JP2736417B2 - Semiconductor element manufacturing method - Google Patents

Semiconductor element manufacturing method

Info

Publication number
JP2736417B2
JP2736417B2 JP63078609A JP7860988A JP2736417B2 JP 2736417 B2 JP2736417 B2 JP 2736417B2 JP 63078609 A JP63078609 A JP 63078609A JP 7860988 A JP7860988 A JP 7860988A JP 2736417 B2 JP2736417 B2 JP 2736417B2
Authority
JP
Japan
Prior art keywords
gas
containing gas
film
reaction chamber
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63078609A
Other languages
Japanese (ja)
Other versions
JPH01248612A (en
Inventor
喜文 尾藤
暁 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP63078609A priority Critical patent/JP2736417B2/en
Publication of JPH01248612A publication Critical patent/JPH01248612A/en
Application granted granted Critical
Publication of JP2736417B2 publication Critical patent/JP2736417B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアルミナ単結晶基板上にGaAs半導体膜を形成
した半導体素子に関するものである。
Description: TECHNICAL FIELD The present invention relates to a semiconductor device having a GaAs semiconductor film formed on an alumina single crystal substrate.

〔従来技術及びその問題点〕[Prior art and its problems]

近年、GaAs半導体膜を発光素子もしくは受光素子に応
用する技術が目覚ましく進展しており、例えばアルミナ
単結晶基板上にGaAs半導体膜をいエピタキシャル成長さ
せる技術が特開昭62−202894号公報及び特開昭62−2321
20号公報に提案されており、この提案によれば、トリメ
チルガリウム(Ga(CH3)とアルシン(AsH3)を反
応ガスとし、有機金属熱分解気相成長法(Metal−Organ
ic Chemical Vapor Deposition、略してMOCVD法と呼ば
れる)によりアルミナ単結晶基板上にGaAs膜をエピタキ
シャル成長させる。そして、これにより得られた半導体
素子は基板側より光を照射できる発光素子となる。
In recent years, the technology of applying a GaAs semiconductor film to a light emitting element or a light receiving element has been remarkably advanced. For example, a technique of epitaxially growing a GaAs semiconductor film on an alumina single crystal substrate has been disclosed in JP-A-62-202894 and JP-A-62-202894. 62−2321
According to this proposal, trimethylgallium (Ga (CH 3 ) 3 ) and arsine (AsH 3 ) are used as reaction gases, and a metal-organic thermal decomposition vapor deposition (Metal-Organ) method is used.
A GaAs film is epitaxially grown on an alumina single crystal substrate by IC Chemical Vapor Deposition (abbreviated as MOCVD method). Then, the semiconductor element thus obtained is a light emitting element that can emit light from the substrate side.

しかし乍ら、本発明者等は上記提案により得られるGa
As半導体膜は未だ十分な結晶性が得られず、そのため、
更に改善を要することが判った。
However, the present inventors have found that the Ga
As semiconductor film has not yet obtained sufficient crystallinity,
It was found that further improvement was required.

従って本発明の目的は上記GaAs半導体膜が得られるよ
うな半導体素子の製法を提供することにある。
Accordingly, it is an object of the present invention to provide a method for manufacturing a semiconductor device capable of obtaining the above GaAs semiconductor film.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明によれば、反応室内部に設置されたアルミナ単
結晶C面基板上にMOCVD法によりGaAs半導体膜を形成す
る半導体素子の製法において、前記気相成長法が順次下
記(A)工程〜(C)工程から成ることを特徴とする半
導体素子の製法が提供される。
According to the present invention, in a method of manufacturing a semiconductor device in which a GaAs semiconductor film is formed on a C-plane alumina single crystal substrate installed in a reaction chamber by a MOCVD method, the vapor phase growth method includes the following steps (A) to (A). A method for manufacturing a semiconductor device, comprising the step of: C) is provided.

(A)・・・前記基板を350〜550℃の温度範囲内に設定
すると共にAl元素含有ガス及びAs元素含有ガスから成る
混合ガス、もしくはAl元素含有ガス、Ga元素含有ガス及
びAs元素含有ガスから成る混合ガスを反応室内部に導入
し、気相成長法により厚みが300Å以下のAlxGa1-xAs膜
(但し0<x≦1)を生成させる (B)・・・前記基板を550〜950℃の温度範囲内に設定
すると共にAs元素含有ガスを反応室内部に導入する (C)・・・前記基板を550〜700℃の温度範囲内に設定
すると共にGa元素含有ガス及びAs元素含有ガスを反応室
内部に導入し、気相成長法によりGaAs半導体膜を生成す
る 以下、本発明を詳細に説明する。
(A): The substrate is set within a temperature range of 350 to 550 ° C. and a mixed gas composed of an Al element-containing gas and an As element-containing gas, or an Al element-containing gas, a Ga element-containing gas, and an As element-containing gas. Is introduced into the reaction chamber, and an Al x Ga 1-x As film (0 <x ≦ 1) having a thickness of 300 ° or less is generated by a vapor deposition method (B). Set the temperature in the temperature range of 550 to 950 ° C. and introduce the As element-containing gas into the reaction chamber. (C): Set the substrate in the temperature range of 550 to 700 ° C. Introducing an element-containing gas into a reaction chamber to form a GaAs semiconductor film by a vapor phase epitaxy method Hereinafter, the present invention will be described in detail.

本発明の製法によって形成される半導体素子は第1図
に示す通りであり、図中、1はアルミナ単結晶基板であ
り、その基板のエピタキシャル成長面はC面であり、そ
して、この基板1の上にAlGaAs膜2が形成され、更にGa
As半導体膜3が形成される。
The semiconductor device formed by the manufacturing method of the present invention is as shown in FIG. 1. In the figure, reference numeral 1 denotes an alumina single crystal substrate, and the epitaxial growth surface of the substrate is a C-plane. AlGaAs film 2 is formed on
As semiconductor film 3 is formed.

本発明者等は、GaAsの一部又は全部がAlAsと置換され
た膜がGaAs半導体膜3と基板1の間に形成された場合、
その膜2の厚みを比較的小さくしながらも結晶性の改善
に著しく作用することを見い出した。
The present inventors have found that when a film in which part or all of GaAs is replaced with AlAs is formed between the GaAs semiconductor film 3 and the substrate 1,
It has been found that while the thickness of the film 2 is relatively small, it significantly affects the improvement of crystallinity.

この元素比率は組成式AlxGa1-xAsで表わされた場合、
X値を0<x≦1、好適には0.3<x<0.8の範囲内に設
定するとよく、x値が零、即ち、GaAsである場合にはGa
As半導体層の結晶性が幾分劣る。
When this element ratio is represented by the composition formula Al x Ga 1-x As,
It is preferable to set the X value within the range of 0 <x ≦ 1, preferably 0.3 <x <0.8. If the x value is zero, that is, Ga
The crystallinity of the As semiconductor layer is somewhat inferior.

また、AlGaAs膜2の厚みは300Å以下、好適には10〜3
00Å、最適には50〜100Åの範囲に設定するとよく、こ
の厚みが300Åを超えた場合には結晶性は劣化する。
The thickness of the AlGaAs film 2 is 300 mm or less, preferably 10 to 3 mm.
The thickness is preferably set to 00 °, optimally in the range of 50 to 100 °, and if the thickness exceeds 300 °, the crystallinity is degraded.

上記半導体素子は例えば次に述べる製法により形成さ
れる。
The semiconductor element is formed by, for example, a manufacturing method described below.

この製法は順次下記(A)〜(C)工程から成るMOCV
D法である。
This production method comprises the following steps (A) to (C):
D method.

(A)・・・前記基板を350〜550℃の温度範囲内に設定
すると共にAl元素含有ガス及びAs元素含有ガスから成る
混合ガス、もしくはAl元素含有ガス、Ga元素含有ガス及
びAs元素含有ガスから成る混合ガスを反応室内部に導入
し、気相成長法によりC面基板上に厚み300Å以下のAlx
Ga1-xAs膜を生成させる。この工程においては、基板温
度を次の(B)及び(C)工程の基板温度よりも低く設
定し、そして、CVD法により結晶成長に要する核を生成
する。
(A): The substrate is set within a temperature range of 350 to 550 ° C. and a mixed gas composed of an Al element-containing gas and an As element-containing gas, or an Al element-containing gas, a Ga element-containing gas, and an As element-containing gas. Is introduced into the reaction chamber, and a 300-mm-thick Al x is deposited on a C-plane substrate by vapor phase epitaxy.
A Ga 1-x As film is generated. In this step, the substrate temperature is set lower than the substrate temperature in the following steps (B) and (C), and nuclei required for crystal growth are generated by the CVD method.

基板温度は350〜550℃、好適には390〜500℃の範囲内
に設定すればよく、350℃未満であれば核が成長せず、5
50℃を超えると均質な核が成長せず、界面に欠陥が生じ
る。
The substrate temperature may be set in the range of 350 to 550 ° C, preferably 390 to 500 ° C.
When the temperature exceeds 50 ° C., homogeneous nuclei do not grow and defects occur at the interface.

次の(B)工程は、(A)工程によって生成されたAl
GaAs膜を熱アニールし、その膜の結晶性を改善するため
に行われ、この熱アニールに要する基板温度は550〜950
℃、好適には650〜850℃の範囲内である。尚、基板温度
を上げるとAlGaAs膜のAs蒸気圧が高くなり、そのため、
As元素含有ガスが反応室へ導入されている。
The next step (B) is the Al produced by the step (A).
The GaAs film is thermally annealed to improve the crystallinity of the film, and the substrate temperature required for the thermal annealing is 550 to 950.
° C, preferably in the range of 650-850 ° C. Note that increasing the substrate temperature increases the As vapor pressure of the AlGaAs film,
As element-containing gas is introduced into the reaction chamber.

(C)工程は、GaAsのエピタキシャル成長を行う工程
であり、Ga元素含有ガス及びAs元素含有ガスを反応室内
部に導入し、そして、基板温度を550〜700℃、好適には
570〜650℃の範囲内に設定した場合、これらのガスが熱
分解し、AlGaAs膜の上にGaAs膜がエピタキシャル成長す
る。
Step (C) is a step of performing epitaxial growth of GaAs, introducing a Ga element-containing gas and an As element-containing gas into the reaction chamber, and setting the substrate temperature to 550 to 700 ° C., preferably
When the temperature is set in the range of 570 to 650 ° C., these gases are thermally decomposed, and a GaAs film grows epitaxially on the AlGaAs film.

上記Ga元素含有ガスにはGa(CH33,Ga(C2H5
どがあり、As元素含有ガスにはAsH3,AsCl3などがあり、
また、Al元素含有ガスにはAl(CH33,Al(C2H53,Al
(iso−C4H9などがある。そして、これらのガスの
キャリアガスにH2又は不活性ガス(Ar,He,N2,Ne等)が
用いられる。
The Ga element-containing gas includes Ga (CH 3 ) 3 and Ga (C 2 H 5 ) 3 , and the As element-containing gas includes AsH 3 and AsCl 3 .
In addition, Al element-containing gas includes Al (CH 3 ) 3 , Al (C 2 H 5 ) 3 , Al
(Iso-C 4 H 9 ) 3 and the like. Then, H 2 or an inert gas (Ar, He, N 2 , Ne, etc.) is used as a carrier gas for these gases.

かくして本発明の製法によれば、アルミナ単結晶のC
面基板上にエピタキシャル成長させるに当たって、その
C面のoff角度を5゜以下(但し0゜を含まない)、好
適には0.5〜3゜の範囲内に設定するとよく、これによ
り、GaAs半導体膜3の表面が顕著な平滑性を有する。
Thus, according to the production method of the present invention, the alumina single crystal C
In epitaxial growth on a plane substrate, the off angle of the C plane is preferably set to 5 ° or less (excluding 0 °), preferably in the range of 0.5 to 3 °. The surface has remarkable smoothness.

更に本発明の製法によれば、GaAs半導体膜の結晶性を
改善するために各工程に次のような条件を設定するのが
よい。
Further, according to the manufacturing method of the present invention, it is preferable to set the following conditions in each step in order to improve the crystallinity of the GaAs semiconductor film.

(A)工程においては、反応室に導入されるGa元素含
有ガスのモル容積〔Ga〕とAl元素含有ガスのモル容積
〔Al〕の合計量に対するAs元素含有ガスのモル容積〔A
s〕の比率、即ち(〔As〕/〔Ga〕+〔Al〕)を10以
上、好適には50〜200に設定し、更に反応室内部の全ガ
スを50〜760Torrにするとよい。
In the step (A), the molar volume [A] of the As element-containing gas with respect to the total amount of the molar volume [Ga] of the Ga element-containing gas and the molar volume [Al] of the Al element-containing gas introduced into the reaction chamber [A
The ratio of [s], that is, ([As] / [Ga] + [Al]) is set to 10 or more, preferably 50 to 200, and all the gas inside the reaction chamber is set to 50 to 760 Torr.

また、(B)工程においては反応室に導入するAs元素
含有ガスを全体当たり、0.1〜5モル容積%、好適には
0.5〜2モル容積%に設定すればよい。
In the step (B), the amount of the As element-containing gas introduced into the reaction chamber is 0.1 to 5 mol% by volume, preferably
What is necessary is just to set to 0.5 to 2 mol% by volume.

(C)工程においては〔As〕/(〔Ga〕+〔Al〕)及
び全ガス圧を(A)工程と同じ条件に設定するとよい。
In the step (C), [As] / ([Ga] + [Al]) and the total gas pressure may be set to the same conditions as in the step (A).

次に高周波誘導加熱方式のMOCVD装置を第2図により
説明する。
Next, a high frequency induction heating type MOCVD apparatus will be described with reference to FIG.

図中、4は反応室であり、この中にサセプタ5が設置
されており、サセプタ5の上にアルミナ単結晶基板6が
設置される。反応室4の周囲には高周波コイル7が巻き
付けられ、これに高周波電源(図示せず)が接続され、
高周波コイル7に高周波電力が印加された場合にサセプ
タ5が誘導加熱される。また、反応室4には超高真空排
気装置8と排気ガス処理装置9が接続され、成膜前に超
高真空排気装置8により反応室内部を真空排気し、この
内部の残留ガスを除去し、排気ガス処理装置9により排
気ガス中のAs化合物を除去する。
In the figure, reference numeral 4 denotes a reaction chamber in which a susceptor 5 is installed, and an alumina single crystal substrate 6 is installed on the susceptor 5. A high frequency coil 7 is wound around the reaction chamber 4, and a high frequency power supply (not shown) is connected to the high frequency coil 7.
When high frequency power is applied to the high frequency coil 7, the susceptor 5 is induction heated. An ultra-high vacuum exhaust device 8 and an exhaust gas processing device 9 are connected to the reaction chamber 4, and the inside of the reaction chamber is evacuated by the ultra-high vacuum exhaust device 8 before film formation to remove residual gas inside the reaction chamber. Then, the As compound in the exhaust gas is removed by the exhaust gas processing device 9.

第1タンク10にはAsH3ガスが、第2タンク11にはSi2H
6ガスが密封されており、これらのタンクから放出され
る流量はマスフローコントローラ12,13により調整さ
れ、第1主管14へ供給される。
AsH 3 gas in the first tank 10 and Si 2 H in the second tank 11
The six gases are sealed, and the flow rates discharged from these tanks are adjusted by mass flow controllers 12 and 13 and supplied to the first main pipe 14.

また、第3タンク15にはH2ガスが密封され、このガス
は純化器16を介して高純度化され、そして、第1主管14
へ供給され、そのガス流量はマスフローコントローラ1
7,18により調整される。
The third tank 15 is sealed with H 2 gas, and this gas is highly purified through a purifier 16.
Is supplied to the mass flow controller 1
Adjusted by 7,18.

19はGa(CH3の液体が入っている第1バブラであ
り、20はAl(CH3の液体が入っている第2バブラで
あり、21,22はそれぞれのバブラ19,20を所要の温度に設
定するための恒温槽である。第3タンク15より供給され
る高純度H2ガスは第1バブラ19と第2バブラ20へ導入さ
れ、これにより、バブラ内の液体がガス化し、第2主管
23へ導入される。第2主管23へ導入されるガスはマスフ
ローコントローラ24,25により調整され、しかも、第3
タンク15より供給される高純度H2ガスはマスフローコン
トローラ18によって調整されながら第2主管23へ導入さ
れ、このH2ガスはGa(CH3ガスやAl(CH3ガスの
キャリアガスになる。
19 is a first bubbler containing a liquid of Ga (CH 3 ) 3 , 20 is a second bubbler containing a liquid of Al (CH 3 ) 3 , and 21 and 22 are respective bubblers 19 and 20. Is a thermostat for setting the temperature to a required temperature. The high-purity H 2 gas supplied from the third tank 15 is introduced into the first bubbler 19 and the second bubbler 20, whereby the liquid in the bubbler is gasified and the second main pipe
Introduced to 23. The gas introduced into the second main pipe 23 is adjusted by the mass flow controllers 24 and 25, and
The high-purity H 2 gas supplied from the tank 15 is introduced into the second main pipe 23 while being adjusted by the mass flow controller 18, and the H 2 gas is a carrier gas of Ga (CH 3 ) 3 gas or Al (CH 3 ) 3 gas. become.

かくして、第1主管14によりAsH3ガスとSi2H6ガス
が、第2主管23によりGa(CH3ガスとAl(CH3
スが運ばれて反応室4に導入される。尚、26,27,28,29,
30,31,32,33,34,35,36,37,38,39はバルブを示す。
Thus, AsH 3 gas and Si 2 H 6 gas are carried by the first main pipe 14, and Ga (CH 3 ) 3 gas and Al (CH 3 ) 3 gas are carried by the second main pipe 23, and are introduced into the reaction chamber 4. 26, 27, 28, 29,
30,31,32,33,34,35,36,37,38,39 indicate valves.

以上の構成のMOCVD装置において、予め所定の清浄化
処理が施された基板6をサセプタ5の上に設置する。そ
して、(A)工程においては、バルブ34〜39を全開にし
て第3タンク15より高純度H2ガスを反応室4に導入し、
また、バルブ27を全開にし、第1タンク10よりAsH3ガス
を放出し、その放出量をマスフローコントローラ12によ
り調整し、第1主管14へ導入する。そして、バルブ30を
閉じ、バルブ28,29を全開にし、H2ガスをバブラ19に導
入し、Ga(CH3ガスを得る。更に、バルブ33を閉
じ、バルブ31,32を全開にし、H2ガスをバブラ20に導入
してAl(CH3ガスを得る。これらのガスの供給量は
恒温槽21,22の温度とマスフローコントローラ24,25によ
り設定され、第2主管23へ導入される。
In the MOCVD apparatus having the above configuration, the substrate 6 that has been subjected to a predetermined cleaning process is placed on the susceptor 5. Then, in the step (A), the valves 34 to 39 are fully opened, and high-purity H 2 gas is introduced into the reaction chamber 4 from the third tank 15,
Further, the valve 27 is fully opened, the AsH 3 gas is released from the first tank 10, the amount of the released AsH 3 gas is adjusted by the mass flow controller 12, and the gas is introduced into the first main pipe 14. Then, the valve 30 is closed, the valves 28 and 29 are fully opened, and H 2 gas is introduced into the bubbler 19 to obtain Ga (CH 3 ) 3 gas. Further, the valve 33 is closed, the valves 31 and 32 are fully opened, and H 2 gas is introduced into the bubbler 20 to obtain Al (CH 3 ) 3 gas. The supply amounts of these gases are set by the temperatures of the thermostats 21 and 22 and the mass flow controllers 24 and 25, and are introduced into the second main pipe 23.

次の(B)工程では、バルブ29,30を閉じてGa(CH3
ガスを、また、バルブ32,33を閉じてAl(CH3ガス
をそれぞれ導入しないようにし、そして、誘導加熱によ
り(A)工程にて設定した基板温度より高くなるように
温度を設定する。
In the next step (B), the valves 29 and 30 are closed and Ga (CH 3 )
3 gases and valves 32 and 33 are closed to prevent the introduction of Al (CH 3 ) 3 gas, and the temperature is set to be higher than the substrate temperature set in step (A) by induction heating. I do.

(C)工程ではバルブ26,27を開いてGa(CH3ガス
を反応室へ導入し、GaAs膜をエピタキシャル成長させ
る。
In the step (C), the valves 26 and 27 are opened and a Ga (CH 3 ) 3 gas is introduced into the reaction chamber to grow a GaAs film epitaxially.

また上記GaAs膜をエピタキシャル成長させるに当たっ
て、バルブ26を開き、マスフローコントローラ24により
流量を調整しながらSi2H6ガスを反応室へ導入した場
合、Si元素がGaAs膜にドーピングされ、その膜をn形半
導体に制御できる。
In the case where the GaAs film is epitaxially grown, the valve 26 is opened, and when the Si 2 H 6 gas is introduced into the reaction chamber while adjusting the flow rate by the mass flow controller 24, the Si element is doped into the GaAs film, and the film is n-type. Can be controlled by semiconductor.

〔実施例〕〔Example〕

次に本発明の実施例を述べる。 Next, examples of the present invention will be described.

上述した第2図のMOCVD装置において、サセプタ5の
上にC面2゜offアルミナ単結晶基板6を設置し、第3
タンク15よりH2ガスを、第1タンク10よりAsH3ガス(H2
ガスにより10%希釈されている)を300sccmの流量で、
更に第1バブラ19よりGa(CH3ガスを20sccmの流量
で、第2バブラ20よりAl(CH3ガスを10sccmの流量
で反応室4に導入し、全ガスの流量を3500sccmに設定
し、基板温度を400℃に、反応圧力を50Torrに設定し、
そして、この気相成長の時間を変え、これにより、種々
の厚みのAlGaAs膜を形成した。尚、各AlGaAs膜の元素比
率を二結晶X線回折装置を用いてX線ピークの角より求
めたところ、いずれもAl0.5Ga0.5Asであった。
In the MOCVD apparatus of FIG. 2 described above, a C-plane 2 ゜ off alumina single crystal substrate 6 is set on the susceptor 5 and
H 2 gas from the tank 15 and AsH 3 gas (H 2 gas) from the first tank 10
10% diluted by gas) at a flow rate of 300 sccm
Further, Ga (CH 3 ) 3 gas is introduced into the reaction chamber 4 from the first bubbler 19 at a flow rate of 20 sccm, and Al (CH 3 ) 3 gas is introduced from the second bubbler 20 to the reaction chamber 4 at a flow rate of 10 sccm. Set the substrate temperature to 400 ° C and the reaction pressure to 50 Torr,
Then, the time of the vapor phase growth was changed, thereby forming AlGaAs films of various thicknesses. In addition, when the element ratio of each AlGaAs film was determined from the angle of the X-ray peak using a two-crystal X-ray diffractometer, all were Al 0.5 Ga 0.5 As.

各々のAlGaAs膜について、次の(B)工程及び(C)
工程を行った。
For each AlGaAs film, the following (B) step and (C)
The process was performed.

(B)工程によれば、基板温度を700℃に設定し、Ga
(CH3ガスとAl(CH3ガスの導入を止め、それ以
外は前記条件と同じに設定し、20分間熱アニールを行っ
た。
According to the step (B), the substrate temperature is set to 700 ° C., and Ga
The introduction of (CH 3 ) 3 gas and Al (CH 3 ) 3 gas was stopped, and the other conditions were set to the same conditions as above, and thermal annealing was performed for 20 minutes.

(C)工程によれば、基板温度を600℃に設定し、Ga
(CH3ガスを20sccmの流量で、AsH3ガスを300sccmの
流量で反応室へ導入し、他は(B)工程と全く同じ条件
に設定し、これにより、各々のAlGaAs膜の上に厚み3μ
mのGaAs膜をエピタキシャル成長させた。
According to the step (C), the substrate temperature is set to 600 ° C.
(CH 3 ) 3 gas was introduced into the reaction chamber at a flow rate of 20 sccm and AsH 3 gas was introduced into the reaction chamber at a flow rate of 300 sccm, and the other conditions were set exactly the same as in the step (B). 3μ thickness
The m m GaAs film was epitaxially grown.

かくして得られた種々の半導体素子について、各種Ga
Asエピタキシャル膜の室温における結晶性を二結晶X線
回折装置を用いて測定したところ、第2図に示す通りの
結果が得られた。尚、この測定はX線源CuKα、第1
結晶InP(400)、出力30KVの条件により行った。
For the various semiconductor devices thus obtained, various Ga
When the crystallinity of the As epitaxial film at room temperature was measured using a two-crystal X-ray diffractometer, the results shown in FIG. 2 were obtained. This measurement was performed using the X-ray source CuKα 1 ,
The test was performed under the conditions of a crystal InP (400) and an output of 30 KV.

また、本例においては、上記AlGaAs膜を生成させる代
わりに、Al(CH3ガスの放出を止めてGaAs膜を生成
させ、これにより得られた種々の半導体素子を比較例と
した。
In this example, instead of forming the AlGaAs film, the emission of the Al (CH 3 ) 3 gas was stopped to form a GaAs film, and various semiconductor devices obtained thereby were used as comparative examples.

第2図中、横軸はAlGaAs膜又は比較例のGaAs膜の厚み
であり、縦軸はGaAs半導体膜の結晶性を示す半値巾であ
り、そして、○印は本例の測定プロットであり、●印は
比較例の測定プロットであり、a及びbはそれぞれの特
性曲線を示す。
In FIG. 2, the horizontal axis is the thickness of the AlGaAs film or the GaAs film of the comparative example, the vertical axis is the half-width indicating the crystallinity of the GaAs semiconductor film, and the mark ○ is the measurement plot of the present example. The symbol ● indicates a measurement plot of the comparative example, and a and b indicate respective characteristic curves.

第2図より明らかな通り、本例の半導体素子は比較例
のものに比べてAlGaAs膜の厚みが300Å以下において半
値巾が小さくなっており、優れた結晶性のGaAs半導体膜
が得られることが判る。
As is clear from FIG. 2, the semiconductor device of this example has a smaller half width at 300 mm or less in thickness of the AlGaAs film than that of the comparative example. I understand.

〔発明の効果〕〔The invention's effect〕

以上の通り、本発明の半導体素子によれば、GaAs半導
体のエピタキシャル成長表面が平滑性を有し、これによ
り、発光素子として用いられた場合、その発光効率が著
しく高くなる。
As described above, according to the semiconductor device of the present invention, the epitaxial growth surface of the GaAs semiconductor has smoothness, and thus, when used as a light emitting device, its luminous efficiency is significantly increased.

更にまた、本発明の半導体素子によれば、半導体表面
上の微細加工ができ、そのために種々の薄膜デバイスの
製作が可能になるという利点も有する。
Further, according to the semiconductor element of the present invention, there is an advantage that fine processing can be performed on a semiconductor surface, and therefore, various thin film devices can be manufactured.

尚、本実施例はGaAs半導体膜のエピタキシャル成長に
ついて述べられているが、そのGaAsの一部をAl,P,Inな
どで置換したGaAlAs,GaAsP,GaInAsについても本発明の
製法を用いれば同様な効果が得られると考える。
Although the present embodiment describes the epitaxial growth of a GaAs semiconductor film, the same effect can be obtained by using the manufacturing method of the present invention for GaAlAs, GaAsP, and GaInAs in which part of GaAs is replaced by Al, P, In, or the like. I think that is obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の製法によって形成される半導体素子の
層構成を示す断面図、第2図は実施例に用いられるCVD
装置の説明図、第3図はGaAs膜の半値巾を示す線図であ
る。 1……アルミナ単結晶基板 2……AlGaAs膜 3……GaAs半導体膜
FIG. 1 is a sectional view showing a layer structure of a semiconductor device formed by the manufacturing method of the present invention, and FIG. 2 is a CVD device used in the embodiment.
FIG. 3 is an explanatory view of the device, and FIG. 3 is a diagram showing the half width of a GaAs film. 1 ... Alumina single crystal substrate 2 ... AlGaAs film 3 ... GaAs semiconductor film

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】反応室内部に設置されたアルミナ単結晶C
面基板上に有機金属熱分解気相成長法によりGaAs半導体
膜を形成する半導体素子の製法において、前記気相成長
法が順次下記(A)工程〜(C)工程から成ることを特
徴とする半導体素子の製法。 (A)・・・前記基板を350〜550℃の温度範囲内に設定
すると共にAl元素含有ガス及びAs元素含有ガスから成る
混合ガス、もしくはAl元素含有ガス、Ga元素含有ガス及
びAs元素含有ガスから成る混合ガスを反応室内部に導入
し、気相成長法により厚みが300Å以下のAlxGa1-xAs膜
(但し0<x≦1)を生成させる (B)・・・前記基板を550〜950℃の温度範囲内に設定
すると共にAs元素含有ガスを反応室内部に導入する。 (C)・・・前記基板を550〜700℃の温度範囲内に設定
すると共にGa元素含有ガス及びAs元素含有ガスを反応室
内部に導入し、気相成長法によりGaAs半導体膜を生成す
1. An alumina single crystal C installed inside a reaction chamber.
In a method of manufacturing a semiconductor device in which a GaAs semiconductor film is formed on a surface substrate by metal organic chemical vapor deposition vapor deposition, the vapor phase growth comprises the following steps (A) to (C) in sequence. Element manufacturing method. (A): The substrate is set within a temperature range of 350 to 550 ° C. and a mixed gas comprising an Al element-containing gas and an As element-containing gas, or an Al element-containing gas, a Ga element-containing gas, and an As element-containing gas. Is introduced into the reaction chamber, and an Al x Ga 1-x As film (0 <x ≦ 1) having a thickness of 300 ° or less is generated by a vapor deposition method (B). The temperature is set within a temperature range of 550 to 950 ° C., and an As element-containing gas is introduced into the reaction chamber. (C): setting the substrate in a temperature range of 550 to 700 ° C., introducing a Ga element-containing gas and an As element-containing gas into the reaction chamber, and forming a GaAs semiconductor film by a vapor deposition method.
JP63078609A 1988-03-30 1988-03-30 Semiconductor element manufacturing method Expired - Fee Related JP2736417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63078609A JP2736417B2 (en) 1988-03-30 1988-03-30 Semiconductor element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63078609A JP2736417B2 (en) 1988-03-30 1988-03-30 Semiconductor element manufacturing method

Publications (2)

Publication Number Publication Date
JPH01248612A JPH01248612A (en) 1989-10-04
JP2736417B2 true JP2736417B2 (en) 1998-04-02

Family

ID=13666623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63078609A Expired - Fee Related JP2736417B2 (en) 1988-03-30 1988-03-30 Semiconductor element manufacturing method

Country Status (1)

Country Link
JP (1) JP2736417B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63228714A (en) * 1987-03-18 1988-09-22 Matsushita Electric Ind Co Ltd Manufacture of semiconductor crystal film

Also Published As

Publication number Publication date
JPH01248612A (en) 1989-10-04

Similar Documents

Publication Publication Date Title
US5250148A (en) Process for growing GaAs monocrystal film
US4368098A (en) Epitaxial composite and method of making
US20010006845A1 (en) Method and apparatus for producing group-III nitrides
JPH02211620A (en) Method of growing single crystal thin film of compound semiconductor
US3963538A (en) Two stage heteroepitaxial deposition process for GaP/Si
JPH10173288A (en) Method for growing nitride-based iii-v compound semiconductor layer, and manufacture if nitride-based iii-v compound semiconductor substrate
JPS63188938A (en) Method for vapor growth of gallium nitride compound semiconductor
US4908074A (en) Gallium arsenide on sapphire heterostructure
JPH0331678B2 (en)
JPH0547665A (en) Vapor growth method
US5036022A (en) Metal organic vapor phase epitaxial growth of group III-V semiconductor materials
JPH08213326A (en) Manufacture of iii-v compound semiconductor crystal
JPH08316151A (en) Manufacture of semiconductor
JPH033233A (en) Growth method for compound semiconductor single crystal thin film
JP2736417B2 (en) Semiconductor element manufacturing method
JP7120598B2 (en) Aluminum nitride single crystal film and method for manufacturing semiconductor device
JP2704223B2 (en) Semiconductor element
JP2736655B2 (en) Compound semiconductor crystal growth method
JP2668236B2 (en) Semiconductor element manufacturing method
JP3242571B2 (en) Vapor growth method
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPH0686355B2 (en) Group III-V vapor deposition method for group V compound semiconductors
JPH11268996A (en) Method for growing compound semiconductor mixed crystal
JPS593099A (en) Growth method of compound semiconductor crystal
JPS63129609A (en) Method of adding impurity for iii-v compound semiconductor single crystal thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees