JPH0646001B2 - Ceramic rotor - Google Patents

Ceramic rotor

Info

Publication number
JPH0646001B2
JPH0646001B2 JP60218728A JP21872885A JPH0646001B2 JP H0646001 B2 JPH0646001 B2 JP H0646001B2 JP 60218728 A JP60218728 A JP 60218728A JP 21872885 A JP21872885 A JP 21872885A JP H0646001 B2 JPH0646001 B2 JP H0646001B2
Authority
JP
Japan
Prior art keywords
ceramic
connecting shaft
shaft
outer diameter
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60218728A
Other languages
Japanese (ja)
Other versions
JPS6278402A (en
Inventor
信和 佐川
秀典 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60218728A priority Critical patent/JPH0646001B2/en
Publication of JPS6278402A publication Critical patent/JPS6278402A/en
Publication of JPH0646001B2 publication Critical patent/JPH0646001B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミック製回転体を備えた内燃機関等に搭載
する排気ターボチャージャーを構成するセラミックター
ボロータに関するものである。
Description: TECHNICAL FIELD The present invention relates to a ceramic turbo rotor constituting an exhaust turbocharger to be mounted on an internal combustion engine or the like equipped with a ceramic rotating body.

〔従来の技術〕[Conventional technology]

各種用途に用いられる内燃機関には、出力の向上や燃料
消費量の低減の他に、更に熱効率を向上させ、回転応答
性を改善するため、高温が作用する回転体を機械的強
度、耐熱性、耐摩耗性に優れ、比重の小さいセラミック
材、とりわけ、窒化珪素サイアロン、炭化珪素等の焼結
体でターボロータを構成し、高荷重が作用する回転軸を
高強度で加工性の優れた金属材料とし、これらを組み合
わせてセラミックターボロータとすることが研究され提
案されてきた。
For internal combustion engines used for various purposes, in addition to improving output and reducing fuel consumption, in order to further improve thermal efficiency and improve rotational response, the rotating body exposed to high temperatures must have mechanical strength and heat resistance. , A metal having excellent wear resistance and a small specific gravity, especially a sintered rotor such as silicon nitride sialon, silicon carbide, etc., that constitutes a turbo rotor, and has a rotating shaft on which a high load acts and high strength and excellent workability. It has been researched and proposed to use these as materials and combine them into ceramic turbo rotors.

上記の如き形式のセラミックターボロータにおいてはコ
バール、インバー、アンバー、鉄−ニッケル合金等の熱
膨張率が1.3 ×10-6/ ℃乃至5.5 ×10-6/ ℃と比較的小
さい金属部材を、セラミック製回転体の軸芯部に一体的
に突設した連結軸を受入れる凹部を有した接合用金属部
材とし、該連結軸にロウ付または締り嵌合により接合し
た後、該金属部材に機械構造用炭素鋼等からなる金属製
回転軸を圧接、溶接等の手段により接合することが行わ
れていた。
In the ceramic turbo rotor of the type as described above, Kovar, Invar, Amber, iron-nickel alloy and the like, the thermal expansion coefficient of 1.3 × 10 -6 / ° C to 5.5 × 10 -6 / ° C. A metal member for joining having a recess for receiving a connecting shaft integrally projecting on the shaft core of a rotating body made of metal, and after joining the connecting shaft by brazing or interference fitting, the metal member is used for mechanical structure It has been performed to join metal rotary shafts made of carbon steel or the like by means such as pressure welding or welding.

しかしながら、前記接合用金属部材は高温での強度が低
く、前記連結軸を受入れ接合した該接合用金属部材の凹
部は、高温高速回転中に該凹部開口端が拡大し、前記セ
ラミック製回転体と接合用金属部材との接合が離脱して
しまう恐れが大であった。そこで上記欠点を解消するた
めに、第2 図に示す様に、前記接合用金属部材3 をイン
コネル、ハステロイ等の高温での強度が高い耐熱合金を
用いることが提案されている。
However, the strength of the joining metal member is low at high temperatures, and the recess of the joining metal member that receives and joins the connecting shaft has an enlarged opening end of the recess during high-temperature and high-speed rotation. There was a great risk that the joint with the joining metal member would be separated. Therefore, in order to solve the above-mentioned drawbacks, as shown in FIG. 2, it has been proposed to use a heat-resistant alloy such as Inconel or Hastelloy having a high strength at high temperature as the joining metal member 3.

しかしながら、インコネル、ハステロイ等の熱膨張率は
11.3×10-6/ ℃乃至16.0×10-6/ ℃であることから、窒
化珪素が3.2 ×10-6/ ℃、サイアロンが3.0 ×10-6/
℃、炭化珪素が4.2 ×10-6/ ℃程度と接合用金属部材3
とセラミック製回転体1 の軸芯部に一体的に突設した連
結軸2 との熱膨張差が大きいため、ロウ付又は締り嵌合
するに際し、該連結軸2 と接合用金属部材3 との熱収縮
の差により発生する応力が高い靭性を有する接合用金属
部材3 よりも脆性材料である前記連結軸2 に集中し、該
応力に抗し切れず該連結軸2 より破壊を起こしていた。
However, the coefficient of thermal expansion of Inconel, Hastelloy, etc.
11.3 × 10 -6 / ℃ to 16.0 × 10 -6 / ℃, silicon nitride 3.2 × 10 -6 / ℃, Sialon 3.0 × 10 -6 / ℃
℃, silicon carbide is 4.2 × 10 -6 / ℃ and metal member for bonding 3
Since the difference in thermal expansion between the connecting shaft 2 and the connecting shaft 2 integrally provided on the shaft core of the ceramic rotating body 1 is large, the connecting shaft 2 and the joining metal member 3 are not easily connected during brazing or interference fitting. The stress generated due to the difference in heat shrinkage was concentrated on the connecting shaft 2 which was a brittle material rather than the joining metal member 3 having high toughness, and could not withstand the stress, and the connecting shaft 2 was broken.

更に前記欠点を解消するために、第3 図に示す様に、セ
ラミック製連結軸2 の長さを、その最大外径の少なくと
も3 倍として嵌着することや、第4 図に示す様に、金属
製回転軸4 に穿設された凹部5 とセラミック製連結軸2
との締り嵌合領域L が軸受ハウジング内を流れる排気ガ
スの熱影響を受け難い箇所に設けることが提案されてい
る。
Further, in order to eliminate the above-mentioned drawback, as shown in FIG. 3, the length of the ceramic connecting shaft 2 is set to be at least three times the maximum outer diameter, and as shown in FIG. Recess 5 formed on metal rotary shaft 4 and ceramic connecting shaft 2
It has been proposed to provide the tight fitting area L with the location where it is not easily affected by the heat of the exhaust gas flowing in the bearing housing.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、上記提案はセラミック部材と金属部材の
接合部の要求耐熱特性のみに注目したものであって、セ
ラミック製連結軸の複雑かつ長軸の研削に係るコストア
ップ及び該連結軸の嵌合領域全域にわたる均一な締り嵌
合が困難なことから、常温から高温までの広い温度範囲
での変化の激しい高速回転により生ずる極めて大きな偏
芯応力が、該連結軸の不均一な締り嵌合部分に集中する
ことにより、低速回転域で該連結軸2 より破壊を起こす
ことが避けられず、セラミックターボロータとして十分
満足できるものではなかった。
However, the above proposal focuses only on the required heat resistance characteristics of the joint portion between the ceramic member and the metal member, and increases the cost for grinding the ceramic coupling shaft and the long axis and the entire fitting region of the coupling shaft. Since it is difficult to perform uniform tight fitting over a wide range of temperatures from room temperature to high temperature, extremely large eccentric stress generated by high-speed rotation that changes rapidly is concentrated on the uneven fitting portion of the connecting shaft. As a result, it is unavoidable that the connecting shaft 2 is broken in the low speed rotation range, and the ceramic turbo rotor is not sufficiently satisfactory.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記現状に鑑み鋭意研究の結果、金属製回転軸
の諸物性に基づくセラミック製回転体の最大外径とセラ
ミック製連結軸外径およびセラミック製連結軸外径と金
属製軸受用軸部外径との間の相関を見出し、この相関を
満足し、とりわけ該連結軸の長さが連結軸の最大外径の
3 倍未満でかつシールリングを装着する溝を有する金属
製回転軸部の凹部では該連結軸は非接触で、オイルによ
り冷却された軸受用軸部の凹部にて嵌着するに十分な長
さとすることを特徴とするものである。
As a result of earnest research in view of the above-mentioned present situation, the present invention has revealed that the maximum outer diameter of a ceramic rotating body, the outer diameter of a ceramic connecting shaft, the outer diameter of a ceramic connecting shaft, and a shaft portion of a metal bearing based on various physical properties of a metal rotating shaft. Finding a correlation with the outer diameter, satisfying this correlation, in particular, the length of the connecting shaft is the maximum outer diameter of the connecting shaft.
In the recess of the metal rotary shaft that is less than 3 times and has a groove for mounting the seal ring, the connecting shaft is not in contact and the length is sufficient to fit in the recess of the bearing shaft cooled by oil. It is characterized by doing.

〔実施例〕〔Example〕

以下、本発明を実施例によって具体的に詳述する。 Hereinafter, the present invention will be described in detail with reference to Examples.

第1 図において、11はセラミック製回転体で、該回転体
11の軸芯部には連結軸12が一体成形してある。また上記
回転体11の連結軸12は、金属製回転軸13の凹部15に嵌接
されている。この場合、連結軸12と金属回転軸13とは凹
部15のシールリング装着用の環状の溝16を有して成る対
応部では非接触で、凹部15の軸受用軸部14の対応部に
て、焼嵌め、ロウ付などの手段により接合される。
In FIG. 1, reference numeral 11 denotes a ceramic rotating body,
A connecting shaft 12 is integrally formed with the shaft core of 11. The connecting shaft 12 of the rotating body 11 is fitted into the recess 15 of the metal rotating shaft 13. In this case, the connecting shaft 12 and the metal rotary shaft 13 are not in contact with each other at the corresponding portion of the recess 15 having the annular groove 16 for mounting the seal ring, but at the corresponding portion of the bearing shaft portion 14 of the recess 15. They are joined by means such as shrink fitting, brazing, or the like.

本実施例ではセラミック製回転体11から切り出した試験
片のJIS3点曲げ強度が平均69.0Kg/ mmを示す窒化珪素
製回転体と熱膨張率はコバール、インバー等より大きい
が、金属部材の熱収縮により生じる締め付け応力を緩和
すべくセラミック部材に嵌合する金属部材を薄肉化して
も雰囲気温度が500 ℃〜800 ℃で周速度が600m/secにも
及ぶ高温高速回転に耐え得る物性を有するものとして、
常温から600 ℃の温度範囲における熱膨張率が5.0 ×10
-6/ ℃〜14.0×10-6/ ℃と従来例のインコネル、ハステ
ロイより低く常温から650 ℃の温度範囲における0.2%耐
力が90Kg/mm2以上と従来例のインコネル、ハステロイよ
り高いインコロイを用い第1 表に示す各部寸法にそれぞ
れ加工し、同一条件のもとで連結軸12を金属製回転軸13
の凹部15の軸受用軸部14の対応部にてロウ付接合し、各
4 本づつセラミックターボロータを製作した。
In this example, the test piece cut out from the ceramic rotor 11 had a JIS three-point bending strength of 69.0 Kg / mm 2 on average, and a silicon nitride rotor having a coefficient of thermal expansion larger than that of Kovar, Invar, etc. Even if the metal member fitted to the ceramic member is thinned in order to relieve the tightening stress caused by shrinkage, it has physical properties that can withstand high temperature and high speed rotation with an ambient temperature of 500 to 800 ° C and a peripheral speed of up to 600 m / sec. As
Coefficient of thermal expansion is 5.0 × 10 in the temperature range from room temperature to 600 ℃
-6 / ℃ ~ 14.0 × 10 -6 / ℃, which is lower than Inconel and Hastelloy of the conventional example, 0.2% proof stress in the temperature range from room temperature to 650 ° C is 90 Kg / mm 2 or more, which is higher than Inconel and Hastelloy of the conventional example. The dimensions of each part shown in Table 1 were machined and the connecting shaft 12 and the metal rotating shaft 13 were machined under the same conditions.
At the corresponding portion of the bearing shaft portion 14 of the recess 15 of the
Four ceramic turbo rotors were manufactured.

なお、金属製回転軸13にSCM435を用いたものを比較例と
し、同じくインコネルを用い、第2 図、第3 図及び第4
図の如く作成したものを従来例とした。但し、比較例、
従来例はいずれも連結軸と金属回転軸との接合をロウ付
接合とした。
A comparative example using the SCM435 for the metal rotating shaft 13 was also used, and the same Inconel was used, as shown in FIGS. 2, 3, and 4.
The one prepared as shown in the figure is a conventional example. However, a comparative example,
In all the conventional examples, the joint between the connecting shaft and the metal rotary shaft is brazed.

また、第2 図の従来例ではインコネルの接合用金属部材
3 に連結軸2 をロウ付接合後、該接合用金属部材3 に機
械構造用炭素鋼SCM435を電子ビーム溶接法により接合部
S にて接合した。
In addition, in the conventional example of FIG. 2, a metal member for bonding Inconel is used.
After brazing the connecting shaft 2 to 3 and joining carbon steel SCM435 for machine structure to the metal member 3 for joining by electron beam welding
Joined at S.

上記の如くして製作したセラミックターボロータは釣合
試験機を用いて不釣合量を0.02 g・cm未満に修正し、供
給ガス温度950 ℃の高温高速回転耐久テストを行い第2
表の結果を得た。尚、所定回転数まで異常なく回転した
ものを○印で、また所定回転数に上昇している途中で破
損したものを×印で示した。第2 表の結果に基づくセラ
ミック製回転体最大外径とセラミック製回転体連結軸外
径の関係及び高温高速回転耐久テストの結果を第5 図に
示す。
The ceramic turbo rotor manufactured as described above was adjusted to an unbalance amount of less than 0.02 gcm using a balance tester, and subjected to a high temperature and high speed rotation endurance test at a supply gas temperature of 950 ° C.
The results in the table were obtained. It should be noted that those that have rotated up to a predetermined number of revolutions without abnormality are indicated by a circle, and those that have been damaged while rising to a predetermined number of revolutions are indicated by a cross. Fig. 5 shows the relationship between the maximum outer diameter of the ceramic rotor and the outer diameter of the ceramic rotor connecting shaft based on the results in Table 2, and the results of the high-temperature high-speed rotation durability test.

〔評価〕 第1 表及び第2 表から明らかな様に、金属製回転軸の軸
受用軸部外径に対するセラミック製回転体の連結軸外径
の比率が80% 未満の場合(試料番号1,9,17,25,33)は、
不釣合量が0.02 g・cm未満であっても高速回転により
生ずる偏芯応力に耐え切れず、毎秒500m台の周速で該連
結軸より破壊し、上記比率が90% を超える場合(試料番
号5,13,21,29,37)は該連結軸を受入れ接合する前記軸受
用軸部の肉厚が薄くなり、前記偏芯応力による繰り返し
変形を受け、凹部最奥の角部より破断し、いずれも耐久
性に問題がある。
[Evaluation] As is clear from Tables 1 and 2, when the ratio of the outer diameter of the connecting shaft of the ceramic rotor to the outer diameter of the bearing shaft of the metal rotating shaft is less than 80% (Sample No. 1, 9,17,25,33) is
Even if the unbalance amount is less than 0.02 g · cm, it cannot withstand the eccentric stress generated by high-speed rotation, breaks from the connecting shaft at a peripheral speed of 500 m / s, and the above ratio exceeds 90% (Sample No. 5 , 13, 21, 29, 37), the thickness of the bearing shaft portion that receives and joins the connecting shaft becomes thin, undergoes repeated deformation due to the eccentric stress, and fractures from the innermost corner of the recess. Also has a problem with durability.

また、セラミック製回転体の連結軸最大径に対する該連
結軸の長さの比が3 倍以上の場合(試料番号7,15,31,3
9)は毎秒600m台以下の周速で該連結軸より破壊し、こ
れは前記偏芯応力が不均一な締り嵌合部に集中したもの
と考えられる。
If the ratio of the length of the ceramic rotating body to the maximum diameter of the connecting shaft is 3 times or more (Sample No. 7,15,31,3
In the case of 9), fracture occurred from the connecting shaft at a peripheral speed of 600 m / sec or less, and it is considered that the eccentric stress was concentrated on the non-uniform tightening fitting part.

一方金属製回転軸に機械構造用炭素鋼SCM435を使用した
比較例(試料番号8,16,24,32,40)では、毎秒500m前後
の周速で、連結軸を受入れ接合する凹部最奥の角部よ
り、前記偏芯応力による繰り返し変形を受け破断し、金
属製回転軸にインコネルを使用した従来例(試料番号4
1,42,43)では、試料番号41の場合、毎秒400m台の周速
で連結軸より破壊しており、連結軸を連結軸最大径の3
倍以上とし、接合部の要求耐熱特性を下げた試料番号42
の場合、連結軸を受入れる金属製回転軸の凹部開口部よ
り毎秒500m台の周速で破壊し、同じく試料番号43の場
合、毎秒500m台の周速で、連結軸の締り嵌合領域のセラ
ミック製回転体の側端部より破壊した。それに対し本発
明の場合(試料番号2,3,4,10,11,12,18,19,20,26,27,2
8,34,35,36)いずれも周速で毎秒600m台の高温高速回転
耐久テストも耐え、しかもセラミック製回転体より破壊
しており、接合に係るセラミック製回転体の連結軸及び
金属製回転軸の軸受用軸部には何んら異常は認められな
かった。
On the other hand, in the comparative example (Sample Nos. 8,16,24,32,40) using carbon steel SCM435 for machine structure on the metal rotating shaft, the innermost part of the recess that receives and joins the connecting shaft at the peripheral speed of about 500 m / s. A conventional example in which Inconel was used for the metal rotating shaft due to repeated deformation due to the eccentric stress from the corners, and it was fractured (Sample No. 4
1,42,43), in the case of sample No. 41, it was destroyed from the connecting shaft at a peripheral speed of 400 m / s, and the connecting shaft had a maximum diameter of 3 mm.
Specimen No. 42, which is more than doubled to reduce the required heat resistance of the joint
In the case of, the sample is broken at the peripheral speed of 500 m / s from the opening of the concave part of the metal rotary shaft that receives the connecting shaft. It was destroyed from the side edge of the rotating body. On the other hand, in the case of the present invention (sample numbers 2, 3, 4, 10, 11, 12, 18, 18, 19, 20, 26, 27, 2
(8,34,35,36) all endure high temperature and high speed rotation endurance tests of 600 m / sec at peripheral speed, and are destroyed from the ceramic rotating body, and the connecting shaft of the ceramic rotating body for joining and the metal rotating No abnormality was found in the bearing shaft of the shaft.

なお、セラミック製回転体の最大外径とセラミック製回
転体の連結軸外径の関係を示した第5 図から(連結軸の
外径:mm)≧0.07×(セラミック製回転体の最大外径:m
m)+4.2 〔但し40mm≦(セラミック製回転体の最大外
径)≦150mm 〕で表される線上を境として「セラミック
製回転体より破壊」の領域と「セラミック製連結軸より
破壊」の領域に明確に区分され、第2 表の高温高速回転
耐久テストの結果からも「セラミック製回転体より破
壊」の領域が望ましいことがわかる。
From Fig. 5 showing the relationship between the maximum outer diameter of the ceramic rotating body and the outer diameter of the connecting shaft of the ceramic rotating body (outer diameter of the connecting shaft: mm) ≥ 0.07 x (maximum outer diameter of the rotating body of ceramic : m
m) + 4.2 [however, 40 mm ≤ (maximum outer diameter of the ceramic rotating body) ≤ 150 mm] on the boundary line of "breakage from ceramic rotating body" and "breakage from ceramic connecting shaft" It is clearly divided into regions, and the results of the high-temperature high-speed rotation endurance test in Table 2 show that the region of "breakage rather than ceramic rotors" is desirable.

〔発明の効果〕〔The invention's effect〕

以上の様に、本発明によれば、金属製回転軸の諸物性に
基づくセラミック製回転体の最大外径及びセラミック製
連結軸外径と金属製軸受用軸部外径の相関を満足し、と
りわけ該連結軸の長さを連結軸の最大径の3 倍未満と
し、シールリングを装着する溝を有する金属製回転軸部
の凹部では該連結軸は非接触とし、オイルにより冷却さ
れた軸受用軸部の凹部にて嵌着することにより、セラミ
ック部材と金属部材の接合部の要求耐熱特性を下げ、高
温高速回転により生ずる大きな偏芯応力が、セラミック
製連結軸を受入れ接合する金属製回転軸の凹部の破断を
引起こしたり、セラミック製回転体の連結軸を破壊する
ことがない、耐久性及び信頼性に優れたセラミックター
ボロータが得られる。
As described above, according to the present invention, the maximum outer diameter of the ceramic rotating body based on the physical properties of the metal rotating shaft and the correlation between the ceramic connecting shaft outer diameter and the metal bearing shaft outer diameter are satisfied, Especially, the length of the connecting shaft is less than 3 times the maximum diameter of the connecting shaft, and the connecting shaft is not in contact with the concave part of the metal rotary shaft part having the groove for mounting the seal ring. By fitting in the recess of the shaft part, the required heat resistance of the joint between the ceramic member and the metal member is reduced, and the large eccentric stress caused by high-temperature high-speed rotation causes the metal-made rotating shaft to receive and join the ceramic connecting shaft. It is possible to obtain a ceramic turbo rotor excellent in durability and reliability, which does not cause breakage of the concave portion and does not break the connecting shaft of the ceramic rotating body.

【図面の簡単な説明】[Brief description of drawings]

第1 図は本発明の実施例によるセラミックターボロータ
を示す一部破断面図、第2 図、第3 図及び第4 図はセラ
ミックターボロータの従来例を示す一部破断面図、第5
図はセラミック製回転体最大外径とセラミック製回転体
連結軸外径の関係を示す図である。 11:セラミック製回転体 12:連結軸 13:金属製回転軸 14:軸受用軸部 15:凹部 16:溝 17:根元部円弧起点 L1:セラミック製回転体最大外径 L2:連結軸長 l1:連結軸外径 l2:軸受用軸部外径
FIG. 1 is a partial sectional view showing a ceramic turbo rotor according to an embodiment of the present invention, FIGS. 2, 3, and 4 are partial sectional views showing a conventional example of a ceramic turbo rotor, and FIG.
The figure is a diagram showing the relationship between the maximum outer diameter of the ceramic rotor and the outer diameter of the ceramic rotor connecting shaft. 11: Ceramic rotor 12: Connecting shaft 13: Metal rotating shaft 14: Bearing shaft 15: Recess 16: Groove 17: Arc starting point of base L 1 : Maximum outer diameter of ceramic rotor L 2 : Connecting shaft length l 1 : Coupling shaft outer diameter l 2 : Bearing shaft outer diameter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】セラミック製回転体と金属製回転軸とを接
合してなるセラミックターボロータにおいて、前記金属
製回転軸が5.0 ×10-6/ ℃乃至14.0×10-6/ ℃の熱膨張
率、15,000〜20,000Kg/mm のヤング率および90Kg/mm
以上の0.2%耐力を有する耐熱合金から成り、前記セラ
ミック製回転体の軸芯部に一体的に突設した連結軸を前
記金属製回転軸のシールリング装着用溝部以外の軸受用
軸部の凹部で嵌着するとともに、前記セラミック製回転
体の連結軸の外径が、セラミック製回転体の最大外径に
対して、(連結軸の外径:mm)≧0.07×(セラミック製
回転体の最大外径:mm)+4.2 [但し、40mm≦(セラミ
ック製回転体の最大外径)≦150mm ]を満足し、かつ金
属製回転軸の軸受用軸部外径の80〜90% であることを特
徴とするセラミックターボロータ。
1. A ceramic turbo rotor comprising a ceramic rotating body and a metal rotating shaft joined together, wherein the metal rotating shaft has a coefficient of thermal expansion of 5.0 × 10 −6 / ° C. to 14.0 × 10 −6 / ° C. , Young's modulus of 15,000 to 20,000 Kg / mm 2 and 90 Kg / mm
A connecting shaft made of a heat-resistant alloy having a 0.2% proof stress of 2 or more and integrally protruding from the shaft core of the ceramic rotating body is used for bearing shafts other than the seal ring mounting groove of the metal rotating shaft. While fitting in the recess, the outer diameter of the connecting shaft of the ceramic rotating body is larger than the maximum outer diameter of the ceramic rotating body (outer diameter of the connecting shaft: mm) ≥ 0.07 × (of the ceramic rotating body Maximum outer diameter: mm) + 4.2 [however, 40 mm ≤ (maximum outer diameter of ceramic rotating body) ≤ 150 mm] is satisfied, and it is 80 to 90% of the outer diameter of the bearing shaft of the metal rotating shaft. A ceramic turbo rotor characterized in that.
【請求項2】前記セラミック製回転体の連結軸は、連結
軸の根元部円弧の起点からの長さが、該連結軸の最大外
径の3倍未満である特許請求の範囲第1項記載のセラミ
ックターボロータ。
2. The connecting shaft of the ceramic rotating body, wherein the length from the starting point of the base arc of the connecting shaft is less than 3 times the maximum outer diameter of the connecting shaft. Ceramic turbo rotor.
JP60218728A 1985-09-30 1985-09-30 Ceramic rotor Expired - Fee Related JPH0646001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60218728A JPH0646001B2 (en) 1985-09-30 1985-09-30 Ceramic rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60218728A JPH0646001B2 (en) 1985-09-30 1985-09-30 Ceramic rotor

Publications (2)

Publication Number Publication Date
JPS6278402A JPS6278402A (en) 1987-04-10
JPH0646001B2 true JPH0646001B2 (en) 1994-06-15

Family

ID=16724503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60218728A Expired - Fee Related JPH0646001B2 (en) 1985-09-30 1985-09-30 Ceramic rotor

Country Status (1)

Country Link
JP (1) JPH0646001B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019049232A (en) * 2017-09-11 2019-03-28 三菱重工コンプレッサ株式会社 Rotating machine and impeller

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2516355B2 (en) * 1987-02-27 1996-07-24 クラリオン株式会社 Tuning control voltage generator
JPH0744722Y2 (en) * 1987-03-30 1995-10-11 日本碍子株式会社 Coupling shaft structure of ceramic turbine rotor and metal shaft
DE102004053289A1 (en) * 2004-11-04 2006-05-11 Leybold Vacuum Gmbh Vacuum pump impeller

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186430U (en) * 1983-05-30 1984-12-11 トヨタ自動車株式会社 Connection structure between turbine wheel and drive shaft of turbocharger
JPS613901U (en) * 1984-06-13 1986-01-11 トヨタ自動車株式会社 Turbine wheel structure of turbocharger
JPS6195902U (en) * 1984-11-30 1986-06-20
US4749334A (en) * 1984-12-06 1988-06-07 Allied-Signal Aerospace Company Ceramic rotor-shaft attachment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019049232A (en) * 2017-09-11 2019-03-28 三菱重工コンプレッサ株式会社 Rotating machine and impeller

Also Published As

Publication number Publication date
JPS6278402A (en) 1987-04-10

Similar Documents

Publication Publication Date Title
US4557704A (en) Junction structure of turbine shaft
JPH0477129B2 (en)
JPH0438715B2 (en)
US6431781B1 (en) Ceramic to metal joint assembly
JPS61219767A (en) Metal ceramic bonded body
JPH043129Y2 (en)
JP2531708Y2 (en) Ceramic / metal composite
US4959258A (en) Joined metal-ceramic assembly method of preparing the same
JPH0646001B2 (en) Ceramic rotor
JPH0352962Y2 (en)
JPH0692722B2 (en) Ceramic rotor
JPH0744722Y2 (en) Coupling shaft structure of ceramic turbine rotor and metal shaft
JP2822405B2 (en) Method of joining ceramic rotor and metal shaft
JPH0625601Y2 (en) Ceramic rotor
JPH0454196Y2 (en)
JPH0410198Y2 (en)
JPH0220189Y2 (en)
JPS6278403A (en) Ceramic turbo rotor
JP2979529B2 (en) Joint of ceramic member and metal member
JPH0220190Y2 (en)
JPH0516192Y2 (en)
JPH0322489Y2 (en)
JPH061701U (en) Joining structure of metal rotating shaft and ceramic rotating body
JPH0351319Y2 (en)
JP2619216B2 (en) Combined ceramic and metal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees