JPH0445978B2 - - Google Patents

Info

Publication number
JPH0445978B2
JPH0445978B2 JP60250410A JP25041085A JPH0445978B2 JP H0445978 B2 JPH0445978 B2 JP H0445978B2 JP 60250410 A JP60250410 A JP 60250410A JP 25041085 A JP25041085 A JP 25041085A JP H0445978 B2 JPH0445978 B2 JP H0445978B2
Authority
JP
Japan
Prior art keywords
wire
purity copper
less
refining
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60250410A
Other languages
Japanese (ja)
Other versions
JPS62111455A (en
Inventor
Masaki Morikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP60250410A priority Critical patent/JPS62111455A/en
Priority to US06/844,350 priority patent/US4676827A/en
Priority to GB8607528A priority patent/GB2175009B/en
Priority to DE19863610587 priority patent/DE3610587A1/en
Priority to KR1019860002527A priority patent/KR900005561B1/en
Priority to US07/036,249 priority patent/US4717436A/en
Publication of JPS62111455A publication Critical patent/JPS62111455A/en
Priority to GB8828948A priority patent/GB2210061B/en
Priority to SG93090A priority patent/SG93090G/en
Publication of JPH0445978B2 publication Critical patent/JPH0445978B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01037Rubidium [Rb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01052Tellurium [Te]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01055Cesium [Cs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01072Hafnium [Hf]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/011Groups of the periodic table
    • H01L2924/01105Rare earth metals

Abstract

PURPOSE:To obtain very thin high-purity copper wire, whose hardness increase is very small, for wire ball part of ball bonding, by specifying the amounts of inclusion of S, Se and Te as inevitable impurities and the total amount of inclusion of inevitable impurities. CONSTITUTION:The amount of inclusion of S, Se and Te as inevitable impurities are specified as follows in high-purity copper: S is 0.1ppm or less; Se is 0.1ppm or less; Te is 0.1ppm or less; and the total amount of inclusion is 0.3ppm or less. Said copper is used for very thin high-purity copper wire for wire-bonding a semiconductor device in place of expensive very thin Au wire. When these upper limit values are exceeded, the hardness of a wire ball part if conspicuously increased after the wire bonding of a high speed. Therefore, the semiconductor chip itself and a film, which is formed on its surface, are damaged.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、著しく高い純度を有し、半導体装
置のボンデイングワイヤとして用いた場合に、ボ
ールボンデイング後のワイヤーボール部に硬さ上
昇するきわめて少ない高純度銅極細線の製造法に
関するものである。 〔従来の技術〕 従来、一般に、半導体装置として、トランジス
タやIC、さらにLSIやVLSIなどが知られている
が、この中で、例えばICの製造法の1つとして、 (a) まず、リードフレーム素材として板厚:0.1
〜0.3mmを有するCu合金条材を用意し、 (b) 上記リードフレーム素材より、エツチングま
たはプレス打抜き加工にて製造せんとするIC
の形状に適合したリードフレームを形成し、 (c) ついで、上記リードフレームの所定個所に、
高純度SiあるいはGeなどの半導体チツプを、
Agペーストなどの導電性樹脂を用いて加熱接
着するか、あるいは予め上記半導体チツプおよ
びリードフレームの片面に形成しておいたAu、
Ag、Ni、Cuあるいはこれらの合金で構成され
ためつき層を介してはんだ付け、あるいはAu
ろう付けし、 (d) 上記半導体チツプと上記リードフレームとに
渡つて、ボンデイングワイヤとして直径:20〜
50μmを有するAu極細線または無酸素銅極細線
を用いてボールボンデイグを施し、 (e) 引続いて、上記の半導体チツプ、ボンデイン
グワイヤ、および半導体チツプが取付けられた
部分のリードフレームを、これらを保護する目
的で樹脂封止し、 (f) 最終的に、上記リードフレームにおける相互
に連なる部分を切削してICを形成する、 以上(a)〜(f)の主要工程からなる方法が知られてい
る。 上記のように、半導体装置の製造には、ボンデ
イングワイヤとしてAu極細線や無酸素銅極細線
が用いられているが、近年、高価なAu極細線に
代つて安価な無酸素銅極細線が注目されるように
なつている。 〔発明が解決しようとする課題〕 しかし、無酸素銅極細線の場合、Au極細線で
通常採用されている0.15〜0.3秒に1回の高速ボ
ールボンデイングを行なうと、ボンデイング時に
ワイヤ先端部に形成されたボール部によつて、例
えばAl合金配線被膜が破壊されたり、時にはチ
ツプ自体をマイクロクラツクが生じたりするなど
の問題点が発生し、高速ボールボンデイングを行
なうことができないのが現状である。 〔問題点を解決するための手段〕 そこで、本発明者等は、上述のような観点か
ら、従来半導体装置のボンデイングワイヤとして
用いられている無酸素銅極細線のもつ、上記のよ
うな問題点を解決すべく研究を行なつた結果、 (a) Au極細線では、ワイヤボンデイング前のワ
イヤボール部の硬さと、高速でのワイヤボンデ
イング後のワイヤボール部にあまり硬さ変化が
見られないのに対して、無酸素銅極細線では、
高速でのワイヤボンデイング後に、ワイヤボー
ル部に著しい硬さの上昇が見られ、このワイヤ
ボール部における硬さ上昇は、その変形に伴う
加工硬化に原因し、これによつて半導体チツプ
自体やその表面に形成されている被膜が損傷さ
れるようになること。 (b) このような無酸素極細線における高速でのボ
ールボンデイング後のワイヤボール部の変形に
伴う加工硬化は、特に不可避不純物として含有
するS、Se、およびTe成分に大きく影響され
ること。 (c) 無酸素銅に電解精製や帯域溶融精製を施し
て、その純度を高くし、不可避不純物としての
S、Se、およびTe成分の含有量を低くしてや
ると、高速でのボールボンデイング後のボール
部の変形に伴う硬さ向上を小さくすることがで
き、無酸素銅極細線に発生していた上記の問題
点の発生を低減することができるが、これを皆
無とすることはできないこと。 (d) 上記の電解精製や帯域溶融精製によつて精製
された高純度銅(以下、1次高純度銅という)
で構成された極細線は、不可避不純物としての
S、Se、およびTe成分を、それぞれ0.3〜
5ppm程度含有し、しかもこれらの不可避不純
物の含有量は前記の精製処理によつて、これよ
り低減することはできないが、この1次高純度
銅に、真空溶解精製を施すと同時に、稀土類元
素、Ti、Zr、Hf、CaおよびMgのうちの1種
以上を、0.1〜100ppmの範囲で含有させた高純
度銅(以下、2次高純度銅という)とした状態
で、帯域溶融精製を施すと、前記の含有成分
(以下、不純物結合成分という)が前記不可避
不純物と結合して硫化物、セレン化物、および
Te化合などを形成して分離されることから、
これらの不純物を含有量は、それぞれ、 S:0.1ppm以下、 Se:0.1ppm以下、 Te:0.1ppm以下、 となると共に、その他の不可避不純物である
Ag、Si、Fe、Ni、Co、Sn、Mn、およびZnな
ども精製除去されるので、不可避不純物の全含
有量も0.3ppm以下となり、このように不可避
不純物の著しく低い高純度銅(以下、最終高純
度銅という)から成形加工された極細線は、こ
れを半導体装置のボンデイングワイヤとして用
いた場合、高速でのワイヤボンデイングによつ
てもボンデイング後のワイヤーボール部におけ
る変形に伴う加工硬化がきわめて低く、半導体
チツプは勿論のこと、その表面の被膜の損傷も
ほとんどなくなること。 以上(a)〜(d)に示される研究結果を得たのであ
る。 この発明は、上記の研究結果にもとづいてなさ
れたものであつて、 無酸素銅に電解精製または帯域溶融精製を施し
て1次高純度銅とし、 この1次高純度銅に真空溶解精製を施すと共
に、前記真空溶解精製中に、稀土類元素、Ti、
Zr、Hf、CaおよびMgのうちの1種以上からな
る不純物結合成分を0.1〜100ppm含有させた2次
高純度銅とし、 引続いて上記2次高純度銅に帯域溶融精製を施
して、不可避不純物の全含有量が0.3ppm以下に
低減すると共に、前記不可避不純物中のS、Se、
およびTe成分の含有量が、それぞれ、 S:0.1ppm以下、 Se:0.1ppm以下、 Te:0.1ppm以下、 に低減した最終高純度銅とし、 上記最終高純度銅から極細線を成形加工するこ
と、 からなる半導体装置のボンデイングワイヤ用高
純度遠極細線の製造法に特徴を有するものであ
る。 なおこの発明の方法における最終高純度銅の不
可避不純物としてのS、SeおよびTe成分の上限
値、並びに不可避不純物の全含有量の上限値は、
上記のように経験的に定められたものであつて、
いずれの場合も、これらの上限値を越えると、従
来無酸素銅極細線において発生していた上記のよ
うな問題点の発生を避けることができなくなるの
である。 また、同じく2次高純度銅における不純物結合
成分の含有量を0.1〜100ppmに限定したのは、そ
の含有量が0.1ppm未満では、最終高純度銅にお
ける不可避不純物の含有量を上記の上限値以下に
低減することができず、一方その含有量が
100ppmを越えると、2次高純度銅中の不可避不
純物の含有量にもよるが、最終高純度銅中にかな
りの割合で残留する場合が生じ、硬化するように
なるという理由にもとづくものである。 〔実施例〕 つぎに、この発明の方法を実施例により具体的
に説明する。 まず、第1表に示される不可避不純物含有量の
無酸素銅を用意し、以下いずれも通常の条件で、
これに電解精製または帯域溶融精製を施して同じ
く第1表に示される不可避不純物含有量の1次高
純度銅とし、これら1次高純度銅のいずれかに、
真空溶解精製を施して第1表に示される不可避不
純物含有量とすると共に、同じく第1表に示され
る割合の不純物結合成分を含有させた2次高純度
銅1〜19とし、さらに引続いて前記2次高純度銅
1〜19にそれぞれ真空中で5回の帯域溶融精製を
施して第2表に示される不可避不純物含有量の最
終高純度銅1〜19とし、この最終高純度銅1〜19
の帯域溶融精製開始端部から長さ:100mmを分取
し、これに熱関および冷間線引加工を施すことに
より本発明法を実施し、直径:25μmの極細線
(以下、本発明高純度銅極細線という)1〜19を
それぞれ製造した。 また、比較の目的で、上記の無酸素銅および1
次高純度銅からも熱間および冷間線引加工にて直
径:25μmの極細線を製造した。
[Industrial Application Field] The present invention is directed to the production of ultra-fine high-purity copper wires that have extremely high purity and have very little increase in hardness at the wire ball portion after ball bonding when used as bonding wires for semiconductor devices. It is about law. [Prior Art] Conventionally, transistors, ICs, LSIs, VLSIs, etc. have been generally known as semiconductor devices. Among these, for example, one of the methods for manufacturing an IC is (a) First, a lead frame is manufactured. Board thickness as material: 0.1
Prepare a Cu alloy strip with a thickness of ~0.3 mm, and (b) IC to be manufactured from the above lead frame material by etching or press punching.
(c) Then, at a predetermined location of the lead frame,
Semiconductor chips made of high-purity Si or Ge,
Au is bonded by heat using conductive resin such as Ag paste, or is formed on one side of the semiconductor chip and lead frame in advance.
Soldering through a tack layer made of Ag, Ni, Cu or their alloys, or soldering with Au
(d) As a bonding wire between the semiconductor chip and the lead frame, diameter: 20~
Ball bonding is performed using an ultra-fine Au wire or an ultra-fine oxygen-free copper wire having a thickness of 50 μm, and (e) the semiconductor chip, bonding wire, and lead frame of the part to which the semiconductor chip is attached are then bonded using these wires. (f) Finally, the interconnected parts of the lead frame are cut to form an IC. The method consists of the main steps (a) to (f) above. It is being As mentioned above, ultra-fine Au wires and ultra-fine oxygen-free copper wires are used as bonding wires in the manufacture of semiconductor devices, but in recent years, inexpensive ultra-fine oxygen-free copper wires have been attracting attention as an alternative to the expensive ultra-fine Au wires. It is becoming more and more common. [Problem to be solved by the invention] However, in the case of oxygen-free copper ultra-fine wires, if high-speed ball bonding is performed once every 0.15 to 0.3 seconds, which is normally used for Au ultra-fine wires, the ball bonding will occur at the tip of the wire during bonding. At present, high-speed ball bonding is not possible due to problems such as the Al alloy wiring coating being destroyed and sometimes micro-cracks occurring in the chip itself. . [Means for Solving the Problems] Therefore, from the above-mentioned viewpoint, the present inventors have solved the above-mentioned problems of the oxygen-free copper ultrafine wires conventionally used as bonding wires for semiconductor devices. As a result of conducting research to solve the following problems, we found that (a) with ultrafine Au wires, there is not much change in the hardness of the wire ball before wire bonding and after high-speed wire bonding; On the other hand, with oxygen-free copper ultrafine wire,
After high-speed wire bonding, a significant increase in hardness is observed in the wire ball part. This increase in hardness in the wire ball part is due to work hardening associated with its deformation, which causes damage to the semiconductor chip itself and its surface. damage to the film formed on the surface. (b) The work hardening caused by the deformation of the wire ball after high-speed ball bonding in such an oxygen-free ultrafine wire is particularly greatly affected by the S, Se, and Te components contained as unavoidable impurities. (c) If oxygen-free copper is subjected to electrolytic refining or zone melting refining to increase its purity and reduce the content of S, Se, and Te components as unavoidable impurities, the ball after high-speed ball bonding Although it is possible to reduce the increase in hardness due to deformation of the parts, and to reduce the occurrence of the above-mentioned problems that have occurred in oxygen-free copper ultrafine wires, it is not possible to completely eliminate them. (d) High-purity copper refined by the above electrolytic refining or zone melting refining (hereinafter referred to as primary high-purity copper)
The ultra-fine wires contain the unavoidable impurities S, Se, and Te, each with a
The content of these unavoidable impurities cannot be reduced further by the above-mentioned refining process, but at the same time this primary high-purity copper is subjected to vacuum melting and refining, rare earth elements are , Ti, Zr, Hf, Ca and Mg in the range of 0.1 to 100 ppm (hereinafter referred to as secondary high purity copper), which is subjected to zone melting refining. Then, the above-mentioned contained components (hereinafter referred to as impurity-binding components) combine with the above-mentioned unavoidable impurities to form sulfides, selenides, and
Because it is separated by forming Te compounds, etc.
The content of these impurities is S: 0.1ppm or less, Se: 0.1ppm or less, Te: 0.1ppm or less, and other unavoidable impurities.
Since Ag, Si, Fe, Ni, Co, Sn, Mn, and Zn are also purified and removed, the total content of unavoidable impurities is 0.3 ppm or less. When ultra-fine wires formed from final high-purity copper are used as bonding wires for semiconductor devices, even during high-speed wire bonding, work hardening due to deformation in the wire ball portion after bonding is extremely high. It is low and there is almost no damage to not only the semiconductor chip but also the coating on its surface. We obtained the research results shown in (a) to (d) above. This invention was made based on the above research results, and consists of subjecting oxygen-free copper to electrolytic refining or zone melting refining to obtain primary high purity copper, and subjecting this primary high purity copper to vacuum melting refining. In addition, rare earth elements, Ti,
The secondary high-purity copper contains 0.1 to 100 ppm of impurity binding components consisting of one or more of Zr, Hf, Ca, and Mg, and then the secondary high-purity copper is subjected to zone melting refining to remove the unavoidable impurities. The total content of impurities is reduced to 0.3 ppm or less, and S, Se,
and Te component content is reduced to S: 0.1 ppm or less, Se: 0.1 ppm or less, Te: 0.1 ppm or less, respectively, and forming an ultrafine wire from the final high purity copper. The present invention is characterized by a method for manufacturing a high-purity ultra-fine wire for bonding wire of a semiconductor device, which comprises: In addition, the upper limit values of S, Se and Te components as unavoidable impurities in the final high-purity copper in the method of this invention, and the upper limit value of the total content of unavoidable impurities are as follows:
As mentioned above, it has been determined empirically,
In either case, if these upper limits are exceeded, the above-mentioned problems that have occurred in conventional oxygen-free copper ultrafine wires cannot be avoided. In addition, the content of impurity binding components in secondary high-purity copper is similarly limited to 0.1 to 100 ppm.If the content is less than 0.1 ppm, the content of unavoidable impurities in final high-purity copper will be below the upper limit above. On the other hand, its content cannot be reduced to
This is based on the reason that if it exceeds 100 ppm, it may remain in a considerable proportion in the final high-purity copper and harden, depending on the content of unavoidable impurities in the secondary high-purity copper. . [Example] Next, the method of the present invention will be specifically explained with reference to Examples. First, oxygen-free copper with the unavoidable impurity content shown in Table 1 is prepared, and the following are all carried out under normal conditions.
This is subjected to electrolytic refining or zone melting refining to obtain primary high purity copper with the unavoidable impurity content shown in Table 1, and any of these primary high purity copper
Secondary high-purity copper 1 to 19 is obtained by vacuum melting and refining to have the unavoidable impurity content shown in Table 1, and also contains impurity binding components in the proportions shown in Table 1, and then Each of the secondary high purity coppers 1 to 19 is subjected to zone melting refining five times in vacuum to obtain final high purity coppers 1 to 19 with the unavoidable impurity content shown in Table 2, and the final high purity coppers 1 to 19 are 19
The method of the present invention was carried out by taking a piece of 100 mm in length from the starting end of the zone melting and refining and subjecting it to hot and cold drawing. 1 to 19 (referred to as pure copper ultrafine wires) were manufactured, respectively. Also, for comparison purposes, the above oxygen-free copper and 1
Next, ultrafine wires with a diameter of 25 μm were manufactured from high-purity copper by hot and cold drawing.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

第1〜3表に示される結果から本発明法により
製造された本発明高純度銅極細線1〜19は、いず
れもS、Se、およびTe成分の含有量がそれぞれ
0.1ppm以下にして、全不可避不純物の含有量も
0.15ppm以下ときわめて低いので、ボールボンデ
イング前後におけるワイヤボール部の硬さ変化が
少なく、この結果高速でのボールボンデイグに際
して半導体チツプ表面部を傷つけることがほとん
ど皆無であるのに対して、無酸素銅極細線や電解
精製の1次高純度銅極細線、さらに帯域溶融精製
の1次高純度銅極細線においては、S、Se、お
よびTe成分や、全不可避不純物の含有量が相対
的に高く、このことは特に高速でのボールボンデ
イング後のワイヤーボール部の硬さ上昇として現
われており、かつボールボンデイング時における
半導体チツプ表面部の損傷が著しいものとなつて
いることが明らかである。 上述のように、この発明の方法によれば、高速
でのボールボンデイングに際して、半導体チツプ
表面部を損傷することがほとんどない高純度銅極
細線を製造することができ、したがつてこの結果
の高純度銅極細線はAu極細線に代る半導体装置
のボンデイングワイヤとして十分実用に供するこ
とができるのである。
From the results shown in Tables 1 to 3, the high purity copper ultrafine wires 1 to 19 of the present invention manufactured by the method of the present invention all have a content of S, Se, and Te components, respectively.
Reduce the content of all unavoidable impurities to 0.1ppm or less.
Since it is extremely low at 0.15ppm or less, there is little change in the hardness of the wire ball before and after ball bonding, and as a result, there is almost no damage to the semiconductor chip surface during high-speed ball bonding. The contents of S, Se, and Te components and all unavoidable impurities are relatively high in copper ultrafine wires, primary high-purity copper ultrafine wires produced by electrolytic refining, and primary high-purity copper ultrafine wires produced by zone melting refining. This is particularly manifested as an increase in the hardness of the wire ball portion after ball bonding at high speeds, and it is clear that the surface portion of the semiconductor chip is significantly damaged during ball bonding. As described above, according to the method of the present invention, it is possible to produce ultra-fine high-purity copper wires that hardly damage the surface of semiconductor chips during high-speed ball bonding, and therefore the resulting high Ultra-fine pure copper wires can be put to practical use as bonding wires for semiconductor devices in place of ultra-fine Au wires.

Claims (1)

【特許請求の範囲】 1 無酸素銅に電解精製または帯域溶融精製を施
して1次高純度銅とし、 この1次高純度銅に真空溶解精製を施すと共
に、前記真空溶解精製中に、希土類元素、Ti、
Zr、Hf、CaおよびMgのうちの1種以上からな
る不純物結合成分を0.1〜100ppm含有させた2次
高純度銅とし、 引続いて上記2次高純度銅に帯域溶融精製を施
して、不可避不純物の全含有量が0.3ppm以下に
低減すると共に、前記不可避不純物中のS、Se、
およびTe成分の含有量が、それぞれ、 S:0.1ppm以下、 Se:0.1ppm以下、 Te:0.1ppm以下、 に低減した最終高純度銅とし、 上記最終高純度銅から極細線を成形加工するこ
と、 を特徴とする半導体装置のボンデイングワイヤ用
高純度銅極細線の製造法。
[Claims] 1 Oxygen-free copper is subjected to electrolytic refining or zone melting refining to obtain primary high-purity copper, and this primary high-purity copper is subjected to vacuum melting and refining, and during the vacuum melting and refining, rare earth elements are added. ,Ti,
The secondary high-purity copper contains 0.1 to 100 ppm of impurity binding components consisting of one or more of Zr, Hf, Ca, and Mg, and then the secondary high-purity copper is subjected to zone melting refining to remove the unavoidable impurities. The total content of impurities is reduced to 0.3 ppm or less, and S, Se,
and Te component content is reduced to S: 0.1 ppm or less, Se: 0.1 ppm or less, Te: 0.1 ppm or less, respectively, and forming an ultrafine wire from the final high purity copper. A method for producing ultrafine high-purity copper wire for bonding wires of semiconductor devices, characterized by the following.
JP60250410A 1985-03-27 1985-11-08 Very thin high-purity copper wire for wire-bonding semiconductor device Granted JPS62111455A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP60250410A JPS62111455A (en) 1985-11-08 1985-11-08 Very thin high-purity copper wire for wire-bonding semiconductor device
US06/844,350 US4676827A (en) 1985-03-27 1986-03-26 Wire for bonding a semiconductor device and process for producing the same
GB8607528A GB2175009B (en) 1985-03-27 1986-03-26 Wire for bonding a semiconductor device and process for producing the same
DE19863610587 DE3610587A1 (en) 1985-03-27 1986-03-27 WIRE SUITABLE FOR BONDING SEMICONDUCTOR DEVICES AND METHOD FOR THE PRODUCTION THEREOF
KR1019860002527A KR900005561B1 (en) 1985-11-08 1986-04-03 Bonding wire for semiconductor device and manufacutring method
US07/036,249 US4717436A (en) 1985-03-27 1987-04-09 Wire for bonding a semiconductor device
GB8828948A GB2210061B (en) 1985-03-27 1988-12-12 Wire for use in the bonding of a semiconductor device
SG93090A SG93090G (en) 1985-03-27 1990-11-17 Wire for use in the bonding of a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60250410A JPS62111455A (en) 1985-11-08 1985-11-08 Very thin high-purity copper wire for wire-bonding semiconductor device

Publications (2)

Publication Number Publication Date
JPS62111455A JPS62111455A (en) 1987-05-22
JPH0445978B2 true JPH0445978B2 (en) 1992-07-28

Family

ID=17207477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60250410A Granted JPS62111455A (en) 1985-03-27 1985-11-08 Very thin high-purity copper wire for wire-bonding semiconductor device

Country Status (1)

Country Link
JP (1) JPS62111455A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644444A (en) * 1987-06-26 1989-01-09 Nippon Mining Co Copper wire for sound and its production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124959A (en) * 1983-12-09 1985-07-04 Sumitomo Electric Ind Ltd Wire for connecting semiconductor element
JPS60223149A (en) * 1984-04-19 1985-11-07 Hitachi Ltd Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124959A (en) * 1983-12-09 1985-07-04 Sumitomo Electric Ind Ltd Wire for connecting semiconductor element
JPS60223149A (en) * 1984-04-19 1985-11-07 Hitachi Ltd Semiconductor device

Also Published As

Publication number Publication date
JPS62111455A (en) 1987-05-22

Similar Documents

Publication Publication Date Title
US4676827A (en) Wire for bonding a semiconductor device and process for producing the same
US4885135A (en) Fine gold alloy wire for bonding of a semi-conductor device
KR100562790B1 (en) Copper alloy and copper alloy thin sheet
EP0283587B1 (en) Bonding wire
JPH0412623B2 (en)
JPH0445978B2 (en)
EP3754703B1 (en) A die attachment method for semiconductor devices and corresponding semiconductor device
JP2797846B2 (en) Cu alloy lead frame material for resin-encapsulated semiconductor devices
JPS61224443A (en) Bonding wire for semiconductor device
JPS6222469A (en) Bonding wire for semiconductor device
JPH0744196B2 (en) High-purity refined copper ultrafine wire for semiconductor devices
JPS63241127A (en) Cu alloy extra fine wire for bonding wire of semiconductor
GB2220956A (en) Copper alloy bonding wire
JPS6363622B2 (en)
JPH0682713B2 (en) Tape for semiconductor leads
JPH0412622B2 (en)
JPS61221335A (en) Manufacture of extremely soft copper material
JPH0717976B2 (en) Semiconductor device
JPH0413858B2 (en)
JPH11323464A (en) Copper alloy and copper alloy sheet, excellent in resistance against blanking die wear
JP2556084B2 (en) Cu alloy extra fine wire for semiconductor devices
JPH02251155A (en) Gold alloy thin wire for semiconductor elements and bonding method thereof
JPS622645A (en) Bonding wire for semiconductor device
JPS6312929B2 (en)
JP3147601B2 (en) Pb alloy solder for semiconductor device assembly with excellent high temperature strength