JPH0437035B2 - - Google Patents

Info

Publication number
JPH0437035B2
JPH0437035B2 JP21806185A JP21806185A JPH0437035B2 JP H0437035 B2 JPH0437035 B2 JP H0437035B2 JP 21806185 A JP21806185 A JP 21806185A JP 21806185 A JP21806185 A JP 21806185A JP H0437035 B2 JPH0437035 B2 JP H0437035B2
Authority
JP
Japan
Prior art keywords
shaft
ceramic
joint
sleeve
ceramic shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21806185A
Other languages
Japanese (ja)
Other versions
JPS6278169A (en
Inventor
Takio Kojima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP21806185A priority Critical patent/JPS6278169A/en
Publication of JPS6278169A publication Critical patent/JPS6278169A/en
Publication of JPH0437035B2 publication Critical patent/JPH0437035B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、例えばセラミツク製ターボ過給
機、ガスタービンロータ、ピストン等のエンジン
部品におけるセラミツク軸と金属軸の接合部の改
良に関する。 (従来の技術) 従来、セラミツク軸と金属軸を接合するに当
り、セラミツク軸の端部を金属軸端に密嵌して接
合するか、あるいは、セラミツク軸を金属軸の端
面をろう材を介して当接接合することが行われて
いたが、接合部が高温にさらされると、前者にあ
つては嵌合部の金属部分が薄肉であるので機械的
強度の低下により変形が生じやすく、金属軸の膨
張によりセラミツク軸が嵌合部分より離脱するお
それがあり、また、後者にあつては、接合部のろ
う付部分の酸化によりその強度の低下が避けられ
ないものである。上記従来のものの欠点を改善す
るものとして、セラミツク軸と金属軸の接合部外
周にスリーブを接合して、接合強度を高め、ろう
材の酸化を防止する提案がなされている。(特願
昭59−210279号) (発明が解決しようとする問題点) しかしながら、上記スリーブにより接合部を被
覆する場合には、接合部に隣接するセラミツク軸
表面がスリーブとの間に介在するろう材により密
嵌されるので、使用中、ろう溜りによる締めつけ
力が強くなりセラミツク軸のくわえるエツジ部に
破壊が生じることがある。また、上記スリーブと
セラミツク軸表面にろう溜りを作らないように、
ろう材を減少させるとスリーブ内面にろう材が充
分介在しなくなり空隙を生じて全体に均一な締め
つけ力が作用しないこととなるものである。 (問題点を解決するための手段) そこで、金属軸にろう付けするセラミツク軸の
熱膨張差により生ずる。残留応力を調べると、第
1図におけるように接合部5よりの距離xに対し
て、生じる応力は、第3図に示すように、接合部
付近に応力集中が起ることが認められ、その後距
離とともに滑らかに減少している。他方、第1図
に示す、スリーブ3がセラミツク軸にろう付けさ
れる長さlとセラミツク軸の直径Dとの関係を、
すなわちl/Dが0.1、0.2、0.3、0.4とl=0
(l/D=0)の場合に、振動による曲げと回転
数変化によるねじりトルクにより発生する応力を
示すと、第4図のとおりであつて、スリーブとセ
ラミツク軸の接合長(くわえ長さ)が0.3D、
0.4Dの時には、エツジ部7に大きな応力集中が、
くわえ長さがない場合には接合部に大きな応力集
中が起ることが認められる。そして、第3図、第
4図の結果を合せたものが第5図であり、その最
大応力を結んで図に示した第6図から見ると、く
わえ長さが0.05D〜0.2Dの間では、応力集中は減
少されることが明らかである。したがつて、この
発明は、上記知見に基づき、従来の接合部の欠点
を改善するため、セラミツク軸を金属軸との端部
を当接ろう付けし、その接合部外周に焼ばめ又は
ろう付けするに当り、スリーブのセラミツク軸と
のくわえ長さをセラミツク軸の直径をDとすると
0.05〜0.2Dとするものである。すなわち、上記
0.05Dより小さい場合は接合部に応力集中が生
じ、0.2Dより大きい場合はエツジ部に応力集中
が起るおそれがあるものである。 (作用) 上記のように構成されるので、端部において金
属軸に接合されこの接合部の周囲をスリーブによ
り密嵌されたセラミツク軸が回転したり、振動し
たり、曲げたりすると、そのくわえ長さlを上記
軸の0.05D〜0.2Dとする場合、接合部に働らく応
力とくわえエツジ部に働らく応力が均衝すること
となるものである。 なお、上記の応力の他、セラミツク軸を高温で
使用する場合には、熱応力が発生するが、この発
明の構成においてはスリーブが軸方向に膨張しよ
うとし、セラミツク軸に応力が働らくものであ
り、この応力はスリーブのくわえ長さに比例する
ので上記限定範囲を越えると問題が生じるが、こ
の発明の範囲においては、熱応力についても影響
の生じることはない。 (実施例) これを第2図に示すセラミツクターボ過給機に
適用した実施例について説明する。第1図におけ
ると同一の部品には同一符号を付して説明する。
1はセラミツクにより形成される直径10mmのター
ビンロータ軸であり、2はロータ1端部にNi、
Ni−W系合金、Niの3層よりなる応力緩衝板を
介してろう付けする接合部5により接合される金
属軸であり、同時に上記接合部5上に密嵌するス
リーブ3を金属軸2にろう付けし、スリーブ3の
一部はセラミツク軸1にも嵌合してろう付け4し
てなるものである。図中6はグレードである。上
記タービンロータをエンジンに組入れくわえ長さ
の異なるものを用意して、エンジンを全開してア
イドリングのくり返し試験(GO−STOP試験)
を行なつたところ、以下の結果を得た。
(Industrial Application Field) The present invention relates to improvements in the joints between ceramic shafts and metal shafts in engine parts such as ceramic turbochargers, gas turbine rotors, and pistons. (Prior art) Conventionally, when joining a ceramic shaft and a metal shaft, the end of the ceramic shaft is tightly fitted to the end of the metal shaft, or the end of the ceramic shaft is connected to the end face of the metal shaft through a brazing material. However, when the joint is exposed to high temperatures, the metal part of the fitting part in the former case is thin and tends to deform due to a decrease in mechanical strength. There is a risk that the ceramic shaft may separate from the fitted portion due to expansion of the shaft, and in the latter case, the strength of the brazed portion of the joint inevitably decreases due to oxidation. In order to improve the above-mentioned drawbacks of the conventional products, it has been proposed to bond a sleeve to the outer periphery of the joint between the ceramic shaft and the metal shaft to increase the joint strength and prevent oxidation of the brazing filler metal. (Patent Application No. 59-210279) (Problem to be Solved by the Invention) However, when the joint is covered with the sleeve, the ceramic shaft surface adjacent to the joint may be During use, the tightening force due to solder buildup becomes strong and the edge portion held by the ceramic shaft may break. Also, to prevent wax from forming on the sleeve and ceramic shaft surface,
If the brazing material is reduced, the brazing material will not be sufficiently present on the inner surface of the sleeve, creating voids, and a uniform tightening force will not be applied to the entire sleeve. (Means for Solving the Problem) Therefore, this problem is caused by the difference in thermal expansion of the ceramic shaft that is brazed to the metal shaft. When examining the residual stress, it was found that the stress that occurs for a distance x from the joint 5 as shown in Figure 1 is concentrated near the joint as shown in Figure 3, and then It decreases smoothly with distance. On the other hand, the relationship between the length l of the sleeve 3 to be brazed to the ceramic shaft and the diameter D of the ceramic shaft shown in FIG.
That is, l/D is 0.1, 0.2, 0.3, 0.4 and l=0
In the case of (l/D=0), the stress generated by bending due to vibration and torsional torque due to changes in rotational speed is shown in Figure 4. is 0.3D,
At 0.4D, there is a large stress concentration at the edge 7,
It is recognized that when there is no gripping length, a large stress concentration occurs at the joint. Figure 5 is a combination of the results in Figures 3 and 4. Looking at Figure 6, which connects the maximum stresses, it can be seen that the grip length is between 0.05D and 0.2D. It is clear that the stress concentration is reduced. Therefore, based on the above findings, the present invention aims to improve the shortcomings of conventional joints by brazing the end of a ceramic shaft with a metal shaft, and shrink-fitting or brazing the outer periphery of the joint. When attaching the sleeve, the length of the sleeve to the ceramic shaft is determined by the diameter of the ceramic shaft being D.
It shall be 0.05 to 0.2D. That is, the above
If it is smaller than 0.05D, stress concentration may occur at the joint, and if it is larger than 0.2D, stress concentration may occur at the edge. (Function) Since the structure is as described above, when the ceramic shaft, which is joined to the metal shaft at the end and tightly fitted with a sleeve around this joint, rotates, vibrates, or bends, the grip length will change. When the distance 1 is set to 0.05D to 0.2D of the above-mentioned axis, the stress acting on the joint portion and the stress acting on the gripping edge portion are balanced. In addition to the stress mentioned above, thermal stress is generated when a ceramic shaft is used at high temperatures, but in the structure of this invention, the sleeve tends to expand in the axial direction, and no stress is applied to the ceramic shaft. Since this stress is proportional to the gripping length of the sleeve, a problem will occur if it exceeds the above-mentioned limited range, but within the scope of the present invention, thermal stress will not be affected either. (Example) An example in which this is applied to a ceramic turbocharger shown in FIG. 2 will be described. The same parts as in FIG. 1 will be described with the same reference numerals.
1 is a turbine rotor shaft with a diameter of 10 mm made of ceramic, and 2 is a rotor with Ni at the end.
It is a metal shaft that is joined by a joint 5 that is brazed through a stress buffer plate made of three layers of Ni-W alloy and Ni, and at the same time a sleeve 3 that is tightly fitted onto the joint 5 is attached to the metal shaft 2. A part of the sleeve 3 is also fitted onto the ceramic shaft 1 and brazed 4. 6 in the figure is the grade. Insert the above turbine rotor into the engine, prepare different lengths, and repeatedly test idling with the engine fully open (GO-STOP test)
When we conducted this, we obtained the following results.

【表】 上記のとおり、くわえ長さlがl/D=0.05〜
0.2の間にある時には、接合部、エツジ部のいず
れからも破壊の生じないことが明らかである。 この発明において、セラミツクス材料として
は、窒化硅素、炭化珪素等の耐熱セラミツクスが
好ましく、金属材料としては、炭素鋼、合金鋼、
ステンレス鋼、マルエージング鋼、インコネル等
の耐熱鋼、中空鋼、Fe−Ni−Co合金(コパー
ル)チタン等が好ましい。また、スリーブ材とし
ては、上記金属材料の他、タングステン、銀、ジ
ルコニウム、モリブデン、鋼等の低膨張あるいは
低ヤング率材料、もしくは形状記憶合金が望まし
い。 ろう材は、Ag−Cu共晶ろう、Au−Cu−Pdろ
う、Ni又はNi合金ろうを使用できる。 (発明の効果) 以上のとおり、セラミツク軸と金属軸との接合
に当り、この接合部に密嵌するスリーブのセラミ
ツク軸へのくわえ長さを所定範囲内としたので、
発生する応力を低減させて、接合部あるいはエツ
ジ部において、セラミツク軸の破壊を防止するこ
とができる優れた効果をもつものである。
[Table] As shown above, grip length l is l/D = 0.05~
It is clear that when the value is between 0.2 and 0.2, no fracture occurs from either the joint or the edge. In this invention, the ceramic material is preferably a heat-resistant ceramic such as silicon nitride or silicon carbide, and the metal material is carbon steel, alloy steel,
Stainless steel, maraging steel, heat-resistant steel such as Inconel, hollow steel, Fe-Ni-Co alloy (copal) titanium, etc. are preferable. In addition to the above metal materials, the sleeve material is preferably a low expansion or low Young's modulus material such as tungsten, silver, zirconium, molybdenum, steel, or a shape memory alloy. As the brazing material, Ag-Cu eutectic brazing, Au-Cu-Pd brazing, Ni, or Ni alloy brazing can be used. (Effects of the Invention) As described above, when joining the ceramic shaft and the metal shaft, the gripping length of the sleeve that fits tightly into the joint part to the ceramic shaft is set within a predetermined range.
This has the excellent effect of reducing the stress generated and preventing the ceramic shaft from breaking at the joint or edge.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明のセラミツク軸体の接合構
造を示し、第2図はこれをターボ過給機のロータ
に適用した一部縦断面図であり、第3図〜第6図
は、この発明を示す各資料である。 1……セラミツク軸、2……金属軸、3……ス
リーブ、4……ろう付け、5……接合部、6……
ブリード、7……エツジ部。
Fig. 1 shows the joining structure of the ceramic shaft body of the present invention, Fig. 2 is a partial vertical cross-sectional view of this applied to a rotor of a turbocharger, and Figs. 3 to 6 show this. These are various materials showing the invention. 1...Ceramic shaft, 2...Metal shaft, 3...Sleeve, 4...Brazing, 5...Joint part, 6...
Breed, 7...Etsuji part.

Claims (1)

【特許請求の範囲】[Claims] 1 セラミツク軸と金属軸とをろう付けし、この
接合部外周に焼ばめ又はろう付けによりスリーブ
を密嵌してなり、セラミツク軸体の直径をD、セ
ラミツク軸体に密嵌するスリーブの長さをlとす
ると、l/Dが0.05〜0.2であるセラミツク軸体
の接合構造。
1 A ceramic shaft and a metal shaft are brazed, and a sleeve is tightly fitted to the outer periphery of this joint by shrink fitting or brazing, the diameter of the ceramic shaft is D, and the length of the sleeve tightly fitted to the ceramic shaft is A joint structure of ceramic shafts with l/D of 0.05 to 0.2, where the length is l.
JP21806185A 1985-10-02 1985-10-02 Bonded structure of ceramic axis Granted JPS6278169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21806185A JPS6278169A (en) 1985-10-02 1985-10-02 Bonded structure of ceramic axis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21806185A JPS6278169A (en) 1985-10-02 1985-10-02 Bonded structure of ceramic axis

Publications (2)

Publication Number Publication Date
JPS6278169A JPS6278169A (en) 1987-04-10
JPH0437035B2 true JPH0437035B2 (en) 1992-06-18

Family

ID=16714032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21806185A Granted JPS6278169A (en) 1985-10-02 1985-10-02 Bonded structure of ceramic axis

Country Status (1)

Country Link
JP (1) JPS6278169A (en)

Also Published As

Publication number Publication date
JPS6278169A (en) 1987-04-10

Similar Documents

Publication Publication Date Title
JPS6278172A (en) Bonded structure of ceramic to metal
JPH0477129B2 (en)
JPS62104696A (en) Metallic ceramics junction body and metallic ceramics coupling body formed by using said body
JPS63251127A (en) Combined construction of members with different thermal expansion and combining method thereof
JP2531708Y2 (en) Ceramic / metal composite
JPH043129Y2 (en)
JPH0336787B2 (en)
JPS6335464A (en) Method of joining different thermal expansion members
JPH03279277A (en) Joint structure of turbine rotor
EP0323207B1 (en) Joined metal-ceramic assembly method of preparing the same
JPH0437035B2 (en)
JPS61169164A (en) Joint structure of rotary shaft
JPH0352962Y2 (en)
JPH0744722Y2 (en) Coupling shaft structure of ceramic turbine rotor and metal shaft
JPH0516192Y2 (en)
JPH061701U (en) Joining structure of metal rotating shaft and ceramic rotating body
JPH0351321Y2 (en)
JPH0240031B2 (en)
JPH037368Y2 (en)
JPS6325281Y2 (en)
JPH0410198Y2 (en)
JPH0646001B2 (en) Ceramic rotor
JPH0692722B2 (en) Ceramic rotor
JPH0218243Y2 (en)
JPH0322489Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees