JPH0445973B2 - - Google Patents

Info

Publication number
JPH0445973B2
JPH0445973B2 JP56041508A JP4150881A JPH0445973B2 JP H0445973 B2 JPH0445973 B2 JP H0445973B2 JP 56041508 A JP56041508 A JP 56041508A JP 4150881 A JP4150881 A JP 4150881A JP H0445973 B2 JPH0445973 B2 JP H0445973B2
Authority
JP
Japan
Prior art keywords
tank
gas
growth
reaction chamber
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56041508A
Other languages
Japanese (ja)
Other versions
JPS57155723A (en
Inventor
Yasoo Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4150881A priority Critical patent/JPS57155723A/en
Publication of JPS57155723A publication Critical patent/JPS57155723A/en
Publication of JPH0445973B2 publication Critical patent/JPH0445973B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は半導体装置の製造に際して多用される
エピタキシヤル成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an epitaxial growth method that is frequently used in the manufacture of semiconductor devices.

半導体装置、特に最近超高周波素子、半導体レ
ーザ等への応用として脚光を浴びている超格子素
子は膜厚100Å以下の結晶層を周期的に多層に形
成する事に依つて得られる。この超格子素子を化
合物半導体結晶を用いて作製する方法の一つとし
てトリメチルガリウム(TMGと略す)、トリメ
チルアルミニウム(TMAと略す)等の有機金属
とアルシン(AsH3)等の水素化物の熱分解反応
による結晶成長(Motalorganic Chomioal
Vapor Doposition:MOCVD)がある。この
MOCVDは成長速度が流量に依つて制御出来る
こと、結晶基板付近の温度勾配を必要としないこ
と、等で量産性のある結晶成長方法とされてい
る。
Superlattice devices, which have recently been in the spotlight for application to semiconductor devices, particularly ultra-high frequency devices, semiconductor lasers, etc., can be obtained by periodically forming multiple crystal layers with a thickness of 100 Å or less. One of the methods for producing this superlattice element using compound semiconductor crystals is the thermal decomposition of organic metals such as trimethylgallium (TMG) and trimethylaluminum (TMA) and hydrides such as arsine (AsH 3 ). Crystal growth by reaction (Motalorganic Chomioal)
Vapor Doposition (MOCVD). this
MOCVD is considered to be a mass-producible crystal growth method because the growth rate can be controlled by the flow rate and there is no need for a temperature gradient near the crystal substrate.

第1図は、例えばGaAs結晶基板上にGaAs或
いはAsAlAsを成長させる為の現存する装置の主
要部の概略図である。この第1図は原料部と排気
系を省略し、反応系のみが示されている。図に於
て、1は石英から成る反応室で、その中央部に高
周波コイル2に依つて加熱されるSiCコートペデ
スタル3が設置されている。4,5,6はこと反
応室1への流入ガスのON、OFFを行うオンオフ
ドグルバルブ、7,8,9は流量調節が出来るマ
クフローコントローラで、夫々(AsH3+H2)、
(TMG+H2)及び(TMA+H2)のガスが供給
される。尚、配管はステンレスステイール管で接
続部はスウイージロツクが採用される。
FIG. 1 is a schematic diagram of the main parts of an existing apparatus for growing GaAs or AsAlAs, for example on a GaAs crystal substrate. This FIG. 1 omits the raw material section and the exhaust system, and only shows the reaction system. In the figure, reference numeral 1 denotes a reaction chamber made of quartz, and a SiC-coated pedestal 3 heated by a high-frequency coil 2 is installed in the center of the reaction chamber 1. 4, 5, and 6 are on/off doggle valves that turn on and off the gas flowing into the reaction chamber 1, and 7, 8, and 9 are McFlow controllers that can adjust the flow rate, respectively (AsH 3 + H 2 ),
(TMG+H 2 ) and (TMA+H 2 ) gases are supplied. The piping is stainless steel, and the connections use swivel locks.

そして高周波コイル2に依つてペデスタル3を
600〜700℃に上昇せしめ、GaAsの成長に際して
は、バルブ4,5を開き、AsH3とTMGとを反
応室1に導入し、またGaAlAsの成長にはバルブ
4,5,6を開き、AsH3とTMGとTMAとを反
応室1に導入する。尚、GaAlAsの組成比の制御
はTMGとTMAとの流量に依つて制御される。
Then, the pedestal 3 is activated by the high frequency coil 2.
When growing GaAs, valves 4 and 5 are opened and AsH 3 and TMG are introduced into the reaction chamber 1. For GaAlAs growth, valves 4, 5 and 6 are opened and AsH 3 is introduced into the reaction chamber 1. 3 , TMG, and TMA are introduced into reaction chamber 1. Note that the composition ratio of GaAlAs is controlled depending on the flow rates of TMG and TMA.

斯る構成の成長装置に於て成長層の膜厚の制御
はガス速度やTMG等の蒸気圧の制御下でのバル
ブ5,6の開閉にて行われるが、制御可能な最小
膜厚は100〜200Å程度である。これ以下の膜厚の
制御はバルブ開閉前後のバルブから反応室内の残
留ガス等の影響で極めて困難であつた。従つて斯
る現存装置では超格子素子の製造は不可能とされ
ている。
In a growth apparatus with such a configuration, the film thickness of the growth layer is controlled by opening and closing valves 5 and 6 under the control of gas velocity and vapor pressure such as TMG, but the minimum film thickness that can be controlled is 100. It is about 200 Å. Controlling the film thickness below this was extremely difficult due to the influence of residual gas in the reaction chamber from the valve before and after opening and closing. Therefore, it is considered impossible to manufacture superlattice elements using such existing equipment.

本発明は斯る問題点に鑑みて試されたものであ
つて、その特徴とするところは、ガス供給系と反
応室との間に反応ガスを貯めるタンクを設け、こ
のタンク内に封入した所定圧の反応ガスを該所定
圧より低くした反応室に導出せんとする点にあ
る。
The present invention was tried in view of such problems, and its characteristics are that a tank for storing a reaction gas is provided between the gas supply system and the reaction chamber, and a predetermined amount of gas sealed in the tank is provided. The point is that the reactant gas at a pressure lower than the predetermined pressure is to be led out to the reaction chamber.

第2図は本発明エピタキシヤル成長方法を実施
する際のエピタキシヤル成長装置を示しており、
10は反応室、11は該反応室10内に設置され
たSiCコートペデスタルで、回転機能を備えてお
り、且つ高周波コイル12にて加熱される。13
はGaAsを成長させる際に用いられる第1のガス
供給系、14はGaAlAsを成長させる際に用いら
れる第2のガス供給系、15はAsを反応室10
に供給する第3のガス供給系で、夫々バルブ1
6,17,18及び流量制御可能な流量計19,
20,21が設けられている。22は第1のガス
供給系13の流量計19と反応室10との間に配
置された第1のタンク部で、入出力両側にバルブ
V1,V2を配した第1のタンクT1と、バルブV3
V4を配した第2のタンクT2と、から成つている。
尚、M1,M2は夫々のタンクT1,T2の圧力計で
ある。また第2のガス供給系14にもバルブV5
V6を配した第3のタンクT5と、バルブV7,V8
配した第4のタンクT4と、圧力計M3,M4と、か
ら構成された第2のタンク部23が設けられてい
る。尚、24は上記反応室10内の圧力を計る圧
力計である。
FIG. 2 shows an epitaxial growth apparatus for carrying out the epitaxial growth method of the present invention.
10 is a reaction chamber, and 11 is a SiC coated pedestal installed in the reaction chamber 10, which has a rotation function and is heated by a high frequency coil 12. 13
14 is the first gas supply system used when growing GaAs, 15 is the second gas supply system used when growing GaAlAs, and 15 is the first gas supply system used when growing GaAs.
a third gas supply system that supplies valves 1 and 1, respectively.
6, 17, 18 and a flow meter 19 that can control the flow rate.
20 and 21 are provided. 22 is a first tank section disposed between the flow meter 19 of the first gas supply system 13 and the reaction chamber 10, and has valves on both input and output sides.
A first tank T 1 with valves V 1 and V 2 and a valve V 3 ,
a second tank T 2 with V 4 ;
Note that M 1 and M 2 are pressure gauges for the tanks T 1 and T 2 , respectively. The second gas supply system 14 also includes a valve V 5 ,
The second tank section 23 is composed of a third tank T 5 in which V 6 is arranged, a fourth tank T 4 in which valves V 7 and V 8 are arranged, and pressure gauges M 3 and M 4 . It is provided. Note that 24 is a pressure gauge for measuring the pressure inside the reaction chamber 10.

而して第3のガス供給系15から(AsH3
H2)を流した状態に反応室10を排気系25に
設けた真空吸引ポンプ25を用いて減圧状態とす
る。この減圧時には第1、第2のガス供給系1
3,14のバルブV2,V4,V6,V8を開き、各タ
ンクT1,T2,T3,T4を反応室10と同圧の減圧
状態にする。続いてこの各バルブV2,V4,V6
V8を閉じ、次にバルブV1,V3,V5,V7を開いて
第1のガス供給系13に於ては、各タンクT1
T2にGaAsを成長させるに必要な(TMG+AsH3
+H2)を所定圧に封入し、また第2のガス供給
系14に於ては、各タンクT3,T4にGaAlAsを
成長させるに必要な(TMG+TMA+AsH3
H2)を所定圧に封入し、夫々のガス封入後はバ
ルブV1,V3,V5,V7を閉じる。
Then, from the third gas supply system 15 (AsH 3 +
The reaction chamber 10 is brought into a reduced pressure state using the vacuum suction pump 25 provided in the exhaust system 25 while flowing H 2 ). During this pressure reduction, the first and second gas supply systems 1
The valves V 2 , V 4 , V 6 , and V 8 of No. 3 and 14 are opened to bring each tank T 1 , T 2 , T 3 , and T 4 into a reduced pressure state equal to that of the reaction chamber 10 . Next, each valve V 2 , V 4 , V 6 ,
V 8 is closed, and then valves V 1 , V 3 , V 5 , and V 7 are opened to supply each tank T 1 ,
Required to grow GaAs to T 2 (TMG + AsH 3
+H 2 ) is sealed at a predetermined pressure, and in the second gas supply system 14, each tank T 3 , T 4 is filled with (TMG+TMA+AsH 3 +
H 2 ) is sealed at a predetermined pressure, and valves V 1 , V 3 , V 5 , and V 7 are closed after each gas is filled.

高周波コイル12に通電し、SiCコートペデス
タル11上に置かれているGaAs等の被成長基板
Aを所定温度に常温させた後、バルブV2を開き、
タンクT1内の(TMG+AsH3+H2)ガスで基板
A表面にGaAsを成長させ、引き続いてバルブV2
を閉じると同時にバルブV4を開いて同様にタン
クT2内のガスでGaAsを成長させる。この時再び
タンクT1内にバルブV1を開いてガスを充填して
おく。
After energizing the high frequency coil 12 and bringing the growth substrate A such as GaAs placed on the SiC coated pedestal 11 to a predetermined room temperature, the valve V 2 is opened.
GaAs is grown on the surface of substrate A using the (TMG + AsH 3 + H 2 ) gas in tank T 1 , and then the valve V 2 is grown on the surface of substrate A.
At the same time as closing the valve V4, open the valve V4 and grow GaAs with the gas in the tank T2 . At this time, valve V 1 is opened again in tank T 1 to fill it with gas.

バルブV4の閉成と同時に短時間にSiCコートペ
デスタル11を180°回転せしめて第1のガス供給
系13に対向していた基板Aを第2のガス供給系
14に対向せしめ、また逆に基板Bを第1のガス
供給系13に対向せしめる。この間にタンクT2
にガスが充填される。
At the same time as the valve V 4 is closed, the SiC coated pedestal 11 is rotated 180° in a short period of time, so that the substrate A that was facing the first gas supply system 13 is brought to face the second gas supply system 14, and vice versa. The substrate B is made to face the first gas supply system 13. During this time tank T 2
is filled with gas.

回転後は基板Aに対してバルブV6を開いてタ
ンクT3内の(TMG+TMA+AsH3+H2)で
GaAlAsを成長せしめ、続いてタンクT3内のガス
で同様にGaAlAsを成長させる。この間に基板B
表面には先に述べたと同様の手順でGaAsが成長
される。
After rotation, open valve V 6 for board A and (TMG + TMA + AsH 3 + H 2 ) in tank T 3 .
GaAlAs is grown, and then GaAlAs is similarly grown using the gas in tank T3 . During this time, board B
GaAs is grown on the surface using the same procedure as described above.

GaAs、及びGaAlAsが夫々一対のタンクT1
T2,T3,T4内のガスで成長せしめられた後は再
びSiCコートペデスタル11が180°回転し、基板
AにGaAsが、基板BにGaAlAsが夫々再成長せ
しめられる。
A pair of tanks T 1 each containing GaAs and GaAlAs,
After being grown using the gases in T 2 , T 3 , and T 4 , the SiC coated pedestal 11 is rotated 180° again to re-grow GaAs on substrate A and GaAlAs on substrate B, respectively.

以後、超格子製造に必要な周期だけ上記した成
長工程が繰り返される。
Thereafter, the above-described growth process is repeated as many times as necessary to manufacture the superlattice.

本発明方法に依ると、極薄膜の制御が可能とな
り、勿論それ以上の膜厚も制御する事が出きる。
その理由としては、微量のガス量の制御が可能で
ある事が挙げられる。即ちタンク内に充填するガ
ス量は各タンクに設けた圧力計にて制御出来、ま
たタンクの容量を変えることでも可能である。ま
たタンクから流出するガスの流速も成長条件とし
て重要であるが、この流速は反応室とタンクとの
圧力差にて制御される。更に成長膜厚を大きくす
る必要のある場合には各供給系のタンクの切り換
え回数を増加させれば、即ち同一ガスを3回、4
回と交互のタンクから供給する事で達成出来る。
According to the method of the present invention, it is possible to control extremely thin films, and of course it is also possible to control even thicker films.
The reason for this is that it is possible to control a small amount of gas. That is, the amount of gas filled into the tank can be controlled by a pressure gauge provided in each tank, and can also be controlled by changing the capacity of the tank. The flow rate of gas flowing out of the tank is also important as a growth condition, and this flow rate is controlled by the pressure difference between the reaction chamber and the tank. If it is necessary to further increase the thickness of the grown film, increase the number of times the tanks in each supply system are switched.
This can be achieved by supplying from tanks alternately.

また上記した成長工程に依れば、GaAsと
GaAlAsとのヘテロ接合の分布が急めて急峻なも
のとなるが、これは夫々の成長箇所が異るから
で、成長ガスの切り換えが直ちに行われる事がそ
の最たる原因であろう。
Also, according to the above-mentioned growth process, GaAs and
The distribution of the heterojunction with GaAlAs suddenly becomes steep, but this is because the growth locations are different, and the main reason for this is probably that the growth gas is immediately switched.

更に上述したように基板表面に対して垂直に成
長ガスを供給する事に依つて成長膜厚や不純物分
布が極めて均一なものとする事が出来る。
Furthermore, as described above, by supplying the growth gas perpendicularly to the substrate surface, the grown film thickness and impurity distribution can be made extremely uniform.

次に本発明方法の具体的実施例を記しておく。
下記の実施例は夫々10Åの膜厚のGaAsと
Ga0.75Al0.25As結晶層を得る場合を示している。
Next, specific examples of the method of the present invention will be described.
The following example uses GaAs with a film thickness of 10 Å and
The case where a Ga0.75Al0.25As crystal layer is obtained is shown.

TMG容器温度、0℃、64mmHg、 TMA容器温度、20℃、9.2mmHg、 タンクT1,T2容量、500c.c.、 タンクT3,T4容量、250c.c. GaAs系 TMGをバブリングするH2量 15c.c./min AsH3 300c.c./min H2 5/min GaAlAs系 TMGをバズリングするH2量 15c.c./min TMAをバブリングするH2量 40c.c./min AsH3 300c.c./min H2 5/min 各タンク充填圧 2気圧 反応室圧力 76Torr 上記した条件で各タンク1個のガスで夫々5Å
の成長があつた。
TMG container temperature, 0℃, 64mmHg, TMA container temperature, 20℃, 9.2mmHg, tank T 1 , T 2 capacity, 500 c.c., tank T 3 , T 4 capacity, 250 c.c. Bubbling GaAs-based TMG Amount of H2 15c.c./min AsH 3 300c.c./min H2 5/min Amount of H2 that bubbles GaAlAs TMG 15c.c./min Amount of H2 that bubbles TMA 40c.c./min AsH 3 300c.c./min H 2 5/min Each tank filling pressure 2 atm Reaction chamber pressure 76Torr Under the above conditions, each tank has one gas at 5Å
The growth of .

以上の説明はGaAsとGaAlAsとのヘテロ接合
の場合に就いて記述したが、本発明は他の−
族、−族化合物にも適用し得る事は言を持た
ない。また必ずしも反応室を減圧する事なく、ガ
ス圧をより高いものとすれば本発明は達成される
であろう。
Although the above explanation has been made regarding the case of a heterojunction between GaAs and GaAlAs, the present invention is applicable to other
It goes without saying that it can also be applied to group and - group compounds. Furthermore, the present invention may be achieved by increasing the gas pressure without necessarily reducing the pressure in the reaction chamber.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のエピタキシヤル成長装置の概念
図、第2図は本発明方法を実施するエピタキシヤ
ル成長装置の概念図であつて、10は反応室、1
1はSiCコートペデスタル、13,14,15は
ガス供給系、22,23はタンク部、Tはタン
ク、Vはバルブ、を夫々示している。
FIG. 1 is a conceptual diagram of a conventional epitaxial growth apparatus, and FIG. 2 is a conceptual diagram of an epitaxial growth apparatus for implementing the method of the present invention, in which 10 is a reaction chamber, 1
1 is a SiC coated pedestal, 13, 14 and 15 are gas supply systems, 22 and 23 are tank parts, T is a tank, and V is a valve, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 被成長基板を設置したエピタキシヤル反応系
に複数のガス供給系の夫々より成長ガスを供給す
るに際し、所望のガス供給系と該反応系との間に
成長ガスタンクを配置し、このタンク内に所望の
ガス供給系より1回のエピタキシヤル成長に必要
な量の成長ガスを所定圧に封入し、該所定圧より
反応系の圧力を低く設定する事に依り必要時に成
長ガスタンクから反応系に成長ガスを導出する事
を特徴とするエピタキシヤル成長方法。
1. When supplying growth gas from each of a plurality of gas supply systems to an epitaxial reaction system in which a growth target substrate is installed, a growth gas tank is placed between the desired gas supply system and the reaction system, and a growth gas tank is placed in the tank. By filling the required amount of growth gas for one epitaxial growth at a predetermined pressure from a desired gas supply system and setting the pressure in the reaction system lower than the predetermined pressure, growth can be carried out from the growth gas tank to the reaction system when necessary. An epitaxial growth method characterized by deriving a gas.
JP4150881A 1981-03-20 1981-03-20 Epitaxial growth method Granted JPS57155723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4150881A JPS57155723A (en) 1981-03-20 1981-03-20 Epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4150881A JPS57155723A (en) 1981-03-20 1981-03-20 Epitaxial growth method

Publications (2)

Publication Number Publication Date
JPS57155723A JPS57155723A (en) 1982-09-25
JPH0445973B2 true JPH0445973B2 (en) 1992-07-28

Family

ID=12610298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4150881A Granted JPS57155723A (en) 1981-03-20 1981-03-20 Epitaxial growth method

Country Status (1)

Country Link
JP (1) JPS57155723A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375682U (en) * 1989-11-24 1991-07-30
JP2906624B2 (en) * 1990-09-27 1999-06-21 株式会社島津製作所 Thin film forming equipment
JP5083153B2 (en) * 2008-09-30 2012-11-28 東京エレクトロン株式会社 Vacuum processing equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136587A (en) * 1974-04-06 1976-03-27 Int Standard Electric Corp
JPS54124897A (en) * 1978-03-07 1979-09-28 Thomson Csf Method and apparatus for forming epitaxial layer of indium phosphide in gas phase
JPS5586112A (en) * 1978-12-25 1980-06-28 Toshiba Corp Vapor phase growth method for 3-5 group compound semiconductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136587A (en) * 1974-04-06 1976-03-27 Int Standard Electric Corp
JPS54124897A (en) * 1978-03-07 1979-09-28 Thomson Csf Method and apparatus for forming epitaxial layer of indium phosphide in gas phase
JPS5586112A (en) * 1978-12-25 1980-06-28 Toshiba Corp Vapor phase growth method for 3-5 group compound semiconductor

Also Published As

Publication number Publication date
JPS57155723A (en) 1982-09-25

Similar Documents

Publication Publication Date Title
JP2797233B2 (en) Thin film growth equipment
US3963538A (en) Two stage heteroepitaxial deposition process for GaP/Si
JP3124376B2 (en) Compound semiconductor vapor deposition equipment
JPH0445973B2 (en)
JP3006776B2 (en) Vapor growth method
JPS6129915B2 (en)
JPH02230720A (en) Vapor growth method and apparatus for compound semiconductor
JPH0585890A (en) Apparatus for forming thin film
JPH01313927A (en) Compound-semiconductor crystal growth method
JPS63317674A (en) Gas supplying device
JPH0897149A (en) Organic metal vapor growth method, and organic metal vapor growth device
JP2736417B2 (en) Semiconductor element manufacturing method
JPH04240198A (en) Vapor phase growth method for thin film
JPS6355193A (en) Apparatus for growing compound semiconductor crystal
JPH0243721A (en) Semiconductor manufacturing device
JPH0196922A (en) Semiconductor manufacture equipment
JPS59170000A (en) Device for crystal growth
JPH04261016A (en) Vapor phase growing device and method thereof
JPH0594949A (en) Semiconductor vapor growth device
JPH0517286A (en) Vapor growth device
JPH03290925A (en) Compound semiconductor device and its manufacture
JPH01313390A (en) Vertical vapor growth device for organometallic compound
JPS6364994A (en) Apparatus for growing compound semiconductor crystal
JPS6390121A (en) Vapor phase crystal growth system
JPS63159296A (en) Vapor phase epitaxy