JPH0352962Y2 - - Google Patents

Info

Publication number
JPH0352962Y2
JPH0352962Y2 JP1984166338U JP16633884U JPH0352962Y2 JP H0352962 Y2 JPH0352962 Y2 JP H0352962Y2 JP 1984166338 U JP1984166338 U JP 1984166338U JP 16633884 U JP16633884 U JP 16633884U JP H0352962 Y2 JPH0352962 Y2 JP H0352962Y2
Authority
JP
Japan
Prior art keywords
rotating shaft
ceramic
rotating body
connecting portion
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984166338U
Other languages
Japanese (ja)
Other versions
JPS6180301U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984166338U priority Critical patent/JPH0352962Y2/ja
Publication of JPS6180301U publication Critical patent/JPS6180301U/ja
Application granted granted Critical
Publication of JPH0352962Y2 publication Critical patent/JPH0352962Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〔産業上の利用分野〕 本考案は、セラミツクより成る回転体を備えた
内燃機関などに搭載する排気ターボチヤージヤー
(以下、単にターボと称す)を構成するセラミツ
クターボロータに関するものである。 〔従来の技術〕 自動車用エンジンをはじめ各種用途に用いられ
る内燃機関には排ガスの有するエネルギーを利用
し、出力の向上や燃料消費量の低減を図るべくタ
ーボを装備したものが多く用いられるようになつ
てきた。このようなターボでは熱効率を高めるた
め、できる限り高い温度の排ガスを導入すること
が有効である。このため金属材にくらべ耐熱性に
優れ、比重が小さいセラミツク材、とりわけ窒化
珪素、サイアロン、炭化珪素などの焼結体でター
ボ用の回転体を構成することが多く提案されてい
る。このようなターボにおける高温度の排ガスに
直接さらされるブレードおよび該ブレードを保持
したり、あるいはブレードが一体形成されたセラ
ミツク製回転体にて発生した回転力をコンプレツ
サー等の被回転体に伝達する回転軸も、被回転体
等との連結性、支軸性などの関係から回転体と回
転軸をセラミツク材で一体的に成形することが考
えられる。しかしこの成形性に問題があり、また
焼成に際し変形したり、焼成後の研削、研磨加工
等がむずかしいことから、かかる回転体と回転軸
を一体成形したセラミツクターボロータの実用化
は極めて困難である。そこで、回転体をセラミツ
ク材で形成し、該回転体に金属製の回転軸を連結
することによりターボロータを構成することが考
えられている。 〔考案が解決しようとする問題点〕 例えば、セラミツク製回転体にコバール、イン
バー、アンバーまたは鉄−ニツケル合金などの低
熱膨張率の金属製回転軸をロウ付け、焼嵌めなど
により接合する場合、1000℃程度の高温時には、
常温時に比べてやや接合強度が低下するが、それ
でも回転トルクに対しては十分な接合強度であつ
た。 ところが、これらの低熱膨張率金属は機械的強
度が小さいため、高温、高速回転時に発生する高
応力や振動によつて、回転軸連結部のセラミツク
製回転体側端部が変形しやすく、その結果、バラ
ンスが悪くなつて高速回転中のセラミツク製回転
体が破損したり、あるいは接合強度が大きく低下
してセラミツク製回転体が離脱してしまい、非常
に危険があるだけでなく、長時間の連続使用がで
きないという問題点があつた。 〔問題点を解決するための手段〕 本考案は、上記のような在来のターボロータの
欠点に鑑みて、セラミツク製回転体に連結した金
属製回転軸連結部の、特に高温度にさらされる外
周部または高温域で、かつ高速回転に基づく、高
い応力が集中する部分の外周部に、金属製回転軸
連結部より大きな強度をもつた金属リングをロウ
付けまたは焼ばめ等により嵌着しておくことによ
つて高温疲労に耐え、セラミツク製回転体と金属
製回転軸連結部との接合強度を安定維持し、セラ
ミツク製回転体の破損を防止して、信頼性の高い
セラミツクターボロータをもたらさんとするもの
である。 なお、上記金属リングは、金属製回転軸連結部
と比べて、すべての面からみて強度の大きいもの
を用いるが、特に600〜700℃の高温においても引
張強度の大きいものを用いる。 〔作用〕 セラミツク製回転体に連結する金属製回転軸に
用いられるコバール、インバー、アンバー、鉄−
ニツケル合金等の1.3〜5.5×10-6/℃の低い熱膨
張率を有する連結部の高温度にさらされる外周部
または高い応力が生じる外周部に、4〜16×
10-6/℃の比較的低い熱膨張率を有する第1表に
示したサーメツト、超硬、モリブテン、タングス
テン、インコロイ等から成る高強度の金属リング
を嵌着する。その結果、上記回転軸連結部の周囲
には強度の大きな金属リングが嵌着されているこ
とから、高温、高速回転時に発生する高応力や振
動に対して、回転軸連結部のセラミツク製回転体
側端部の変形をなくし、バランスを保つととも
に、接合強度を安定維持できるため、セラミツク
製回転体の破損や離脱を防止することができる。 なお、上記金属リングは回転軸連結部に比べて
やや熱膨張率の大きなものであるが、高温時の熱
膨張差は微小であり、回転軸連結部の変形を防止
するには十分である。 また、セラミツク製回転体は、低熱膨張率金属
からなる回転軸連結部と直接接合しているため、
高温時でも両者の熱膨張差は小さく、回転トルク
に対しては十分な接合強度を保つている。 〔実施例〕 以下、本考案を実施例によつて具体的に詳述す
る。 図において1はセラミツクターボロータを示
し、2はセラミツク製回転体で、この回転体2の
一端の軸中心部には突出部2aが一体成形してあ
る。また3は回転軸で、その一端に形成した凹部
を有する回転軸連結部4には上記回転体2の突出
部2aが嵌着される。この場合、回転軸連結部4
のセラミツク製回転体側端部には丸味部4aが形
成され、これら回転体2と回転軸連結部4とはロ
ウ付、焼ばめなどの手段によつて接合され連結さ
れる。また回転軸連結部4には高温度にさらされ
る部分または高応力を生じる部分である端部外周
には高強度の金属リング5が嵌入し、装着してあ
る。なお、上記金属リング5は、あらかじめ回転
軸連結部4の所定位置に、焼嵌め、ロウ付け等に
よつて装着しておき、その後セラミツク製回転体
2を回転軸連結部4に接合するようになつてい
る。 ところで、回転体2を成すセラミツク材として
は、耐熱性、耐熱衝撃性、機械的強度の大きい非
酸化物系セラミツクである窒化珪素、サイアロ
ン、炭化珪素などが適している。また回転軸連結
部4を成す金属材としては、熱膨張率の小さいコ
バール、インバー、アンバー、鉄−ニツケル合金
等が用いられ、高温部または高い応力が集中する
部位である回転軸連結部4の外周に接合される高
強度の金属リング5としてはサーメツト、超硬、
インコロイ、モリブテン、タングステンもしくは
これらを主成分とする合金が作られている。一
方、回転軸3は全長にわたつてコバール、インバ
ー、アンバー、鉄−ニツケル合金等で構成しても
よいが、これらは高価であるばかりでなく耐摩耗
性が小さい金属であることから、セラミツク製回
転体2と接合する回転体連結部4を除き他の回転
軸3の部分は機械構造用炭素鋼などでもつて構成
してもよい。なおこの場合、炭素鋼などより成る
回転軸3と回転軸連結部4とは電子ビーム溶接
法、圧接法等によつて接合部Sで接ぎ合せるとよ
い。さらにターボロータ1を成すこれらセラミツ
ク材及び金属材の物性は第1表の通りである。 次に本案に係るターボロータの実施例におい
て、
[Industrial Application Field] The present invention relates to a ceramic turbo rotor constituting an exhaust turbo charger (hereinafter simply referred to as a turbo) installed in an internal combustion engine or the like having a rotating body made of ceramic. [Prior Art] Internal combustion engines used in various applications, including automobile engines, are now often equipped with turbos to utilize the energy contained in exhaust gases and improve output and reduce fuel consumption. I'm getting old. In order to increase thermal efficiency in such a turbo, it is effective to introduce exhaust gas at the highest possible temperature. For this reason, many proposals have been made to construct a rotating body for a turbo using a ceramic material that has superior heat resistance and low specific gravity compared to metal materials, particularly sintered bodies such as silicon nitride, sialon, and silicon carbide. In such a turbo, the blades are directly exposed to high-temperature exhaust gas, and the rotation that holds the blades or transmits the rotational force generated by the ceramic rotating body integrally formed with the blades to a rotated body such as a compressor. Regarding the shaft, it is conceivable that the rotating body and the rotating shaft be integrally molded from a ceramic material in view of connectivity with the rotated body, etc., supportability, etc. However, there are problems with this formability, and it is also difficult to deform during firing, and grinding and polishing after firing is difficult, so it is extremely difficult to put into practical use a ceramic rotor in which the rotating body and rotating shaft are integrally molded. . Therefore, it has been considered to construct a turbo rotor by forming a rotating body from a ceramic material and connecting a metal rotating shaft to the rotating body. [Problems to be solved by the invention] For example, when joining a rotating shaft made of a metal with a low thermal expansion coefficient such as Kovar, Invar, Amber, or iron-nickel alloy to a ceramic rotating body by brazing, shrink fitting, etc., 1000 At high temperatures around ℃,
Although the bonding strength was slightly lower than that at room temperature, the bonding strength was still sufficient to withstand rotational torque. However, since these low thermal expansion coefficient metals have low mechanical strength, the end of the rotating shaft connection part on the ceramic rotating body side easily deforms due to the high stress and vibration that occur during high temperature and high speed rotation, and as a result, If the balance becomes poor, the ceramic rotating body may break during high-speed rotation, or the joint strength may decrease significantly and the ceramic rotating body may come off, which is not only extremely dangerous, but also prevents continuous use for long periods of time. There was a problem that it was not possible. [Means for Solving the Problems] In view of the above-mentioned shortcomings of conventional turbo rotors, the present invention has been developed to solve the problem of the metal rotating shaft connection part connected to the ceramic rotating body, which is exposed to particularly high temperatures. A metal ring that has greater strength than the metal rotating shaft connection part is fitted by brazing or shrink fitting on the outer periphery or on the outer periphery of the part where high stress is concentrated due to high speed rotation in a high temperature range. By keeping the ceramic rotor in place, it can withstand high-temperature fatigue, maintain stable bonding strength between the ceramic rotor and the metal rotary shaft connection, and prevent damage to the ceramic rotor, resulting in a highly reliable ceramic rotor. This is what we are trying to bring about. It should be noted that the above-mentioned metal ring should have a higher strength in all respects than the metal rotating shaft connection part, and should have a particularly high tensile strength even at high temperatures of 600 to 700°C. [Function] Kovar, Invar, Umber, and Iron used in the metal rotating shaft connected to the ceramic rotating body.
The outer periphery of the connecting part, which has a low coefficient of thermal expansion of 1.3 to 5.5 x 10 -6 /℃ such as nickel alloy, is exposed to high temperatures or the outer periphery where high stress occurs.
A high-strength metal ring made of cermet, carbide, molybdenum, tungsten, Incoloy, etc. shown in Table 1 and having a relatively low coefficient of thermal expansion of 10 -6 /°C is fitted. As a result, since a strong metal ring is fitted around the rotating shaft connecting part, the ceramic rotating body side of the rotating shaft connecting part can withstand high stress and vibrations that occur during high temperature and high speed rotation. This eliminates deformation of the end portion, maintains balance, and maintains stable bonding strength, making it possible to prevent damage and separation of the ceramic rotating body. Although the metal ring has a slightly larger coefficient of thermal expansion than the rotating shaft connecting portion, the difference in thermal expansion at high temperatures is minute and is sufficient to prevent deformation of the rotating shaft connecting portion. In addition, since the ceramic rotating body is directly connected to the rotating shaft connection part made of a metal with a low coefficient of thermal expansion,
Even at high temperatures, the difference in thermal expansion between the two is small, maintaining sufficient joint strength against rotational torque. [Example] Hereinafter, the present invention will be specifically explained in detail with reference to Examples. In the figure, reference numeral 1 indicates a ceramic rotor, and reference numeral 2 indicates a ceramic rotating body, and a protruding portion 2a is integrally molded at the center of the axis of one end of the rotating body. Reference numeral 3 denotes a rotating shaft, and the protruding portion 2a of the rotating body 2 is fitted into a rotating shaft connecting portion 4 having a recess formed at one end thereof. In this case, the rotating shaft connecting portion 4
A rounded portion 4a is formed at the end of the ceramic rotating body side, and the rotating body 2 and the rotating shaft connecting portion 4 are joined and connected by means such as brazing or shrink fitting. Further, a high-strength metal ring 5 is fitted and attached to the outer periphery of the end portion of the rotary shaft connecting portion 4, which is a portion exposed to high temperature or a portion generating high stress. Note that the metal ring 5 is attached in advance to a predetermined position of the rotating shaft connecting portion 4 by shrink fitting, brazing, etc., and then the ceramic rotating body 2 is joined to the rotating shaft connecting portion 4. It's summery. Incidentally, as the ceramic material constituting the rotating body 2, non-oxide ceramics such as silicon nitride, sialon, and silicon carbide, which have high heat resistance, thermal shock resistance, and mechanical strength, are suitable. In addition, as the metal material forming the rotating shaft connecting portion 4, Kovar, Invar, Amber, iron-nickel alloy, etc., which have a small coefficient of thermal expansion, are used. The high-strength metal ring 5 bonded to the outer periphery may be made of cermet, carbide,
Incoloy, molybdenum, tungsten, or alloys based on these are made. On the other hand, the rotating shaft 3 may be made of Kovar, Invar, Amber, iron-nickel alloy, etc. over its entire length, but since these metals are not only expensive but also have low wear resistance, it may be made of ceramic. The other parts of the rotating shaft 3 except for the rotating body connecting part 4 that joins with the rotating body 2 may be made of carbon steel for mechanical structures or the like. In this case, it is preferable that the rotating shaft 3 made of carbon steel or the like and the rotating shaft connecting portion 4 be joined at the joint S by electron beam welding, pressure welding, or the like. Further, the physical properties of these ceramic materials and metal materials forming the turbo rotor 1 are shown in Table 1. Next, in an embodiment of the turbo rotor according to the present invention,

【表】【table】

〔考案の効果〕[Effect of idea]

叙上のように本考案によれば、高速回転するセ
ラミツク製回転体を連結した回転軸連結部の外周
に、高強度の金属リングを装着したことによつ
て、高温、高速回転時における、回転軸連結部の
変形をなくし、バランスを保つとともに、十分な
接合強度を安定維持できることから、セラミツク
製回転体の破損や離脱を防止でき、信頼性の高い
セラミツクターボロータを提供することができ
る。
As mentioned above, according to the present invention, a high-strength metal ring is attached to the outer periphery of the rotating shaft connection part connecting the ceramic rotating bodies that rotate at high speed. Since deformation of the shaft connection part is eliminated, balance is maintained, and sufficient bonding strength can be stably maintained, breakage and detachment of the ceramic rotating body can be prevented, and a highly reliable ceramic rotor can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本案実施例によるセラミツクターボロータ
の縦断面図である。 1……セラミツクターボロータ、2……セラミ
ツク製回転体、2a……突出部、3……回転軸、
4……回転軸連結部、4a……丸味部、5……金
属リング、S……接合部。
The figure is a longitudinal sectional view of a ceramic rotor according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Ceramic turbo rotor, 2... Ceramic rotating body, 2a... Projection, 3... Rotating shaft,
4... Rotating shaft connection part, 4a... Rounded part, 5... Metal ring, S... Joint part.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ブレードを備えたセラミツク製回転体の中心部
に一体的に形成した突出部を、回転軸の端部に形
成した低熱膨張金属からなる回転軸連結部の凹部
中に嵌入するとともに、上記回転軸連結部のセラ
ミツク製回転体側端部の外周に、サーメツト、超
硬、インコロイ、モリブデン、タングステンなど
の単体もしくはこれらの合金からなり、前記回転
軸連結部よりも強度の大きい金属リングを嵌着し
たことを特徴とするセラミツクターボロータ。
A protrusion formed integrally at the center of a ceramic rotating body equipped with a blade is fitted into a recess of a rotating shaft connecting portion made of a low thermal expansion metal formed at the end of the rotating shaft, and the rotating shaft connecting portion A metal ring made of cermet, carbide, Incoloy, molybdenum, tungsten, etc., or an alloy thereof, and having a stronger strength than the rotating shaft connection part, is fitted onto the outer periphery of the ceramic rotating body side end of the part. Features a ceramic rotor.
JP1984166338U 1984-10-31 1984-10-31 Expired JPH0352962Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984166338U JPH0352962Y2 (en) 1984-10-31 1984-10-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984166338U JPH0352962Y2 (en) 1984-10-31 1984-10-31

Publications (2)

Publication Number Publication Date
JPS6180301U JPS6180301U (en) 1986-05-28
JPH0352962Y2 true JPH0352962Y2 (en) 1991-11-19

Family

ID=30724160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984166338U Expired JPH0352962Y2 (en) 1984-10-31 1984-10-31

Country Status (1)

Country Link
JP (1) JPH0352962Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2516355B2 (en) * 1987-02-27 1996-07-24 クラリオン株式会社 Tuning control voltage generator
JPH0744722Y2 (en) * 1987-03-30 1995-10-11 日本碍子株式会社 Coupling shaft structure of ceramic turbine rotor and metal shaft
JP2569335B2 (en) * 1987-06-06 1997-01-08 住友電気工業株式会社 Method for manufacturing superconducting wire
JP4998023B2 (en) * 2007-03-09 2012-08-15 トヨタ自動車株式会社 Shrink fit fastening structure of gas turbine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139403B2 (en) * 1977-07-18 1986-09-03 Shizuko Ishiwaki

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139403U (en) * 1984-08-16 1986-03-12 トヨタ自動車株式会社 Shaft support structure of turbine wheel for turbocharger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139403B2 (en) * 1977-07-18 1986-09-03 Shizuko Ishiwaki

Also Published As

Publication number Publication date
JPS6180301U (en) 1986-05-28

Similar Documents

Publication Publication Date Title
US4557704A (en) Junction structure of turbine shaft
JPS5842149B2 (en) A combination between a ceramic part and a metal part
JPH0477129B2 (en)
JPS61219767A (en) Metal ceramic bonded body
JPH0352962Y2 (en)
EP0323207B1 (en) Joined metal-ceramic assembly method of preparing the same
JPS58178900A (en) Impellor made of ceramics
JPH0646001B2 (en) Ceramic rotor
JPH0218243Y2 (en)
JPH0692722B2 (en) Ceramic rotor
JPH0410198Y2 (en)
JP2650372B2 (en) Method of joining ceramic member and metal member
JPH037368Y2 (en)
JPH0322489Y2 (en)
JPH0240031B2 (en)
JPH02115555A (en) Friction welded body of ceramics-metal and ceramics-inserted piston made thereof
JPH0625601Y2 (en) Ceramic rotor
JPH0220190Y2 (en)
JPH061701U (en) Joining structure of metal rotating shaft and ceramic rotating body
JPS6325281Y2 (en)
JPH0351319Y2 (en)
JPH0351321Y2 (en)
JPS61123701A (en) Ceramic turbine rotor
JP2747865B2 (en) Joint structure between ceramics and metal
JPH0431772B2 (en)