JP3119981B2 - Combined body of ceramic member and metal member and method of combining the same - Google Patents

Combined body of ceramic member and metal member and method of combining the same

Info

Publication number
JP3119981B2
JP3119981B2 JP05281529A JP28152993A JP3119981B2 JP 3119981 B2 JP3119981 B2 JP 3119981B2 JP 05281529 A JP05281529 A JP 05281529A JP 28152993 A JP28152993 A JP 28152993A JP 3119981 B2 JP3119981 B2 JP 3119981B2
Authority
JP
Japan
Prior art keywords
metal
ceramic
convex portion
concave portion
ceramic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05281529A
Other languages
Japanese (ja)
Other versions
JPH07136862A (en
Inventor
重治 松林
哲郎 野瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP05281529A priority Critical patent/JP3119981B2/en
Publication of JPH07136862A publication Critical patent/JPH07136862A/en
Application granted granted Critical
Publication of JP3119981B2 publication Critical patent/JP3119981B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はセラミックス製部材と金
属製部材を機械的手段により結合したセラミックス・金
属結合体とその結合方法に関する。特に、本発明はター
ボチャージャーロータ、ガスタービン、掘削ドリル等に
用いられるセラミックス製回転体と金属製シャフトとの
結合に好適な結合体とその結合方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic / metal bonded body in which a ceramic member and a metal member are bonded by mechanical means, and to a bonding method therefor. In particular, the present invention relates to a coupling body and a coupling method suitable for coupling a ceramic rotary body and a metal shaft used for a turbocharger rotor, a gas turbine, a drill, and the like.

【0002】[0002]

【従来の技術】サイアロン、炭化珪素、アルミナ、ジル
コニア等のセラミックスは、耐摩耗性や高温強度などの
機械的強度、耐熱性、耐食性に優れているため、ガスタ
ービンエンジン部品、レシプロエンジン部品、発電用部
品等の高温構造材料あるいは耐摩耗材料として注目され
ている。しかし、セラミックスは一般に硬くて脆いため
金属材料に比較して成形加工性が劣る。また、靭性に乏
しいため衝撃力に対する抵抗が弱い。さらに伝熱性が金
属材料より著しく悪いことが欠点である。
2. Description of the Related Art Ceramics such as sialon, silicon carbide, alumina, and zirconia have excellent mechanical strength such as wear resistance and high-temperature strength, heat resistance, and corrosion resistance. It is attracting attention as a high-temperature structural material or wear-resistant material for parts for use. However, ceramics are generally hard and brittle, so that their formability is inferior to metal materials. Further, the resistance to the impact force is weak due to poor toughness. A further disadvantage is that the heat transfer is significantly worse than metal materials.

【0003】従来までは、ターボチャージャーロータ、
ガスタービン、掘削ドリル等に用いられる回転体は高温
高速回転、摩耗回転といった苛酷な使用条件に曝される
ため、Ni基耐熱合金や工具鋼などが使用されてきた。
最近、サイアロン、炭化珪素等の高強度のセラミックス
が開発され、耐熱性、耐摩耗性等の向上による高性能化
や長寿命化を狙って、上記回転体に使用する動きが活発
になってきた。ところが、セラミックス材料のみでエン
ジン部品のような機械部品を形成することは難しく、一
般には金属製部材とセラミックス製部材とを結合した複
合構造体として用いられている。その結果、セラミック
ス製の回転体と金属製のシャフトを強固に結合する必要
が生じてきた。
[0003] Until now, turbocharger rotors,
Rotating bodies used in gas turbines, drilling drills, and the like are exposed to severe operating conditions such as high-temperature high-speed rotation and wear rotation, and thus Ni-based heat-resistant alloys and tool steels have been used.
Recently, high-strength ceramics such as sialon and silicon carbide have been developed, and the use of the above-mentioned rotating body has become active in order to achieve high performance and long life by improving heat resistance and wear resistance. . However, it is difficult to form a mechanical part such as an engine part using only a ceramic material, and it is generally used as a composite structure in which a metal member and a ceramic member are combined. As a result, it has become necessary to firmly couple the rotating body made of ceramic and the shaft made of metal.

【0004】従来、セラミックスと金属を結合させる方
法としては、セラミックス凸部と金属凹部を嵌合すなわ
ち圧入、焼き嵌め、冷やし嵌め等の手段により結合体を
作製する方法が知られている。これらの嵌合時の温度、
形状等の最適範囲については各種の報告がある。例え
ば、特開昭62−4528号公報において、引き抜き後
の寸法範囲としてセラミックス製部材に設けた凸部の直
径を金属製部材に設けた凹部の内径より0.2〜0.8
%大きくなるように嵌合すると記載されている。
Heretofore, as a method of bonding ceramics and metal, there has been known a method of manufacturing a bonded body by means of fitting, ie, press fitting, shrink fitting, cold fitting, or the like, between a ceramic convex portion and a metal concave portion. Temperature at the time of these mating,
There are various reports on the optimum range of the shape and the like. For example, in Japanese Patent Application Laid-Open No. 62-4528, the diameter of the protrusion provided on the ceramic member is set to be 0.2 to 0.8 from the inner diameter of the recess provided on the metal member as the size range after drawing.
%.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の従来技術はすべて凸部外径、凹部内径や嵌合時の温度
等を限定したものであり、例えば嵌合締めしろが同じで
あっても目的物の形状や大きさ、暴露される雰囲気、温
度等の使用環境に加え、芯出しや鉛直方向からのズレに
代表される位置決め精度や接触面の微小なキズ、金属部
の高温時の変形等によって、結合力が不十分となった
り、応力が過大のため室温まで冷却時に塑性変形を伴っ
たりして、信頼性の高いセラミックス・金属結合体が得
られない欠点があった。
However, these prior arts all limit the outer diameter of the convex portion, the inner diameter of the concave portion, the temperature at the time of fitting, and the like. In addition to the use environment such as the shape and size of the object, exposed atmosphere, temperature, etc., positioning accuracy represented by centering and deviation from the vertical direction, minute scratches on the contact surface, deformation of metal parts at high temperatures, etc. Therefore, there has been a defect that a highly reliable ceramic-metal combined body cannot be obtained due to insufficient bonding force or excessive plasticity accompanied by plastic deformation upon cooling to room temperature.

【0006】一般的にセラミックス材料はヤング率が高
く脆性材料であるため変形しにくいが、金属材料は変形
し易い。したがって、セラミックス凸部を金属凹部に圧
入、焼き嵌めなどの締まり嵌め嵌合したとき、セラミッ
クス凸部は変形することがほとんどなく、金属凹部が押
し広げられ、そのとき発生する応力がセラミックス凸部
の締め付け力となる。この応力を均一にかつ金属部に変
形や亀裂が生じない範囲で発生させ、セラミックス部を
強固に締め付けることが必要である。
In general, ceramic materials have a high Young's modulus and are brittle, so they are not easily deformed, but metallic materials are easily deformed. Therefore, when the ceramic convex portion is press-fitted into the metal concave portion by interference fit such as shrink fitting, the ceramic convex portion is hardly deformed, the metal concave portion is pushed out, and the stress generated at that time is reduced by the ceramic convex portion. It becomes the tightening force. It is necessary to generate this stress uniformly and within a range that does not cause deformation or cracks in the metal part, and to firmly tighten the ceramic part.

【0007】換言すれば、セラミックス凸部外径と金属
凹部内径の差を大きくしても、金属材料が異なると締め
付け力も異なり、特に降伏応力の低い金属材料では凹部
が変形してしまい、必要とする締め付け力をもった結合
体を得ることが出来ない。また、凸部外径と凹部内径の
差を大きくし過ぎるとセラミックス凸部や金属凹部が破
損するなどの問題があった。すなわち、上述した従来技
術ではあらゆるセラミックス・金属結合体に対して信頼
性が高く安定した締め付け力を保有する結合体を得るこ
とができるものではなかった。
In other words, even if the difference between the outer diameter of the ceramic projections and the inner diameter of the metal recesses is increased, different metal materials have different fastening forces, and the recesses are deformed particularly with metal materials having a low yield stress. It is not possible to obtain a combined body having a tightening force. Further, when the difference between the outer diameter of the convex portion and the inner diameter of the concave portion is too large, there is a problem that the ceramic convex portion and the metal concave portion are damaged. That is, in the above-described prior art, it is not possible to obtain a joint body having high reliability and stable fastening force with respect to all ceramic / metal joint bodies.

【0008】本発明の目的は、上述した不具合を解消す
るとともに、嵌合時の加熱炉内の位置決め治具を簡略化
することが出来るセラミックス部材と金属部材の結合体
及びその結合方法を提供しようとするものである。
An object of the present invention is to provide a combined body of a ceramic member and a metal member and a method of combining the same, which can solve the above-mentioned problems and can simplify a positioning jig in a heating furnace at the time of fitting. It is assumed that.

【0009】[0009]

【課題を解決するための手段】本発明のセラミックス・
金属結合体は、セラミックス製部材に凸部を設けて該凸
部を金属製部材に設けられた凹部に嵌合により結合した
セラミックス・金属結合体において、該セラミックス製
凸部及び該金属製凹部が2段構造を有し、該セラミック
ス製部材凸部を該金属製部材凹部に嵌合する前の室温で
の寸法範囲として、該セラミックス製部材凸部外径Dc
と金属製凹部内径Dmiの差の比(Dc −Dmi)×100
/Dc と規定すると、大径側では0.15%以上0.5
0%未満とし小径側では0.50%以上0.85%以下
の範囲内とすることを特徴とするものである。
The ceramic of the present invention
The metal combined body is a ceramic-metal combined body formed by providing a convex portion on a ceramic member and fitting the convex portion to a concave portion provided on the metal member by fitting, wherein the ceramic convex portion and the metal concave portion are formed. The ceramic member convex portion outer diameter D c has a two-stage structure, and is defined as a dimension range at room temperature before the ceramic member convex portion is fitted into the metal member concave portion.
The ratio of the difference of the metal concave inner diameter D mi (D c -D mi) × 100
/ D c , 0.15% or more and 0.5 on the large diameter side
It is characterized by being less than 0% and within the range of 0.50% to 0.85% on the small diameter side.

【0010】また、本発明の結合方法は、セラミックス
製部材の凸部を金属製部材の凹部に嵌合により結合する
セラミックス・金属結合方法において、該セラミックス
製凸部及び該金属製凹部を2段構造に形成すると共に、
該セラミックス製部材凸部を該金属製部材凹部に嵌合す
る前の室温での寸法範囲として、該セラミックス製部材
凸部外径Dc と金属製凹部内径Dmiの差の比(Dc −D
mi)×100/Dc と規定すると、大径側では0.15
%以上0.50%未満とし小径側では0.50%以上
0.85%以下の範囲内となるように加工し、両部材の
凸部と凹部を嵌合することを特徴とする。
Further, according to the present invention, there is provided a ceramic / metal bonding method in which a convex portion of a ceramic member is fitted to a concave portion of a metal member by fitting. Along with forming into a structure,
The ratio of the difference (D c −) between the outer diameter D c of the ceramic member convex portion and the inner diameter D mi of the metal concave portion is defined as a dimensional range at room temperature before the ceramic member convex portion is fitted into the metal member concave portion. D
mi ) × 100 / D c , 0.15 on the large diameter side
% Or more and less than 0.50%, and the small diameter side is processed so as to be in the range of 0.50% or more and 0.85% or less, and the protrusions and recesses of both members are fitted.

【0011】[0011]

【作用】本発明は、従来行われていた嵌合前の形状、大
きさ、嵌合時の温度等の使用条件の限定に関し2段階の
限定を行うことによって、各種セラミックス及び金属材
料への汎用性を高め、接触面のキズや挿入時の鉛直方向
からのズレの影響を多段化により低減する効果を有する
とともに、嵌合時の位置決め治具の簡略化を可能にする
ものである。
According to the present invention, general-purpose application to various ceramics and metal materials is achieved by limiting the use conditions such as the shape, size, temperature at the time of fitting, etc., which have been conventionally performed. This has the effect of improving the operability, reducing the effects of scratches on the contact surface and the deviation from the vertical direction at the time of insertion by increasing the number of stages, and simplification of the positioning jig at the time of fitting.

【0012】実際に本発明を実施するときは、2段階の
セラミックス製部材凸部外径Dc と金属製凹部内径Dmi
の差の比(Dc −Dmi)×100/Dc に関する室温で
の寸法範囲が設定することが可能である。ここで重要な
ことは、あらゆる形状や使用条件のセラミックス・金属
結合体において、本発明の範囲に入るような結合体を作
製すれば、信頼性の高いセラミックス・金属結合体を得
ることが出来、挿入時に金属凹部内面に万一大径小径い
ずれかの段にキズが生じても多段化により全体への影響
を低減し、鉛直方向からのズレも補正しあうことが可能
である。
[0012] When actually implementing the present invention, two stages of the ceramic member protruding outside diameter D c and the metal concave inner diameter D mi
The difference in specific size range at room temperature about (D c -D mi) × 100 / D c of can be set. What is important here is that a ceramic-metal bonded body of any shape and usage conditions can be obtained if a bonded body that falls within the scope of the present invention is manufactured. Even if any of the large-diameter and small-diameter steps are flawed on the inner surface of the metal recess at the time of insertion, the effects on the whole can be reduced by increasing the number of steps, and the deviation from the vertical direction can be corrected.

【0013】本発明において、セラミックス製部材の凸
部外径Dc と金属製部材の凹部内径Dmiの差の比(Dc
−Dmi)×100/Dc が0.15%以上0.85%以
下と限定した理由は、この値が0.15%未満の場合
は、セラミックス製部材と金属製部材との嵌め合い面圧
すなわち締め付け力が不足して使用中緩んだり極端な場
合は抜けてしまうことがあるためであり、0.85%を
超えるとセラミックスを仮に室温としても金属を100
0℃以上に昇温する必要があり、金属部材が塑性変形す
る可能性が大きく締め付ける力が低下してしまうため不
適である。
In the present invention, the ratio (D c) of the difference between the outer diameter D c of the convex portion of the ceramic member and the inner diameter D mi of the concave portion of the metal member.
-D mi) why × 100 / D c is limited to 0.85% or less than 0.15%, if the value is less than 0.15%, the fit between the ceramic member and the metallic member surface This is because the pressure, that is, the tightening force is insufficient, and the material may be loosened during use or come off in extreme cases.
It is necessary to raise the temperature to 0 ° C. or higher, which is unsuitable because the possibility of plastic deformation of the metal member is large and the tightening force is reduced.

【0014】また、本発明において、セラミックス製部
材凸部外径を2段階に設定したのは、以下の理由によ
る。図2のセラミックス側(大径側)より金属側(小径
側)の挿入時に高精度が要求されるが、このときセラミ
ックス側(大径側)が挿入時の芯出しを行う際に補助的
な役割を果たすことが期待出来る。したがって、実際に
焼き嵌め結合を行う加熱炉に関しても、挿入時位置決め
精度が大幅に軽減されることになる。これにより、結合
を行う際の設備費や操業に関する費用の低減がもたらさ
れるためである。このとき、2段構造について、大径側
を0.15%以上0.50%未満とし小径側を0.50
%以上0.85%以下の範囲内とする理由は、上記の挿
入芯出し時の補助的な役割を果たすことが容易な範囲か
ら求められたものである。また、大径側を比較的弱い締
め付け小径側を強い締め付けに設定した理由として、小
径側では金属部材の肉厚が大きいため変形が生じ難く、
またキズ等による締め付け力低下を緩和出来るためであ
る。
In the present invention, the outer diameter of the projection made of the ceramic member is set in two stages for the following reason. High precision is required when inserting the metal side (small diameter side) from the ceramic side (large diameter side) in FIG. 2, but at this time, the ceramic side (large diameter side) is an auxiliary We can expect to play a role. Therefore, the positioning accuracy at the time of insertion of the heating furnace which actually performs the shrink fitting connection is greatly reduced. This is because the cost of equipment and the cost of operation when performing the coupling are reduced. At this time, for the two-stage structure, the large diameter side is set to 0.15% or more and less than 0.50%, and the small diameter side is set to 0.50%.
The reason for setting the content in the range of not less than% and not more than 0.85% is determined from the range in which it is easy to perform an auxiliary role in centering the insertion. In addition, the reason why the large diameter side is set to relatively weak tightening and the small diameter side is set to strong tightening is that the metal member has a large thickness on the small diameter side so that deformation is unlikely to occur,
Also, it is possible to alleviate a decrease in the tightening force due to scratches or the like.

【0015】[0015]

【実施例】表1に、本発明及び比較例に関するセラミッ
クス及び金属の結合前形状例を示す。本発明では、2段
の凸形状を用いた(図1、2参照)。
EXAMPLES Table 1 shows examples of shapes of ceramics and metals before bonding according to the present invention and comparative examples. In the present invention, a two-stage convex shape is used (see FIGS. 1 and 2).

【0016】[0016]

【表1】 [Table 1]

【0017】セラミックスの組成は、Y2 3 を5重量
%、Al2 3 を3重量%、AlNを2重量%、残部S
3 4 からなるサイアロンであり、金属材料として
は、JIS規格によるSNCM439鋼を用いた(表2
に記載)。寸法形状は、セラミックス凸部外径が10.
000mmになるようにそろえ、これに合わせて金属凹部
内径を表1記載の寸法範囲におさまるように加工した。
また、金属凹部外径は15.0mmにそろえて、本発明で
は大径側に限るが、金属肉厚による締め付け力の差違が
生じる影響を消去して検証を行った。
The composition of the ceramic is 5% by weight of Y 2 O 3 , 3% by weight of Al 2 O 3 , 2% by weight of AlN, and the balance of S
This is a sialon made of i 3 N 4 , and SNCM439 steel according to JIS standards was used as a metal material (Table 2).
Described). The dimensions and shape are as follows.
000 mm, and processed so that the inner diameter of the metal concave portion was within the dimensional range shown in Table 1 in accordance with this.
In addition, the outer diameter of the metal concave portion was set to 15.0 mm, and the present invention was limited to the large diameter side.

【0018】温度条件について、実際にはセラミックス
部を加熱せず行うことは難しく、結合時に相手材である
金属凹部からの温度上昇や治具からの伝熱等によって室
温に保持することは出来ないと考えられる。したがっ
て、本実施例でもセラミックス部を予め200℃に金属
部を900℃に保持し、温度差ΔT=700(K)の条
件で行った。このとき、それぞれの熱膨張率から計算さ
れる寸法変化は、表2のようになる。
Regarding the temperature condition, it is actually difficult to carry out the heating without heating the ceramic portion, and it is not possible to maintain the room temperature at room temperature due to a temperature rise from a metal concave portion which is a mating material or a heat transfer from a jig at the time of bonding. it is conceivable that. Therefore, also in this example, the ceramic part was kept at 200 ° C. in advance, and the metal part was kept at 900 ° C., and the temperature difference ΔT = 700 (K). At this time, the dimensional changes calculated from the respective coefficients of thermal expansion are as shown in Table 2.

【0019】[0019]

【表2】 [Table 2]

【0020】例えば、表1に示したセラミックス側(大
径側)の室温でのセラミックス凸部及び金属凹部の実寸
法は各々10.000mm、9.985mmである。これを
表2に当てはめて、加熱後は各々10.006mm、1
0.046mmとなる。したがって、両端に20μmずつ
の空隙を付与して挿入可能状態にしていることになる。
同様に表1の金属側(小径側)では、室温でのセラミッ
クス凸部及び金属凹部の実寸法は各々5.000mm、
4.960mmに加工されているが、加熱後は各々5.0
03mm、5.016mmとなり、両端に約6.5μmずつ
の空隙で挿入されることになる。比較例の2では、室温
でのセラミックス凸部及び金属凹部の実寸法は各々1
0.000mm、9.910mmである。これを表2に当て
はめて、加熱後は各々10.006mm、10.022mm
となり、両端に約8μmずつの空隙で挿入されることに
なる。しかしながら、金属凹部の外径が15.0mmのた
め、セラミックス凸部を挿入するときに変形もしくは芯
ズレが生じたため、室温のねじりトルクは本発明の値よ
り低くなった。表3では、各結合体の室温でのねじりト
ルク値を示す。この結果より、本発明による結合体が最
も良好であった。
For example, the actual dimensions of the ceramic projections and metal depressions at room temperature on the ceramic side (large diameter side) shown in Table 1 are 10.000 mm and 9.985 mm, respectively. Applying this to Table 2, after heating each 10.006 mm, 1
0.046 mm. Therefore, a gap of 20 μm is provided at each end to enable insertion.
Similarly, on the metal side (small diameter side) in Table 1, the actual dimensions of the ceramic protrusions and metal recesses at room temperature are 5.000 mm, respectively.
It is processed to 4.960 mm, but after heating, each is 5.0 mm
It becomes 03 mm and 5.016 mm, and is inserted at both ends with a gap of about 6.5 μm. In Comparative Example 2, the actual size of the ceramic convex portion and the metal concave portion at room temperature was 1 respectively.
They are 0.000 mm and 9.910 mm. Applying this to Table 2, after heating, each was 10.006 mm, 10.022 mm
And inserted at both ends with a gap of about 8 μm. However, since the outer diameter of the metal concave portion was 15.0 mm, deformation or misalignment occurred when the ceramic convex portion was inserted, and the torsional torque at room temperature was lower than the value of the present invention. Table 3 shows the torsional torque value at room temperature of each combination. From these results, the conjugate according to the present invention was the best.

【0021】[0021]

【表3】 [Table 3]

【0022】本発明の焼き嵌め法を用いた自動車用ター
ボチャージャーロータについて、3500r.p.m.(室
温)の回転試験ではあるが破損しないことを確認してい
る。
A turbocharger rotor for an automobile using the shrink-fitting method of the present invention has been confirmed to be free from breakage in a rotation test at 3500 rpm (room temperature).

【0023】本発明は上述した実施例にのみ限定される
ものではなく、すなわち締め嵌め構造であるセラミック
ス・金属結合体に対し幾多の変形、変更が可能である。
例えば上述した実施例ではセラミックス製部材としてサ
イアロンを用いたが、他のセラミックスとして炭化珪
素、窒化珪素、ジルコニア、ムライト、アルミナ、ベリ
リア等を用いることが出来るとともに、金属製部材とし
てコバールやIncoloy等の低熱膨張鋼等を用いる
ことが出来る。さらに嵌合する方法としては、圧入の
他、焼き嵌め、冷やし嵌め、あるいはこれらの組合せを
用いることも出来る。
The present invention is not limited only to the above-described embodiment, that is, many modifications and changes can be made to the ceramic-metal combined body having the interference structure.
For example, in the above-described embodiment, Sialon was used as a ceramic member, but other ceramics such as silicon carbide, silicon nitride, zirconia, mullite, alumina, and beryllia can be used, and metal members such as Kovar and Incoloy can be used. Low thermal expansion steel or the like can be used. Further, as a fitting method, besides press-fitting, shrink fitting, cold fitting, or a combination thereof can also be used.

【0024】[0024]

【発明の効果】本発明のセラミックス部材と金属部材の
結合によれば、複数の締め付け力の設定効果により各種
のセラミックス及び金属材料に汎用性が有し、かつ、多
段化の結果により金属凹部内面キズや芯ズレによる位置
決め精度の悪化を低減する効果を有することが出来る。
本発明は、ターボチャージャーロータ、ガスタービンロ
ータ、掘削ドリル等のセラミックス製回転体と金属製シ
ャフトとの複合構造体に応用可能である。
According to the joining of the ceramic member and the metal member of the present invention, various ceramics and metal materials have versatility due to the effect of setting a plurality of tightening forces, and the inner surface of the metal recess is formed due to the multi-stage structure. An effect of reducing deterioration of positioning accuracy due to scratches or misalignment can be obtained.
INDUSTRIAL APPLICABILITY The present invention is applicable to a composite structure of a ceramic rotating body such as a turbocharger rotor, a gas turbine rotor, and a drill, and a metal shaft.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の1段型の焼き嵌め結合例。FIG. 1 shows an example of a conventional one-stage shrink fit connection.

【図2】本発明で使用する2段の凸型形状の断面図。FIG. 2 is a sectional view of a two-stage convex shape used in the present invention.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B23P 11/00 C04B 37/02 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) B23P 11/00 C04B 37/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 セラミックス製部材に凸部を設けて該凸
部を金属製部材に設けられた凹部に嵌合により結合した
セラミックス・金属結合体において、該セラミックス製
凸部及び該金属製凹部が2段構造を有し、該セラミック
ス製部材凸部を該金属製部材凹部に嵌合する前の室温で
の寸法範囲として、該セラミックス製部材凸部外径Dc
と金属製凹部内径Dmiの差の比(Dc −Dmi)×100
/Dcと規定すると、大径側では0.15%以上0.5
0%未満とし小径側では0.50%以上0.85%以下
の範囲内とすることを特徴とするセラミックス製部材と
金属製部材の結合体。
1. A ceramic-metal combined body in which a convex portion is provided on a ceramic member and the convex portion is connected to a concave portion provided on a metal member by fitting, wherein the ceramic convex portion and the metal concave portion are provided. The ceramic member convex portion outer diameter D c has a two-stage structure, and is defined as a dimension range at room temperature before the ceramic member convex portion is fitted into the metal member concave portion.
The ratio of the difference of the metal concave inner diameter D mi (D c -D mi) × 100
/ D c , 0.15% or more and 0.5 on the large diameter side
A combination of a ceramic member and a metal member, wherein the combination is less than 0% and the range of 0.50% to 0.85% on the small diameter side.
【請求項2】 セラミックス製部材の凸部を金属製部材
の凹部に嵌合により結合するセラミックス・金属結合方
法において、該セラミックス製凸部及び該金属製凹部を
2段構造に形成すると共に、該セラミックス製部材凸部
を該金属製部材凹部に嵌合する前の室温での寸法範囲と
して、該セラミックス製部材凸部外径Dc と金属製凹部
内径Dmiの差の比(Dc −Dmi)×100/Dc と規定
すると、大径側では0.15%以上0.50%未満とし
小径側では0.50%以上0.85%以下の範囲内とな
るように加工し、両部材の凸部と凹部を嵌合することを
特徴とするセラミックス製部材と金属製部材の結合方
法。
2. A ceramic / metal bonding method for connecting a convex portion of a ceramic member to a concave portion of a metal member by fitting, wherein the ceramic convex portion and the metal concave portion are formed in a two-stage structure. The ratio (D c −D) of the difference between the outer diameter D c of the ceramic member convex portion and the inner diameter D mi of the metal concave portion is defined as a dimension range at room temperature before the convex portion made of the ceramic member is fitted into the concave portion of the metal member. mi ) × 100 / D c , processing is performed so as to be in the range of 0.15% to less than 0.50% on the large diameter side and 0.50% to 0.85% on the small diameter side. A method of joining a ceramic member and a metal member, wherein the protrusion and the recess of the member are fitted.
JP05281529A 1993-11-10 1993-11-10 Combined body of ceramic member and metal member and method of combining the same Expired - Fee Related JP3119981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05281529A JP3119981B2 (en) 1993-11-10 1993-11-10 Combined body of ceramic member and metal member and method of combining the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05281529A JP3119981B2 (en) 1993-11-10 1993-11-10 Combined body of ceramic member and metal member and method of combining the same

Publications (2)

Publication Number Publication Date
JPH07136862A JPH07136862A (en) 1995-05-30
JP3119981B2 true JP3119981B2 (en) 2000-12-25

Family

ID=17640450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05281529A Expired - Fee Related JP3119981B2 (en) 1993-11-10 1993-11-10 Combined body of ceramic member and metal member and method of combining the same

Country Status (1)

Country Link
JP (1) JP3119981B2 (en)

Also Published As

Publication number Publication date
JPH07136862A (en) 1995-05-30

Similar Documents

Publication Publication Date Title
US4614453A (en) Metal-ceramic composite body and a method of manufacturing the same
JPH0415361B2 (en)
JPS5842149B2 (en) A combination between a ceramic part and a metal part
JPH049753B2 (en)
JPS61219767A (en) Metal ceramic bonded body
JPH043129Y2 (en)
US4798493A (en) Ceramic-metal composite body
JPS62191478A (en) Ceramics-metal bonded body
US4719075A (en) Metal-ceramic composite article and a process for manufacturing the same
EP0323207B1 (en) Joined metal-ceramic assembly method of preparing the same
US5066547A (en) Metal and ceramic heat-connected body
JP3119981B2 (en) Combined body of ceramic member and metal member and method of combining the same
JP2747865B2 (en) Joint structure between ceramics and metal
JPH0352962Y2 (en)
JPH0431772B2 (en)
JPS6278402A (en) Ceramic turbo rotor
JPH02115555A (en) Friction welded body of ceramics-metal and ceramics-inserted piston made thereof
JPH0351319Y2 (en)
JP3176460B2 (en) Method for producing a combined body of ceramic and metal
JPH0829991B2 (en) Method for manufacturing ceramic / metal combination
JPH0322489Y2 (en)
JPH0692722B2 (en) Ceramic rotor
JPH086754B2 (en) High torque transmission shaft
JPH0658044B2 (en) Turbine rotor and method for producing the same
JPH1162517A (en) Sliding component for internal combustion engine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000905

LAPS Cancellation because of no payment of annual fees