JPH0351319Y2 - - Google Patents
Info
- Publication number
- JPH0351319Y2 JPH0351319Y2 JP1878786U JP1878786U JPH0351319Y2 JP H0351319 Y2 JPH0351319 Y2 JP H0351319Y2 JP 1878786 U JP1878786 U JP 1878786U JP 1878786 U JP1878786 U JP 1878786U JP H0351319 Y2 JPH0351319 Y2 JP H0351319Y2
- Authority
- JP
- Japan
- Prior art keywords
- shaft
- rotating shaft
- diameter
- ceramic
- metal shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000919 ceramic Substances 0.000 claims description 25
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Description
【考案の詳細な説明】
〔産業上の利用分野〕
本考案は高温部(500℃以上)で用いられるセ
ラミツクフアン、セラミツクタービンのロータに
適用されるセラミツク回転軸と金属軸の結合構造
の改良に関する。[Detailed description of the invention] [Field of industrial application] The present invention relates to an improvement in the coupling structure between a ceramic rotating shaft and a metal shaft, which is applied to rotors of ceramic fans and ceramic turbines used in high-temperature areas (500°C or higher). .
セラミツク回転軸と金属軸の結合法は第2図に
示す端面を接合する方法、第3図に示す嵌合によ
る方法がある。第2図、第3図において、1は金
属軸、2はセラミツク回転軸、3は接合面、4は
嵌合面である。
The ceramic rotating shaft and the metal shaft can be joined together by joining the end faces as shown in FIG. 2, or by fitting them together as shown in FIG. 3. In FIGS. 2 and 3, 1 is a metal shaft, 2 is a ceramic rotating shaft, 3 is a joint surface, and 4 is a fitting surface.
窒化けい素、窒化炭素などのセラミツクは熱膨
脹率が金属に比較して小さい。例えば窒化けい素
と耐熱合金の熱膨脹率の比は0・13〜0・25であ
る。このため温度変化を受けると半径方向熱膨脹
率の差により、第2図の場合は金属軸1とセラミ
ツク回転軸2の接合面3にせん断応力を生じせん
断破壊を生じやすく直径が約30mm以下に制限され
る。又、第3図の場合は嵌合面4に隙間を生じゆ
るんでしまい、たとえ嵌合面4に接合剤を用いて
も剥離を生じ結合が失われる。更にセラミツク回
転軸2と金属軸1の芯ずれを生じ高速回転が著し
く困難となる。このため嵌合面4の直径も約20mm
以下に制限される。この制限により伝達動力も制
限される。
Ceramics such as silicon nitride and carbon nitride have a smaller coefficient of thermal expansion than metals. For example, the ratio of the thermal expansion coefficients of silicon nitride and heat-resistant alloy is 0.13 to 0.25. Therefore, when subjected to temperature changes, due to the difference in the coefficient of radial thermal expansion, in the case of Fig. 2, shear stress is generated on the joint surface 3 of the metal shaft 1 and the ceramic rotating shaft 2, which tends to cause shear failure and is limited to a diameter of about 30 mm or less. be done. Moreover, in the case of FIG. 3, a gap is created in the fitting surface 4 and the fitting becomes loose, and even if a bonding agent is used on the fitting surface 4, peeling occurs and the bond is lost. Furthermore, the ceramic rotating shaft 2 and the metal shaft 1 are misaligned, making high-speed rotation extremely difficult. Therefore, the diameter of the mating surface 4 is also approximately 20 mm.
Limited to: This restriction also limits the transmitted power.
本考案は上述の寸法の制限を克服しうるセラミ
ツク回転軸と金属軸の接合構造体を提供しようと
するものである。 The present invention attempts to provide a joining structure of a ceramic rotating shaft and a metal shaft that can overcome the above-mentioned dimensional limitations.
本考案は中心部の嵌合部直径と軸外径部直径の
比が0・3以下になるように金属軸側が凹、セラ
ミツク回転軸側が凸となる嵌合部を設け、金属軸
及びセラミツク回転軸の端面を切欠いて薄肉円筒
状に加工し、両軸の端面を当接して接合してなる
ことを特徴とするセラミツク回転軸と金属軸の結
合構造体である。
The present invention provides a fitting part that is concave on the metal shaft side and convex on the ceramic rotating shaft side so that the ratio of the diameter of the fitting part in the center to the diameter of the outer diameter part of the shaft is 0.3 or less. This is a joint structure of a ceramic rotating shaft and a metal shaft, characterized in that the end surface of the shaft is notched and processed into a thin cylindrical shape, and the end surfaces of both shafts are brought into contact and joined.
本考案における金属軸としては、マルテンサイ
ト系ステンレス鋼、耐熱鋼などが、セラミツク回
転軸としては窒化珪素、炭化珪素、アルミナ、ジ
ルコニアなどが使用される。金属軸、セラミツク
回転軸の端面(薄肉円筒状端面)の接合には、固
相接合、ろう付、真空拡散接合などの手段が用い
られる。 In the present invention, martensitic stainless steel, heat-resistant steel, etc. are used for the metal shaft, and silicon nitride, silicon carbide, alumina, zirconia, etc. are used for the ceramic rotation shaft. For joining the end faces (thin cylindrical end faces) of the metal shaft and the ceramic rotating shaft, means such as solid phase joining, brazing, vacuum diffusion joining, etc. are used.
本考案において、中心部における嵌合部直径と
軸外径部直径の比を0・3以下としたのは、その
比が0・3より超えると回転時にアンバランスが
生じ振動問題が起るからである。嵌合部は芯出し
(センター保持)のためであるのでその比の下限
値は、特に限定されないが、軸外径部直径の如何
に拘らず嵌合部直径が5mm以下になるようにする
のが好ましい。 In this invention, the ratio of the diameter of the fitting part at the center to the outside diameter of the shaft is set to 0.3 or less because if the ratio exceeds 0.3, imbalance will occur during rotation and vibration problems will occur. It is. Since the fitting part is for centering (maintaining the center), the lower limit of the ratio is not particularly limited, but the diameter of the fitting part should be 5 mm or less regardless of the diameter of the outer diameter part of the shaft. is preferred.
本考案の接合構造体は、中心部に設けた嵌合部
の直径を軸外径直径に比し小さくすることにより
セラミツクと金属の熱膨脹による変位量差を小さ
くすることができ、これにより芯ずれをも小さく
することができる。
The bonded structure of the present invention can reduce the difference in displacement due to thermal expansion between ceramic and metal by making the diameter of the fitting part provided in the center smaller than the outer diameter of the shaft, thereby reducing misalignment. can also be made smaller.
また、軸の外周部に薄肉円筒を形成することに
よりセラミツクと金属の接合部の半径方向変位差
を小さな拘束力で吸収でき、このため発生するせ
ん断応力及び曲げ応力を小さくすることができ
る。 Furthermore, by forming a thin cylinder around the outer periphery of the shaft, the difference in radial displacement between the ceramic and metal joints can be absorbed with a small restraining force, thereby reducing the shear stress and bending stress that occur.
更にまた外径の大きなところに薄肉円筒部を設
けたためにトルクに対する有効面積が大きくなり
大きな動力を伝達できるようになる。 Furthermore, since the thin-walled cylindrical portion is provided at a location with a large outer diameter, the effective area for torque becomes large, making it possible to transmit large amounts of power.
以下、本考案の一実施態様を第1図によつて詳
述する。第1図において、第2図、第3図と同一
符号は第2図、第3図と同一部分を示す。5は金
属軸1の薄肉円筒部、6はセラミツク回転軸2の
薄肉円筒部、7は金属軸1の凹状嵌合部、8はセ
ラミツク回転軸の凸状嵌合部である。 Hereinafter, one embodiment of the present invention will be explained in detail with reference to FIG. In FIG. 1, the same reference numerals as in FIGS. 2 and 3 indicate the same parts as in FIGS. 2 and 3. 5 is a thin cylindrical portion of the metal shaft 1, 6 is a thin cylindrical portion of the ceramic rotating shaft 2, 7 is a concave fitting portion of the metal shaft 1, and 8 is a convex fitting portion of the ceramic rotating shaft.
金属軸1として長さ20mm、外径50mmのSUH616
を用い、その薄肉円筒部5の肉厚を4mm、長さを
20mmとし、金属軸1の中心部に深さ10mm、径15mm
(+0・03mm)の凹状嵌合部7を設けた。 SUH616 with length 20mm and outer diameter 50mm as metal shaft 1
, the thickness of the thin cylindrical part 5 is 4 mm, and the length is
20mm, with a depth of 10mm and a diameter of 15mm at the center of the metal shaft 1.
(+0.03 mm) concave fitting portion 7 was provided.
またセラミツク回転軸2としては外径50mmの
Si3N4を用い、その薄肉円筒部6の肉厚を4mm、
長さを20mmとし、セラミツク回転軸2の中心部に
直径15mm(−0・03mm)の凸状嵌合部8を設け
た。 In addition, the ceramic rotating shaft 2 has an outer diameter of 50 mm.
Using Si 3 N 4 , the thickness of the thin cylindrical part 6 was 4 mm,
The length was 20 mm, and a convex fitting part 8 with a diameter of 15 mm (-0.03 mm) was provided at the center of the ceramic rotating shaft 2.
この両者の薄肉円筒部5,6をろう付けによつ
て接合した。 The two thin cylindrical parts 5 and 6 were joined together by brazing.
これにより接合部の温度400℃下で、40KWの
動力を伝達し、かつ4800r・p・mの高速回転が
達成できた。 As a result, it was possible to transmit 40KW of power and achieve high-speed rotation of 4800rpm at a joint temperature of 400℃.
1 芯ずれが小さくできることによりアンバラン
スが押えられ高速回転が可能である。
1. By minimizing misalignment, unbalance is suppressed and high-speed rotation is possible.
2 動力伝達及び振動による曲げに対する抗力が
大きくでき強度信頼性があがる。2. Resistance to bending due to power transmission and vibration can be increased, improving strength and reliability.
これにより高温(900℃)で動作する高速高負
荷のロータを製作することができる。 This makes it possible to manufacture high-speed, high-load rotors that operate at high temperatures (900°C).
第1図は本考案の一実施態様を説明するための
図、第2図、第3図は従来の態様を説明するため
の図である。
図において、1……金属軸、2……セラミツク
ス回転軸、3……接合面、4……嵌合面、5……
金属軸の薄肉円筒、6……セラミツクス回転軸の
薄肉円筒、7は金属軸の凹状嵌合部、8……セラ
ミツクス回転軸の凸状嵌合部。
FIG. 1 is a diagram for explaining one embodiment of the present invention, and FIGS. 2 and 3 are diagrams for explaining conventional embodiments. In the figure, 1...metal shaft, 2...ceramic rotating shaft, 3...joint surface, 4...fitting surface, 5...
A thin cylinder of a metal shaft, 6... A thin cylinder of a ceramic rotation shaft, 7 a concave fitting part of a metal shaft, 8... a convex fitting part of a ceramic rotation shaft.
Claims (1)
3以下になるように金属軸側が凹、セラミツク回
転軸側が凸となる嵌合部を設け、金属軸及びセラ
ミツク回転軸の端面を切欠いて薄肉円筒状に加工
し、両軸の端面を当接して接合してなることを特
徴とするセラミツク回転軸と金属軸の結合構造
体。 The ratio of the diameter of the fitting part at the center and the diameter of the shaft outer diameter is 0.
3 or less, a fitting part is provided in which the metal shaft side is concave and the ceramic rotating shaft side is convex, and the end surfaces of the metal shaft and ceramic rotating shaft are cut out and processed into a thin cylindrical shape, and the end surfaces of both shafts are brought into contact. A joint structure of a ceramic rotating shaft and a metal shaft, characterized by being joined together.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1878786U JPH0351319Y2 (en) | 1986-02-14 | 1986-02-14 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1878786U JPH0351319Y2 (en) | 1986-02-14 | 1986-02-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62132140U JPS62132140U (en) | 1987-08-20 |
JPH0351319Y2 true JPH0351319Y2 (en) | 1991-11-01 |
Family
ID=30812779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1878786U Expired JPH0351319Y2 (en) | 1986-02-14 | 1986-02-14 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0351319Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4671659B2 (en) * | 2004-10-25 | 2011-04-20 | 京セラ株式会社 | Bonding structure of ceramic member and metal member |
-
1986
- 1986-02-14 JP JP1878786U patent/JPH0351319Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS62132140U (en) | 1987-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5924242B2 (en) | Turbine rotor structure | |
JPH0339993B2 (en) | ||
JPS62191478A (en) | Ceramics-metal bonded body | |
JPH043129Y2 (en) | ||
JP2531708Y2 (en) | Ceramic / metal composite | |
JPH0351319Y2 (en) | ||
EP0323207B1 (en) | Joined metal-ceramic assembly method of preparing the same | |
JPH0260635B2 (en) | ||
JPH0352962Y2 (en) | ||
JPH037368Y2 (en) | ||
JPH0351321Y2 (en) | ||
JPS6347601Y2 (en) | ||
JPS6278402A (en) | Ceramic turbo rotor | |
JPH0410198Y2 (en) | ||
JPH0744722Y2 (en) | Coupling shaft structure of ceramic turbine rotor and metal shaft | |
JPH0431772B2 (en) | ||
JPH0218243Y2 (en) | ||
JPH0350241Y2 (en) | ||
JPH0322489Y2 (en) | ||
JPH0612222Y2 (en) | Gas turbine sealing device | |
JP3119981B2 (en) | Combined body of ceramic member and metal member and method of combining the same | |
JPH01215769A (en) | Production of ceramic-metal coupled body | |
JP2526885B2 (en) | Composite ring made of ceramic ring and metal ring | |
JPH0692722B2 (en) | Ceramic rotor | |
JPS6325282Y2 (en) |