡時空燃比補正係数を決定し、その過渡時空燃比補正
係数で基本噴射時間を補正することにより、燃料噴射量
を増量若しくは減少させるようにしている。
[Prior Art] This type of engine includes, as prior art to the present invention, for example, as shown in Japanese Patent Application Laid-Open No. 62-38840,
Many engines detect the transient state of the engine based on the amount of change in intake pressure, and increase the amount of fuel for acceleration or decrease the amount of fuel for deceleration based on the detection result. With this type of configuration, the amount of fuel injection can be increased or decreased by determining a transient air-fuel ratio correction coefficient based on the detected amount of change in intake pressure, and correcting the basic injection time using the transient air-fuel ratio correction coefficient. I try to let them do it.

[発明が解決しよとする課題] ところが、吸気圧は、エンジンの過渡状態に応じて的確
に変化しない場合もある。例えば、第4図に示すように
、定常運転から加速が行われた場合、スロットル開度T
Aが高くなるに伴ってエンジン回転NEおよび吸気圧P
Mが上昇するが、エンジン回転NEは、スロットル開度
TAが一定に達した後(A点)も応答遅れによって上昇
をつづけ、その後、定常状態に移行する。このため、ス
ロットル開度が一定に達した時点(A点)からエンジン
回転NEが定常運転に移行する時点(B点)までの過渡
運転においては、第4図および第5図に示すように、吸
入空気ff1Q、が略一定であるにも拘らず、トルク等
の低下とともに吸気圧PMが低下する。しかして、吸気
圧PMの変化量に基づいて過渡時空燃比補正係数FAE
Wを決定するように構成されたものによると、上述の過
渡運転時に、吸気圧PMの低下に伴って過渡時空燃比補
正係数FAEWがマイナス側に変更されるため、吸入空
気量が略一定量であるにも拘らず、燃料の減速減量が行
われてしまう(斜線部)。その結果、加速の終了付近で
空燃比がリーンになり、息付き等が発生してドライバビ
リティ等が悪化する。
[Problems to be Solved by the Invention] However, the intake pressure may not change accurately depending on the transient state of the engine. For example, as shown in Fig. 4, when acceleration is performed from steady operation, the throttle opening T
As A increases, engine speed NE and intake pressure P
Although M increases, the engine rotation NE continues to increase due to the response delay even after the throttle opening degree TA reaches a constant level (point A), and then shifts to a steady state. Therefore, during transient operation from the time when the throttle opening reaches a certain level (point A) to the time when the engine rotation NE shifts to steady operation (point B), as shown in FIGS. 4 and 5, Even though the intake air ff1Q is substantially constant, the intake pressure PM decreases as the torque and the like decrease. Therefore, based on the amount of change in the intake pressure PM, the transient air-fuel ratio correction coefficient FAE
According to the configuration configured to determine W, during the above-mentioned transient operation, the transient air-fuel ratio correction coefficient FAEW is changed to the negative side as the intake pressure PM decreases, so that the intake air amount remains approximately constant. Despite this, the fuel is decelerated and reduced (shaded area). As a result, the air-fuel ratio becomes lean near the end of acceleration, causing breathing and other problems, which deteriorates drivability.

本発明は、このような不具合を解消することを目的とし
ている。
The present invention aims to eliminate such problems.

[課題を解決するための手段] 本発明は、上記目的を達成するために、次のような構成
を採用している。
[Means for Solving the Problems] In order to achieve the above object, the present invention employs the following configuration.

すなわち、本発明にかかる過渡時の燃料補正方法は、エ
ンジンの加減速時に過渡変化に対応させて過渡時空燃比
補正係数を決定し、その過渡時空燃比補正係数で基本噴
射時間を補正するように構成した過渡時の燃料補正方法
において、前記過渡時空燃比補正係数を、エンジンの過
渡時における吸入空気量の変化量に基づいて決定するよ
うにしたことを特徴とする。
That is, the transient fuel correction method according to the present invention is configured to determine a transient air-fuel ratio correction coefficient in response to transient changes during acceleration and deceleration of the engine, and correct the basic injection time using the transient air-fuel ratio correction coefficient. In the transient fuel correction method, the transient air-fuel ratio correction coefficient is determined based on an amount of change in intake air amount during a transient period of the engine.

[作用] このような構成によれば、過渡時空燃比補正係数は、エ
ンジンの過渡時における吸入空気量が増加した場合には
これに応じて増加し、減少した場合にはこれに応じて減
少することになる。その結果、エンジンの過渡時におけ
る燃料の補正量は、吸気圧の変化に左右されることなく
、吸入空気量の変化に応じて直接的に調節されることに
なるため、過渡状態に応じて的確に過渡時の空燃比制御
を行うことが可能となる。
[Function] According to such a configuration, the transient air-fuel ratio correction coefficient increases in response to an increase in the intake air amount during a transient period of the engine, and decreases in response to a decrease in the intake air amount during a transient period of the engine. It turns out. As a result, the fuel correction amount during engine transients is not affected by changes in intake pressure, but is directly adjusted according to changes in intake air amount, so it can be adjusted accurately according to transient conditions. It becomes possible to perform air-fuel ratio control during transient periods.

[実施例] 以下、本発明の一実施例を第1図から第3図を参照して
説明する。
[Example] Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 3.

第1図に概略的に示したエンジンは、自動車に搭載され
るもので、電子制御燃料噴射装置1を備えている。この
電子制御燃料噴射装置1は、吸気圧およびエンジン回転
等によって吸入空気量を検出するように構成されており
、吸気管2に装着した燃料噴射弁3と、燃料噴射弁3の
燃料噴射時間を制御する電子制御装置4とを具備してい
る。そして、前記燃料噴射弁3から燃焼室5に供給する
燃料の量を、各種センサ等の情報に基づいて前記電子制
御装置4により調節するようにしたものである。
The engine schematically shown in FIG. 1 is installed in an automobile and is equipped with an electronically controlled fuel injection device 1. As shown in FIG. This electronically controlled fuel injection device 1 is configured to detect the amount of intake air based on intake pressure, engine rotation, etc., and is configured to detect a fuel injection valve 3 attached to an intake pipe 2 and a fuel injection time of the fuel injection valve 3. It is equipped with an electronic control device 4 for controlling. The amount of fuel supplied from the fuel injection valve 3 to the combustion chamber 5 is adjusted by the electronic control device 4 based on information from various sensors and the like.

燃料噴射弁3は、電磁コイルを内蔵しており、該電磁コ
イルに前記電子制御装置4から燃料噴射信号aが印加さ
れると、その印加時間に相当する量の燃料を吸気ボート
近傍に噴射するようになっている。
The fuel injection valve 3 has a built-in electromagnetic coil, and when a fuel injection signal a is applied to the electromagnetic coil from the electronic control device 4, it injects fuel in an amount corresponding to the application time into the vicinity of the intake boat. It looks like this.

電子制御装置4は、中央演算処理装置6と、メモリー7
と、人力インターフェース8および出力インターフェー
ス9等を備えたマイクロコンピュータユニットからなる
。入力インターフェース8には、少なくとも、クランク
角センサ10からのエンジン回転信号すと、圧力センサ
11からの吸気圧信号Cと、エンジン冷却水の温度を検
出する水温センサ12からの水温信号d等がそれぞれ人
力されるようになっている。出力インターフェース9か
らは、前記燃料噴射弁3に向けて燃料噴射信号aが出力
されるように設定しである。
The electronic control device 4 includes a central processing unit 6 and a memory 7.
It consists of a microcomputer unit equipped with a human power interface 8, an output interface 9, etc. The input interface 8 receives at least an engine rotation signal from a crank angle sensor 10, an intake pressure signal C from a pressure sensor 11, a water temperature signal d from a water temperature sensor 12 that detects the temperature of engine cooling water, etc. It is becoming human-powered. The output interface 9 is configured to output a fuel injection signal a to the fuel injection valve 3.

前記クランク角センサ10は、エンジン回転に応じた信
号を出力するように構成されたもので、ディストリビュ
ータ13に内蔵しである。圧力センサ11は、吸気圧に
応じた信号を出力するように構成されたもので、サージ
タンク14に設けである。水温センサ12は、サーミス
タ等を内蔵したもので構成されており、エンジン冷却水
温に応じた信号を出力するようになっている。
The crank angle sensor 10 is configured to output a signal according to engine rotation, and is built into the distributor 13. The pressure sensor 11 is configured to output a signal according to the intake pressure, and is provided in the surge tank 14. The water temperature sensor 12 includes a built-in thermistor and the like, and outputs a signal corresponding to the engine cooling water temperature.

また、前記電子制御装置4には、第2図に概略的に示す
ようなプログラムを内蔵してあり、燃料の噴射タイミン
グ毎に該プログラムを実行するように設定しである。先
ず、ステップ51で、基本噴射時間TPとエンジン回転
NEにより、吸入空気量Q、を演算してステップ52に
進む。基本噴射時間TPは、エンジン回転信号すおよび
吸気圧信号C等に基づいて算出された吸入空気量に応じ
て決定される。しかして、この基本噴射時間TPは、次
式に示すように、単位時間あたりのエンジン回転NEお
よび吸入空気量Q、により決定されるため、かかる関係
式の逆算によって吸入空気量Q、を演算することができ
る。
Further, the electronic control device 4 has a built-in program as schematically shown in FIG. 2, and is set to be executed at each fuel injection timing. First, in step 51, the intake air amount Q is calculated based on the basic injection time TP and the engine rotation NE, and the process proceeds to step 52. The basic injection time TP is determined according to the intake air amount calculated based on the engine rotation signal S, the intake pressure signal C, and the like. Since this basic injection time TP is determined by the engine rotation NE per unit time and the intake air amount Q, as shown in the following equation, the intake air amount Q is calculated by back calculation of this relational expression. be able to.

TP=Q、(g/s)/NE (rpm)ステップ52
では、最新の吸入空気ff1Q、、から1回転前の燃料
噴射時における吸入空気量Q 5l−1を減算し、雨間
における吸入空気量Q、の変化量ΔQ、を計算してステ
ッチ53に進む。ステップ53では、吸入空気量Q、の
変化量ΔQ、に暖気状態等に応じて決まる所定の係数a
を掛けて、過渡時空燃比補正係数FAEWを決定し、ス
テップ5・4に進む。ステップ54では、次式に示すよ
うに、過渡時空燃比補正係数FAEWや、エンジン状況
に応じて決まる各種補正係数に1および、無効噴射時間
Nで基本噴射時間TPを補正して燃料噴射時間Tを決定
し、決定した燃料噴射時間Tに相当する時間だけ前記燃
料噴射弁3を開弁させて、燃料噴射を実行する。
TP=Q, (g/s)/NE (rpm) Step 52
Now, subtract the intake air amount Q 5l-1 at the time of fuel injection one revolution before from the latest intake air ff1Q, , calculate the amount of change ΔQ in the intake air amount Q during the rainy period, and proceed to stitch 53. . In step 53, a predetermined coefficient a determined depending on the warm-up state, etc. is applied to the amount of change ΔQ in the intake air amount Q.
, the transient air-fuel ratio correction coefficient FAEW is determined, and the process proceeds to steps 5 and 4. In step 54, as shown in the following equation, the basic injection time TP is corrected by adding 1 to the transient air-fuel ratio correction coefficient FAEW and various correction coefficients determined depending on the engine condition, and the invalid injection time N to determine the fuel injection time T. The fuel injection valve 3 is opened for a time corresponding to the determined fuel injection time T, and fuel injection is performed.

T品TPx (1+FAEW)xK十Nこのような構成
において、第3図に示すように、定常運転から加速が行
われた場合、スロットル開度TAが高くなるに伴ってエ
ンジン回転NEおよび吸気圧PMが上昇するが、エンジ
ン回転NEは、スロットル開度TAが一定に達した後(
A点)も応答遅れによって上昇をつづけ、その後、定常
状態に移行する。この場合、スロットル開度TAが一定
に達した時点(A点)からエンジン回転NEが定常運転
に移行する時点(B点)までの過渡運転においては、検
出された吸気圧PMが低下しても、吸入空気量Q、は略
一定量となり、この間で吸入吸気量Q、の変化量ΔQ、
は0となる。その結果、加速の終了直前付近で過渡時空
燃比補正係数FAEWによって燃料が絞られてしまうこ
とがなく、かかる領域で燃料供給量は吸入空気量に適合
した量に調節されることになる。
T product TPx (1 + FAEW) increases, but after the throttle opening TA reaches a certain level, the engine rotation NE (
Point A) also continues to rise due to the response delay, and then shifts to a steady state. In this case, during transient operation from the time when throttle opening TA reaches a certain level (point A) to the time when engine rotation NE shifts to steady operation (point B), even if the detected intake pressure PM decreases, , the intake air amount Q, are approximately constant, and during this period, the amount of change ΔQ in the intake air amount Q,
becomes 0. As a result, the fuel is not throttled by the transient air-fuel ratio correction coefficient FAEW near the end of acceleration, and the fuel supply amount is adjusted to an amount that matches the intake air amount in this region.

したがって、このような構成によれば、加速が終了する
付近等で吸気圧が低下するようなことがあっても、吸気
圧の過渡的な変化に左右されることなく、吸入空気量の
変化量に応じて適切に燃料の加速増量分を決定すること
ができるので、過渡時における燃料の制御精度を確実に
高めることができる。その結果、加速が終了する直前領
域で空燃比がリーンに変化して息付き等が発生するのを
有効に防止することができ、加速開始時から加速の終了
直後にかけてのドライバビリティを確実に向上させるこ
とができる。
Therefore, with such a configuration, even if the intake pressure decreases near the end of acceleration, the amount of change in the intake air amount is not affected by transient changes in the intake pressure. Since the acceleration increase amount of fuel can be determined appropriately in accordance with the above, it is possible to reliably improve the accuracy of fuel control during transient times. As a result, it is possible to effectively prevent the air-fuel ratio from changing to lean in the region immediately before acceleration ends, which causes breathing problems, and reliably improves drivability from the start of acceleration to immediately after the end of acceleration. can be done.

なお、本発明は、クランク角センサによってエンジン回
転を検出する場合に限らず、点火信号を利用してエンジ
ン回転を検出する場合にも適用可能である。
Note that the present invention is applicable not only to the case where engine rotation is detected using a crank angle sensor but also to the case where engine rotation is detected using an ignition signal.

[発明の効果コ 以上のような構成からなる本発明によれば、エンジンが
過渡状態に移行した場合には、その時の吸入空気量の変
化量に応じて燃料供給量を適切に調節することができ、
エンジンが過渡状態から定常運転に移行する領域で空燃
比がリーンに変化するのを有効に抑制することができる
ので、エンジンの過渡時におけるドライバビリティ等を
確実に高めることができる空燃比の制御精度に優れた過
渡時の燃料補正方法を提供できる。
[Effects of the Invention] According to the present invention configured as described above, when the engine shifts to a transient state, it is possible to appropriately adjust the fuel supply amount according to the amount of change in the intake air amount at that time. I can do it,
Since it is possible to effectively suppress the air-fuel ratio from changing to lean in the region where the engine transitions from a transient state to steady operation, the air-fuel ratio control accuracy can reliably improve drivability during engine transients. It is possible to provide an excellent transient fuel correction method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第3図は本発明の一実施例を示し、第1図は
概略的な全体構成図、第2図は制御手順を概略的に示す
フローチャート図、第3図は制御態様を示すタイミング
チャート図である。第4図は従来例における不具合を示
す第3図相当のタイミングチャート図、第5図は同じ〈
従来例における不具合を示す図である。 1・・・電子制御燃料噴射装置 3・・・燃料噴射弁 4・・・電子制御装置 10・・・クランク角センサ 11・・・圧力センサ
1 to 3 show an embodiment of the present invention, FIG. 1 is a schematic overall configuration diagram, FIG. 2 is a flowchart diagram schematically showing a control procedure, and FIG. 3 is a control mode. It is a timing chart figure. Fig. 4 is a timing chart equivalent to Fig. 3 showing a problem in the conventional example, and Fig. 5 is the same.
It is a figure which shows the malfunction in a conventional example. 1... Electronically controlled fuel injection device 3... Fuel injection valve 4... Electronic control device 10... Crank angle sensor 11... Pressure sensor

Claims (1)

【特許請求の範囲】[Claims] エンジンの加減速時に過渡変化に対応させて過渡時空燃
比補正係数を決定し、その過渡時空燃比補正係数で基本
噴射時間を補正するように構成した過渡時の燃料補正方
法において、前記過渡時空燃比補正係数を、エンジンの
過渡時における吸入空気量の変化量に基づいて決定する
ようにしたことを特徴とする過渡時の燃料補正方法。
In a transient fuel correction method configured to determine a transient air-fuel ratio correction coefficient in response to transient changes during engine acceleration/deceleration, and correct the basic injection time using the transient air-fuel ratio correction coefficient, the transient air-fuel ratio correction A fuel correction method during a transient period, characterized in that a coefficient is determined based on an amount of change in intake air amount during an engine transient period.
JP22007689A 1989-08-27 1989-08-27 Transitional fuel compensation Pending JPH0385345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22007689A JPH0385345A (en) 1989-08-27 1989-08-27 Transitional fuel compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22007689A JPH0385345A (en) 1989-08-27 1989-08-27 Transitional fuel compensation

Publications (1)

Publication Number Publication Date
JPH0385345A true JPH0385345A (en) 1991-04-10

Family

ID=16745562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22007689A Pending JPH0385345A (en) 1989-08-27 1989-08-27 Transitional fuel compensation

Country Status (1)

Country Link
JP (1) JPH0385345A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101104214B1 (en) * 2009-10-09 2012-01-10 주식회사 시디즈 apparatus for adjusting height for the back of chair

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101104214B1 (en) * 2009-10-09 2012-01-10 주식회사 시디즈 apparatus for adjusting height for the back of chair

Similar Documents

Publication Publication Date Title
JP2715207B2 (en) Electronic control fuel supply device for internal combustion engine
KR0166978B1 (en) Method of electronic engine control for internal combustion engine having a plurality of cylinders
JPH0251056B2 (en)
JPS6165038A (en) Air-fuel ratio control system
JPH0315648A (en) Ignition timing control device for internal combustion engine
JPS6397843A (en) Fuel injection control device for internal combustion engine
JPH0575902B2 (en)
JPS641658B2 (en)
JPH0385345A (en) Transitional fuel compensation
JPH04166637A (en) Air-fuel ratio controller of engine
JPH0512538B2 (en)
JPH0573907B2 (en)
JPS63124842A (en) Electronic control fuel injection device
JPH057546B2 (en)
JPS63131840A (en) Control method for fuel injection amount of internal combustion engine
US5103788A (en) Internal combustion engine ignition timing device
JPH0325622B2 (en)
JPS63186940A (en) Fuel injection control device for internal combustion engine
JPH059620B2 (en)
JPH0385344A (en) Fuel control at the time of machine warming
JPH0783104A (en) Ignition timing control method
JPH0452450Y2 (en)
JPS62157246A (en) Fuel feed rate control device of internal combustion engine
JPH01106934A (en) Control device for air-fuel ratio of internal combustion engine
JPS614842A (en) Fuel supply feedback control under cooling of internal-combustion engine