JPS63317674A - Gas supplying device - Google Patents

Gas supplying device

Info

Publication number
JPS63317674A
JPS63317674A JP15144887A JP15144887A JPS63317674A JP S63317674 A JPS63317674 A JP S63317674A JP 15144887 A JP15144887 A JP 15144887A JP 15144887 A JP15144887 A JP 15144887A JP S63317674 A JPS63317674 A JP S63317674A
Authority
JP
Japan
Prior art keywords
pressure
gas
vacuum
needle valve
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15144887A
Other languages
Japanese (ja)
Other versions
JPH0639705B2 (en
Inventor
Hideo Sugiura
杉浦 英雄
Akio Yamamoto
山本 ▲あき▼男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15144887A priority Critical patent/JPH0639705B2/en
Publication of JPS63317674A publication Critical patent/JPS63317674A/en
Publication of JPH0639705B2 publication Critical patent/JPH0639705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4485Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation without using carrier gas in contact with the source material

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To precisely regulate the amt. and pressure of a gaseous organometal to be introduced into a vacuum vessel by providing a mechanism for regulating the pressure or flow rate of the gas on the secondary side of a needle valve. CONSTITUTION:In the device for supplying a gaseous organometal into a vacuum device, the pressure, etc., are roughly regulated by the needle valve 8, and the pressure and flow rate are finely adjusted by the mechanism 10 for finely adjusting the pressure and flow rate connected to the secondary side of the valve 8. A pressure gage 14 connected to the main line A of the fine adjustment mechanism 10, a pressure controller 13 is operated by the signal from the pressure gage 14, and hence the flow regulating valve 11 of a bypass line B is operated. A vacuum pump 12 is connected to the flow regulating valve 11. The pressure of the main line is regulated by opening and closing the flow regulating valve 11 to fix the signal outputted from the pressure gage 14 and to regulated the amt. of the gas to be discharged into a vacuum pump 9.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、真空容器へ有機金属ガスを供給するガス供給
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a gas supply device for supplying organometallic gas to a vacuum container.

(従来技術及び発明が解決しようとする問題点)GaA
sに代表される化合物半導体は、レーザなどの光素子の
みでなく電界効果トランジスタなどの高速素子の構成材
料として広く用いられている。
(Prior art and problems to be solved by the invention) GaA
Compound semiconductors represented by s are widely used as constituent materials not only for optical devices such as lasers but also for high-speed devices such as field effect transistors.

これらの素子は薄膜形成装置を用いて作製される。These elements are manufactured using a thin film forming apparatus.

素子性能のより一層の向上をめざして、より精密な制御
が可能な薄膜形成装置が年々開発されてきた。現在、分
子線エピタキシ法(以下MBEと呼ぶ)と有機金属熱分
解法(以下MOCVDと呼ぶ)が双璧の技術である。前
者は超高真空技術が基本にあり、膜厚方向の精密制御が
可能であるという特長があるが、生産性に難点がある。
With the aim of further improving device performance, thin film forming equipment that allows more precise control has been developed year by year. At present, molecular beam epitaxy (hereinafter referred to as MBE) and metal organic thermal decomposition method (hereinafter referred to as MOCVD) are two excellent technologies. The former is based on ultra-high vacuum technology and has the advantage of allowing precise control in the direction of film thickness, but has the disadvantage of productivity.

後者はプラント技術が基本にあるため多量生産に適して
いるが、膜厚制御がMBHに比べて劣る。有機金属分子
線エピタキシ法(以下MOMBEと呼ぶ)はMBEとM
OCVDの融合を目指した技術である。
The latter is suitable for mass production because it is based on plant technology, but film thickness control is inferior to MBH. The organometallic molecular beam epitaxy method (hereinafter referred to as MOMBE) consists of MBE and M
This technology aims to integrate OCVD.

(文献、日経エレクトロニクス、 1985年12月、
p。
(Reference, Nikkei Electronics, December 1985,
p.

89)シかし、いまだ研究の初期段階にあるため、これ
に通した装置はいまだ市販されていない。
89) However, as the research is still in the early stages, the equipment used for this is not yet commercially available.

MOMBIlu装置はMBEとMOCVDの両方の特徴
を有すると期待されるが、両者の技術基盤が全く異なる
ため、装置開発には多(の問題がある。
The MOMBIlu device is expected to have features of both MBE and MOCVD, but since the technology bases of the two are completely different, there are many problems in device development.

その一つに原料ガス供給装置がある。MOMBE装置は
超高真空容器内で膜形成を行うが、その膜の原料ガスを
真空外から供給する。その供給方法は、模式的に第5図
に示すように、MOCVD法で使われる方法に依ってい
る。すなわち、水素の供給源である水素純化器1に水素
ガス流量を調整するマスフローコントローラ2、ガスの
圧力を測る圧力計3、有機金属が収納されたバブラー4
とバブラーの温度を調整する温調器5、真空容器内の圧
力を調整するためのニードルバルブ6から構成され、こ
れらはステンレスパイプ7で接続されている。ニードル
バルブの他端はステンレスパイプを介して真空容器8に
接続され、真空装Heは高真空ポンプ9によって常に5
 X 10−’Torr以上の高真空に保たれている。
One of them is a raw material gas supply device. The MOMBE apparatus forms a film in an ultra-high vacuum chamber, but the raw material gas for the film is supplied from outside the vacuum. The supply method depends on the method used in the MOCVD method, as schematically shown in FIG. That is, a hydrogen purifier 1 that is a hydrogen supply source has a mass flow controller 2 that adjusts the hydrogen gas flow rate, a pressure gauge 3 that measures the gas pressure, and a bubbler 4 that contains an organic metal.
It consists of a temperature controller 5 for adjusting the temperature of the bubbler, and a needle valve 6 for adjusting the pressure inside the vacuum container, and these are connected by a stainless steel pipe 7. The other end of the needle valve is connected to a vacuum vessel 8 via a stainless steel pipe, and the vacuum equipment He is constantly pumped to 5 by a high vacuum pump 9.
It is maintained at a high vacuum of more than X 10-' Torr.

マスフローコントローラ2によって流星制御された水素
ガスをバブラー4の人口に流し込み、出口から有機ガス
を含んだ水素ガスを取り出し、ニードルバルブ6を用い
て圧力制御して真空容器8にこれを送りこむ、水素ガス
は有機金属ガスを運ぶのでキャリアガスと呼ばれる。真
空容器に導入される有機金属の量は、バブラーの温度を
一定に保つ場合キャリアガスの流Mによって決定される
。真空容器内の圧力Pは、vL5k Qと真空ポンプの
排気能力SによってP=Q/Sで表わされる。市販のポ
ンプのSの最大値は20001!、 /secである。
Hydrogen gas, meteor-controlled by the mass flow controller 2, is flowed into the bubbler 4, hydrogen gas containing organic gas is taken out from the outlet, and the pressure is controlled using the needle valve 6, and the hydrogen gas is sent into the vacuum container 8. is called a carrier gas because it carries organometallic gases. The amount of organometallic introduced into the vacuum vessel is determined by the carrier gas flow M if the temperature of the bubbler is kept constant. The pressure P inside the vacuum container is expressed by P=Q/S using vL5kQ and the exhaust capacity S of the vacuum pump. The maximum value of S of commercially available pumps is 20001! , /sec.

このため、流IQの値のわずかな変動によって圧力Pが
大きく変動する0例えば、ΔQ=1cc/分はΔF −
10−’Torrに相当する。
For this reason, the pressure P changes greatly due to a small change in the flow IQ value.For example, ΔQ=1cc/min is ΔF −
Corresponds to 10-'Torr.

ニードルバルブは、MOCVD法で使用される1〜10
00Torrの範囲での圧力制御用として開発されたも
のであり、これを用いてMOMBE法での5X 10−
’Torr以下の圧力を制御することはほとんど不可能
であった。そのため、従来のガス供給装置を用いたMO
MBE装置では、AlGaAsなどの混晶半導体の組成
や成長速度の制御性、再現性が著しく低いという欠点が
あった。
The needle valve is 1 to 10 used in MOCVD method.
It was developed for pressure control in the range of 0.00 Torr, and using this, 5X 10-
It was almost impossible to control pressures below 'Torr. Therefore, MO using a conventional gas supply device
The MBE apparatus has the disadvantage that the controllability and reproducibility of the composition and growth rate of mixed crystal semiconductors such as AlGaAs are extremely low.

(発明の目的) 本発明は上記の欠点を解決するために提案されたもので
、その目的はMOMBB装置において真空容器内に導入
する有機金属ガスの量および圧力を精密に調整できるガ
ス供給装置を提供することにある。
(Object of the Invention) The present invention was proposed to solve the above-mentioned drawbacks, and its purpose is to provide a gas supply device that can precisely adjust the amount and pressure of organometallic gas introduced into the vacuum container in a MOMBB device. It is about providing.

(問題点を解決するための手段) 上記の目的を達成するため、本発明はマスフローコント
ローラとニードルバルブとを用いて、キャリアガスとと
もに有機金属ガスを真空装置内に供給するガス供給装置
において、ニードルバルブの2次側に圧力1!整機構あ
るいは流Ill!II整機構のいずれか一方を設けたこ
とを特徴とするガス供給装置を発明の要旨とするもので
ある。
(Means for Solving the Problems) In order to achieve the above object, the present invention uses a mass flow controller and a needle valve to provide a gas supply device that supplies an organometallic gas together with a carrier gas into a vacuum device. Pressure 1 on the secondary side of the valve! Adjustment mechanism or flow Ill! The gist of the invention is a gas supply device characterized by being provided with either one of the II adjustment mechanisms.

次に本発明の実施例について説明する。なお、実施例は
一つの例示であって、本発明の精神を逸脱しない範囲で
、種々の変更あるいは改良を行いうることは言うまでも
ない。
Next, examples of the present invention will be described. Note that the embodiments are merely illustrative, and it goes without saying that various changes and improvements can be made without departing from the spirit of the present invention.

第1図は本発明のガス供給装置を示すもので、図におい
て、1は水素純化器、2はマスフローコントローラ、3
は圧力計、4はバブラー、5は温調器、6はニードルバ
ルブ、7はステンレスパイプ、8は真空容器、9は高真
空ポンプ、10は圧力・流ff1m1!整機構を示す、
しかして本発明は、ニードルバルブ6の2次側に圧力・
流ff1v&調整機構lOを備えたことを主な特徴とす
る。
FIG. 1 shows the gas supply device of the present invention. In the figure, 1 is a hydrogen purifier, 2 is a mass flow controller, and 3 is a hydrogen purifier.
is a pressure gauge, 4 is a bubbler, 5 is a temperature controller, 6 is a needle valve, 7 is a stainless steel pipe, 8 is a vacuum container, 9 is a high vacuum pump, 10 is a pressure/flow ff1ml! Showing the adjustment mechanism,
However, in the present invention, pressure is applied to the secondary side of the needle valve 6.
The main feature is that it is equipped with a flow ff1v & adjustment mechanism lO.

従来の装置と同様、マスフローコントローラ2からニー
ドルバルブ6までの配管内の圧力はほぼ大気圧であり、
ニードルバルブから真空容器は5×10′″’Torr
以下の真空であり、ニードルバルブはこの差圧を維持す
る役目を果している0本発明では、ニードルバルブ6に
よって圧力の粗調整を行ったのち、圧力・流量微調整機
構10により真空容器8内に導入される有機金属ガスの
圧力・′/!Lffiの微調整を行う。
As with conventional devices, the pressure inside the piping from the mass flow controller 2 to the needle valve 6 is approximately atmospheric pressure.
The vacuum container from the needle valve is 5 x 10'''' Torr.
The vacuum is as follows, and the needle valve plays the role of maintaining this differential pressure. In the present invention, after rough pressure adjustment is performed by the needle valve 6, the pressure and flow rate fine adjustment mechanism 10 is used to adjust the pressure inside the vacuum container 8. Pressure of the organometallic gas introduced ・′/! Make fine adjustments to Lffi.

第2図は圧力・流量機!I!1整機構の一例を示す。Figure 2 is a pressure/flow machine! I! 1 shows an example of the adjustment mechanism.

図において、lは水素純化器、2はマスフローコントロ
ーラ、3は圧力計、4はバブラー、5は温1!器、6は
ニードルバルブ、7はステンレスバイブ、8は真空容器
、9は高真空ポンプ、10は圧力・流ff1m!PI整
機構を示す、しかして、ニードルバルブ6の2次側には
真空容器8に至る主ラインAと、流it!PI整弁11
に至るバイパスラインBとに分岐されている。
In the figure, l is a hydrogen purifier, 2 is a mass flow controller, 3 is a pressure gauge, 4 is a bubbler, and 5 is a temperature 1! 6 is a needle valve, 7 is a stainless steel vibrator, 8 is a vacuum container, 9 is a high vacuum pump, 10 is a pressure/flow ff1m! The secondary side of the needle valve 6 shows the main line A leading to the vacuum vessel 8, and the flow it! PI valve adjustment 11
It is branched into a bypass line B that leads to .

主ラインAには圧力計14が連結され、この圧力計14
からの信号により作動する圧力制御器13が連結され、
この圧力制御器13はバイパスラインBの流量調整弁1
1を作動する。またこの流量調整弁には真空ポンプ12
が接続されている。
A pressure gauge 14 is connected to the main line A, and this pressure gauge 14
A pressure controller 13 operated by a signal from the
This pressure controller 13 is the flow rate regulating valve 1 of the bypass line B.
1. Also, this flow rate adjustment valve has a vacuum pump 12.
is connected.

主ラインの圧力調整は、圧力計14からの出力信号が一
定になるように流ffl調整弁11を開閉し、真空ポン
プ9へ排出されるガスの量を調整することにより行なわ
れる。
The pressure in the main line is adjusted by opening and closing the flow ffl regulating valve 11 so that the output signal from the pressure gauge 14 remains constant, and adjusting the amount of gas discharged to the vacuum pump 9.

第3図はMOMBE装置の全体像を、第4図は本発明の
ガス供給装置の詳細を示したものである。
FIG. 3 shows an overall view of the MOMBE device, and FIG. 4 shows details of the gas supply device of the present invention.

以下にAlGaAs膜中のA1組成を精密に制御した例
について説明する。
An example in which the Al composition in the AlGaAs film is precisely controlled will be described below.

第3図に示すように、ガス供給袋215から供給さ゛れ
たガスはガスソース源16a、 16bを経て真空容器
8中に置かれた基板18に堆積する0本装置を動作する
には、まず高真空ポンプ9を用いて真空容器8内を10
− ’ ”Torrに排気する。 GaAs基板は40
0℃に加熱した0次にガス供給袋Tl1sから■族元素
源としてアルシンを、■族元素源としてトリエチルガリ
ウム(以下TEGと呼ぶ)とトリメチルアルミニウム(
以下TMAと呼ぶ)をキャリアガスを用いて供給した。
As shown in FIG. 3, the gas supplied from the gas supply bag 215 passes through the gas sources 16a and 16b and is deposited on the substrate 18 placed in the vacuum container 8. 10 inside the vacuum container 8 using the vacuum pump 9
- Exhaust to ''' Torr. GaAs substrate is 40
From the 0-order gas supply bag Tl1s heated to 0°C, arsine was added as a group Ⅰ element source, and triethyl gallium (hereinafter referred to as TEG) and trimethylaluminum (hereinafter referred to as TEG) were added as a group Ⅰ element source.
(hereinafter referred to as TMA) was supplied using a carrier gas.

第4図は、前記ガス供給装置の内部の配管系統図を模式
的に示したものである0図において、1は水素純化器、
19はアルシンボンベ、2a12b+ 2cはマスフロ
ーコントローラ、3a、 3bは圧力IL 4a。
FIG. 4 schematically shows a piping system diagram inside the gas supply device. In FIG. 0, 1 is a hydrogen purifier;
19 is an arsin cylinder, 2a12b+2c is a mass flow controller, 3a, 3b is a pressure IL 4a.

4bはバブラー、5a、 5bは温調器、6a、 6b
はニードルバルブ、lla、 llbは圧力調整弁、1
2は真空ポンプ、13a、 13bは圧力制御器、14
a、 14b、 14c、 14dは圧力計、16a、
 16bは夫々ガス供給源を示す、アルシンはガスソー
ス源16aに接続され、TEGとTMAを含む水素ガス
は1本のラインに統合されてガスソース源16bに接続
されている。アルシン。
4b is a bubbler, 5a, 5b is a temperature controller, 6a, 6b
is a needle valve, lla, llb are pressure regulating valves, 1
2 is a vacuum pump, 13a and 13b are pressure controllers, 14
a, 14b, 14c, 14d are pressure gauges, 16a,
Reference numerals 16b indicate gas supply sources. Arsine is connected to the gas source 16a, and hydrogen gas containing TEG and TMA is integrated into one line and connected to the gas source 16b. Arsin.

TEG、TMAの供給f!ki7)制御は以下のよう′
にして行なった。
TEG, TMA supply f! ki7) The control is as follows'
I did it.

濃度100%のアルシンボンベ19の元栓をあけてマス
フローコントローラ2Cにより、そのtl、M@10C
C/分に制御した。ガスソース源16aの温度は990
℃に保っているので、アルシンはAshに熱分解されて
、GaAs基板に達する。アルシンはGaAs基板が4
00℃以上に加熱されている状態のときは常に基板に照
射される。
Open the main valve of the 100% concentration arsine cylinder 19 and check its tl, M@10C using the mass flow controller 2C.
It was controlled at C/min. The temperature of the gas source 16a is 990
Since the temperature is maintained at 0.degree. C., arsine is thermally decomposed into Ash and reaches the GaAs substrate. Arsine has a GaAs substrate 4
When the substrate is heated to 00° C. or higher, the substrate is always irradiated.

一方、水素純化器lから供給された水素の一部は、圧力
計38が常に大気圧以上になるように監視しながらマス
フローコントローラ2aにより流量を2cc/分に設定
してTEGが収められたバブラー48に導入する。バブ
ラーの温度は温調器5aにより48℃に保った0次にニ
ードルバルブ6aをあけ、真空ラインにTEGを含む水
素ガスを導入した。その際、真空容器8への流量調整は
次のように行なった。まず、圧力計CMKS社製バラト
ロンゲージタイプ390 ) 14aの指示値が約I 
Xl0−’Torrになるようにニードルバルブ6aを
調整する0次に設定値を圧力制御器13aを用いて10
“’Torrにセットする。TEGを含む水素ガスのほ
とんどすべては圧力調整弁11mを介して真空ポンプ1
2により排出される0次に圧力計14bの設定値を6 
Xl0−’Torrにセットして、前記ガスの一部をガ
スソース源16aに導入した。TMAの導入量の制御手
順は、TEGと同様に行なった。ただし、バブラー4b
の温度は35℃に、圧力計14dの設定値は3 X 1
0− ’Torrにセットした。ガスソース源16bは
150℃に保温した。これは、ガスソース源が液体窒素
で冷却された容器内に収められているので、TEGとT
MAがガスソース源内部に付着することを防ぐためであ
る。GaAsjJ板18を650℃に加熱した時点で、
シャッタl? (第3図参照)をあけ、TEGとTMA
を含む水素ガスをGaAs基板に照射し、AlGaAs
膜を1時間成長した。 nIi厚は1.51tmで、5
.8cm(2インチ)のGaAs基板内での膜厚変動は
1%以内であった。また、二結晶X綿回折法から決定し
たAlGaAs膜の^l&[l成は0.33であり、面
内の組成のバラツキは約0.33±0.01であった。
On the other hand, a part of the hydrogen supplied from the hydrogen purifier 1 is transferred to a bubbler containing TEG by setting the flow rate to 2 cc/min using the mass flow controller 2a while monitoring the pressure gauge 38 so that the pressure is always higher than atmospheric pressure. 48 will be introduced. The temperature of the bubbler was maintained at 48° C. by a temperature regulator 5a, and the needle valve 6a was opened to introduce hydrogen gas containing TEG into the vacuum line. At that time, the flow rate to the vacuum container 8 was adjusted as follows. First, the reading of the pressure gauge CMKS Baratron Gauge Type 390) 14a is approximately I.
Adjust the needle valve 6a so that it becomes Xl0-'Torr.
“'Torr.Almost all of the hydrogen gas including TEG is pumped to the vacuum pump 1 through the pressure regulating valve 11m.
The set value of the zero-order pressure gauge 14b discharged by 2 is set to 6.
A portion of the gas was introduced into the gas source 16a, set at Xl0-'Torr. The procedure for controlling the amount of TMA introduced was the same as that for TEG. However, bubbler 4b
The temperature is 35°C, and the set value of the pressure gauge 14d is 3 x 1
It was set to 0-'Torr. The gas source 16b was kept at a temperature of 150°C. This is because the gas source is housed in a container cooled with liquid nitrogen, so TEG and T
This is to prevent MA from adhering to the inside of the gas source. When the GaAsjJ plate 18 is heated to 650°C,
Shutter? (See Figure 3), open the TEG and TMA
A GaAs substrate is irradiated with hydrogen gas containing AlGaAs.
Films were grown for 1 hour. nIi thickness is 1.51tm, 5
.. The film thickness variation within an 8 cm (2 inch) GaAs substrate was within 1%. Further, the ^l&[l composition of the AlGaAs film determined from the two-crystal X-cotton diffraction method was 0.33, and the in-plane compositional variation was about 0.33±0.01.

圧力計14bと14dの設定値を適当に組み合わせるこ
とにより、AlGaAs膜のAIl[成Xを、X±0.
01(0,05< x <0.95)の精度で制御でき
た。
By appropriately combining the set values of the pressure gauges 14b and 14d, the AIl[formation
Control was possible with an accuracy of 0.01 (0.05<x<0.95).

以上AlGaAsについて説明したが、本方法はすべて
のI−V化合物、n−vr化合物半導体膜の精密な組成
制御に応用できることは言うまでもない。
Although AlGaAs has been described above, it goes without saying that this method can be applied to precise composition control of all IV compound and n-vr compound semiconductor films.

(発明の効果) 畝上のように本発明によれば、マスフローコントローラ
とニードルバルブとを用いて、キャリアガスとともに有
機金属ガスを真空装置内に供給するガス供給装置におい
て、ニードルバルブの2次側に圧力調整機構あるいは流
ItA整機構のいずれか一方を設けたことにより、ニー
ドルバルブによって大気圧から10−’Torrへの圧
力差を維持すると共に、真空ラインに真空ゲージを置い
て微量の圧力調整が可能な制御′n機構を設けているの
で、真空容器への有機金属の供給量を精密に制御できる
利点がある。
(Effects of the Invention) According to the present invention, in a gas supply device that supplies an organometallic gas together with a carrier gas into a vacuum device using a mass flow controller and a needle valve, the secondary side of the needle valve By providing either a pressure adjustment mechanism or a flow ItA adjustment mechanism, a needle valve can be used to maintain the pressure difference from atmospheric pressure to 10-'Torr, and a vacuum gauge can be placed in the vacuum line to make minute pressure adjustments. Since a control mechanism is provided that allows for control, there is an advantage that the amount of organic metal supplied to the vacuum container can be precisely controlled.

実施例では圧力針にフルスケールl Torrのゲージ
を用いたが、フルスケール1000τorrのゲージを
用いればMOCVDのガス供給装置に応用できることは
言うまでもない。
In the embodiment, a gauge with a full scale of 1 Torr was used for the pressure needle, but it goes without saying that if a gauge with a full scale of 1000 τ orr is used, it can be applied to an MOCVD gas supply device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例、第2図は圧力・流量微調整機
構を示し、第3図は有機金属分子線エピタキシ装置の全
体像、第4図は圧力・流Fft微調整機構の具体的実施
例、第5図は従来例を示す。 l・・・・・・・水素純化器 2 + 2a、 2b+ 2c  ・・マスフローコン
トローラ3.3a、3b・・・・圧力計 4.4a、4b・・・・バブラー 5.5a、5b・・・・温調器 6.6a、6b・・・・ニードルバルブ7・・・・・・
・ステンレスパイプ 8・・・・・・・真空容器 9・・・・・・・高真空ポンプ 10・・・・・・・圧力・2it量微調整機構11a、
 llb・・・・圧力調整弁 12・・・・・・・真空ポンプ 13a、 13b ・・−−圧力側’1n2314.1
4a、14b、14c、14d・・圧力計15・・・・
・・・ガス供給装置 16a、 16b・・・・ガスソース源17・・・・・
・・シャフタ I8・・・・・・・基板 19・・・・・・・アルシンボンベ 第1図 第2図 71゜
Fig. 1 shows an embodiment of the present invention, Fig. 2 shows a pressure/flow rate fine adjustment mechanism, Fig. 3 shows an overall view of the organometallic molecular beam epitaxy apparatus, and Fig. 4 shows a specific example of the pressure/flow rate Fft fine adjustment mechanism. FIG. 5 shows a conventional example. l...Hydrogen purifier 2+2a, 2b+2c...Mass flow controller 3.3a, 3b...Pressure gauge 4.4a, 4b...Bubbler 5.5a, 5b...・Temperature controller 6.6a, 6b...Needle valve 7...
・Stainless steel pipe 8...Vacuum container 9...High vacuum pump 10...Pressure/2it amount fine adjustment mechanism 11a,
llb...Pressure regulating valve 12...Vacuum pump 13a, 13b...Pressure side'1n2314.1
4a, 14b, 14c, 14d...pressure gauge 15...
...Gas supply devices 16a, 16b...Gas source source 17...
...Shafter I8 ..... Board 19 ..... Alsin cylinder Fig. 1 Fig. 2 71°

Claims (2)

【特許請求の範囲】[Claims] (1)マスフローコントローラとニードルバルブとを用
いて、キャリアガスとともに有機金属ガスを真空装置内
に供給するガス供給装置において、ニードルバルブの2
次側に圧力調整機構あるいは流量調整機構のいずれか一
方を設けたことを特徴とするガス供給装置。
(1) In a gas supply device that supplies organometallic gas together with a carrier gas into a vacuum device using a mass flow controller and a needle valve, two of the needle valves are used.
A gas supply device characterized in that either a pressure adjustment mechanism or a flow rate adjustment mechanism is provided on the next side.
(2)ガス供給装置は、ニードルバルブの2次側を真空
容器へ接続する主ラインと、真空ポンプに連結するバイ
パスラインとを備え、前記主ラインに設置された圧力計
により主ラインの圧力を測定し、その値によって圧力制
御装置を介して、流量調整弁を調整し、バイパスライン
に流れるガス量を変化させることにより、ニードルバル
ブの2次側の圧力を制御することを特徴とする特許請求
の範囲第1項記載のガス供給装置。
(2) The gas supply device includes a main line that connects the secondary side of the needle valve to the vacuum container and a bypass line that connects to the vacuum pump, and the pressure of the main line is measured by a pressure gauge installed in the main line. A patent claim characterized in that the pressure on the secondary side of the needle valve is controlled by measuring the value and adjusting a flow rate regulating valve via a pressure control device to change the amount of gas flowing into the bypass line. The gas supply device according to item 1.
JP15144887A 1987-06-19 1987-06-19 Gas supply device Expired - Fee Related JPH0639705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15144887A JPH0639705B2 (en) 1987-06-19 1987-06-19 Gas supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15144887A JPH0639705B2 (en) 1987-06-19 1987-06-19 Gas supply device

Publications (2)

Publication Number Publication Date
JPS63317674A true JPS63317674A (en) 1988-12-26
JPH0639705B2 JPH0639705B2 (en) 1994-05-25

Family

ID=15518818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15144887A Expired - Fee Related JPH0639705B2 (en) 1987-06-19 1987-06-19 Gas supply device

Country Status (1)

Country Link
JP (1) JPH0639705B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0390127A2 (en) * 1989-03-29 1990-10-03 Stec Inc. Method for vaporizing and supplying organometal compounds and apparatus for carrying out the method
US6566652B1 (en) * 1999-09-13 2003-05-20 Hitachi, Ltd. Mass spectrometry apparatus having ion source not at negative pressure when finishing measurement
JP2006022926A (en) * 2004-07-09 2006-01-26 Ckd Corp Lower block for integrated valve
DE102012210332A1 (en) * 2012-06-19 2013-12-19 Osram Opto Semiconductors Gmbh ALD COATING LINE

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0390127A2 (en) * 1989-03-29 1990-10-03 Stec Inc. Method for vaporizing and supplying organometal compounds and apparatus for carrying out the method
US6566652B1 (en) * 1999-09-13 2003-05-20 Hitachi, Ltd. Mass spectrometry apparatus having ion source not at negative pressure when finishing measurement
JP2006022926A (en) * 2004-07-09 2006-01-26 Ckd Corp Lower block for integrated valve
DE102012210332A1 (en) * 2012-06-19 2013-12-19 Osram Opto Semiconductors Gmbh ALD COATING LINE

Also Published As

Publication number Publication date
JPH0639705B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
US4911101A (en) Metal organic molecular beam epitaxy (MOMBE) apparatus
US5250148A (en) Process for growing GaAs monocrystal film
JP2006222133A (en) Method of supplying material gas, and apparatus thereof
JPS62500998A (en) Chemical beam deposition method
JPS63317674A (en) Gas supplying device
EP0196170B1 (en) Organic metallic compound pyrolysis vapor growth apparatus
JP2567309B2 (en) Metalorganic vapor phase growth equipment
JP2646647B2 (en) Low pressure vapor phase growth equipment
JPH0445973B2 (en)
JPH01220821A (en) Gas controlling method for vapor growth equipment
JP2611008B2 (en) Organic metal compound vaporizer
JPH0196922A (en) Semiconductor manufacture equipment
JPS63319292A (en) Crystal growth device by vapor-phase thermal decomposition
JPH0477392A (en) Method and device for vapor growth of organic metal
JPH0532360B2 (en)
JPH01261818A (en) Method of vapor growth of high-resistance algaas mixed crystal
JPH0594949A (en) Semiconductor vapor growth device
JPH0368131A (en) Organic metal vapor growth method
JPH0536397B2 (en)
JPH07297132A (en) Vapor phase epitaxial growth system
JPS632313A (en) Gas source molecular beam crystal growth apparatus
JPH08288226A (en) Metal organic vapor growth apparatus
JPH03297129A (en) Organometallic molecular-beam epitaxial growth apparatus
JPS62167293A (en) Vapor phase crystal growing device
JPH078758B2 (en) Exhaust method for vapor phase epitaxial growth system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees