JPH0829991B2 - Method for manufacturing ceramic / metal combination - Google Patents

Method for manufacturing ceramic / metal combination

Info

Publication number
JPH0829991B2
JPH0829991B2 JP2201812A JP20181290A JPH0829991B2 JP H0829991 B2 JPH0829991 B2 JP H0829991B2 JP 2201812 A JP2201812 A JP 2201812A JP 20181290 A JP20181290 A JP 20181290A JP H0829991 B2 JPH0829991 B2 JP H0829991B2
Authority
JP
Japan
Prior art keywords
press
metal
ceramic
metal member
fitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2201812A
Other languages
Japanese (ja)
Other versions
JPH0489368A (en
Inventor
博之 河瀬
丈行 水野
孝治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2201812A priority Critical patent/JPH0829991B2/en
Publication of JPH0489368A publication Critical patent/JPH0489368A/en
Publication of JPH0829991B2 publication Critical patent/JPH0829991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は、セラミックス・金属結合体の製造方法に係
り、特にセラミックス部材と金属部材との結合作業を容
易に且つ確実に行ない、品質の優れた結合体を製造する
方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a ceramic / metal combined body, and in particular, a combined body of excellent quality that easily and reliably joins a ceramic member and a metal member together. The present invention relates to a method of manufacturing.

(背景技術) セラミックスは、一般に、硬度、耐摩耗性に優れ、ま
た高温での機械的性質や耐食性にも優れているところか
ら、高温での機械的強度や耐摩耗性が必要とされる自動
車エンジン部品、ガスタービン部品、産業機械用部品等
への応用が種々試みられ、既に実用化に至っているもの
もある。
(Background Art) Ceramics are generally excellent in hardness and wear resistance, and also excellent in mechanical properties and corrosion resistance at high temperatures, and therefore automobiles that require mechanical strength and wear resistance at high temperatures. Various attempts have been made to apply them to engine parts, gas turbine parts, industrial machine parts, etc., and some have already been put to practical use.

しかしながら、セラミックスを上記の如き部品として
用いる場合には、通常、金属部材と組み合わせて、それ
と結合せしめた形態において用いられている。けだし、
セラミックスが優れた特性を持つ反面、加工が困難であ
ったり、脆性を有するため、単独で用いるよりは、必要
な部品にのみセラミックスを用い、機械部品として更に
他の構造部材との組合せにおいて加工の容易な金属部材
をセラミックスと結合させた形で用いる方が有利である
からである。
However, when ceramics is used as the above-mentioned component, it is usually used in the form of being combined with a metal member and then being combined therewith. Kashi,
While ceramics have excellent properties, they are difficult to process or have brittleness, so rather than using them alone, use ceramics only for the necessary parts and process them in combination with other structural members as mechanical parts. This is because it is more advantageous to use an easy metal member combined with ceramics.

ところで、セラミックスと金属との結合方法として
は、従来から、多くの方法が提案されているが、その中
でも、凹凸嵌合による結合方式は、比較的容易な方法と
され、例えば特開昭61−40879号公報や特開昭62−25102
3号公報等においては、析出硬化型合金からなる金属部
材の凹部に、セラミックス部材に設けられた凸部を加熱
圧入せしめた後、金属部材を析出硬化処理することによ
り、金属・セラミックス結合体を得る手法が明らかにさ
れている。
By the way, although many methods have been conventionally proposed as a method for connecting ceramics and a metal, among them, the method of connecting by concavity and convexity is considered to be a relatively easy method. 40879 and Japanese Patent Laid-Open No. 62-25102
In the publication No. 3, etc., the concave portion of the metal member made of a precipitation hardening alloy is heated and press-fitted with the convex portion provided on the ceramic member, and then the metal member is subjected to precipitation hardening treatment to form a metal-ceramic combined body. The method of obtaining it has been clarified.

しかしながら、そのような金属部材とセラミックス部
材との加熱圧入による結合方式にあっては、加熱嵌合に
よる圧入荷重の低減が期待されるものではあるが、その
ような加熱によって金属部材の金属表面が酸化され、そ
の結果、圧入後の冷却過程において、セラミックスと金
属の熱膨脹係数の相違により、セラミックス部材と金属
部材とが個々に収縮する際、それら部材間に存在する酸
化膜によって接触部の摩擦係数が高くなり、セラミック
ス部材を破損したり、それら両部材の結合状態が不完全
となったりする問題が内在していた。
However, in such a joining method by heating and press-fitting the metal member and the ceramic member, it is expected that the press-fitting load by heat fitting will be reduced. As a result, when the ceramic member and the metal member contract individually due to the difference in thermal expansion coefficient between the ceramic member and the metal member in the cooling process after press-fitting, the friction coefficient of the contact portion is caused by the oxide film existing between these members. However, there is an inherent problem that the ceramics member is damaged and the bonding state of these two members is incomplete.

しかも、そのような加熱圧入による結合方式では、金
属部材とセラミックス部材との圧入機構に加熱装置を組
み付ける必要があり、その作業性も低下する問題があっ
た。
Moreover, in such a joining method by heating and press-fitting, it is necessary to assemble a heating device to a press-fitting mechanism of a metal member and a ceramics member, and there is a problem that workability thereof is deteriorated.

また、析出硬化処理の施されていない金属部材にセラ
ミックス部材を圧入または焼き嵌めした結合体におい
て、降伏応力が低い金属部材を用いた場合には、金属が
塑性変形し、締付力が低下する問題を惹起し、更に圧
入、結合せしめた形態において、金属部材を析出硬化処
理する場合にあっては、金属がクリープし、有効締め代
が低下する問題を惹起して、有効な金属・セラミックス
結合体を得ることが出来なかったのである。
Further, in a combined body in which a ceramic member is press-fitted or shrink-fitted to a metal member not subjected to precipitation hardening treatment, when a metal member having a low yield stress is used, the metal is plastically deformed and the tightening force is reduced. When a metal member is subjected to precipitation hardening treatment in a form that causes problems and is further press-fitted and bonded, it causes the problem that the metal creeps and the effective tightening margin is reduced, resulting in effective metal-ceramic bonding. I couldn't get my body.

(解決課題) ここにおいて、本発明は、かかる事情を背景にして為
されたものであって、その課題とするところは、セラミ
ックス部材と金属部材との圧入結合に際しての酸化膜の
存在による悪影響を排除して、充分な締付力の確保と圧
入荷重によるセラミックスの破損を防止した有効なセラ
ミックス・金属結合体を製造することにあり、またその
ような結合体を、簡便に且つ容易に、作業性よく製造す
ることにある。
(Problem to be Solved) Here, the present invention has been made in view of such circumstances, and the problem is to solve the adverse effect of the presence of an oxide film when press-fitting a ceramic member and a metal member. The purpose is to produce an effective ceramic-metal combination that eliminates the need to secure a sufficient tightening force and prevents damage to the ceramics due to press-fitting load, and to work such a combination easily and easily. It is to manufacture with good performance.

(解決手段) そして、本発明は、かかる課題解決のために、セラミ
ックス部材に設けられた凸部を、金属部材に設けられた
凹部内に圧入して、それらセラミックス部材と金属部材
とを結合せしめてなるセラミックス・金属結合体を製造
するに際して、前記金属部材を析出硬化型Fe−Ni−Co基
低膨張耐熱合金にて形成し、それを析出硬化せしめた
後、前記凹部を加工して、該金属部材の凹部の内径
(b)と前記セラミックス部材の凸部の外径(a)と
が、次式: を満足するように為し、その後かかる加工された金属部
材の凹部に対して、前記セラミックス部材の凸部を常温
下において圧入するようにしたのである。
(Solution) In order to solve such a problem, the present invention press-fits a convex portion provided on a ceramic member into a concave portion provided on a metal member to bond the ceramic member and the metal member together. In producing a ceramics / metal combination comprising the above, the metal member is formed of a precipitation hardening Fe-Ni-Co based low expansion heat resistant alloy, and after precipitation hardening it, the recess is processed, The inner diameter (b) of the concave portion of the metal member and the outer diameter (a) of the convex portion of the ceramic member are expressed by the following formula: Then, the convex portion of the ceramic member is press-fitted into the concave portion of the processed metal member at room temperature.

(具体的構成・作用) このように、本発明にあっては、セラミックス部材と
金属部材との圧入結合に際して、かかる金属部材とし
て、析出硬化(時効硬化)後の降伏応力(0.2%耐力)
が90〜120Kg/cm2程度の析出硬化型Fe−Ni−Co基低膨張
耐熱合金にて形成されたものを用い、且つそれらの圧入
代が前記式を満足するように0.4%〜2.5%とすることに
より、充分な締付力の確保と、圧入荷重によるセラミッ
クスの破損の防止を達成し得たのである。
(Specific Configuration / Operation) As described above, according to the present invention, the yield stress (0.2% proof stress) after precipitation hardening (aging hardening) is used as the metal member when press-fitting the ceramic member and the metal member.
There used those formed by 90~120Kg / cm 2 of about precipitation hardening Fe-Ni-Co based low-expansion heat-resistant alloy, and 0.4% to 2.5% so that their press-fitting margin satisfies the equation By doing so, it was possible to secure a sufficient tightening force and prevent the ceramics from being damaged by the press-fitting load.

これに対して、析出硬化型合金の一つであるマルエー
ジング鋼からなる金属部材を用いた場合にあっては、か
かるマルエージング鋼は弾性係数が大きく、且つ降伏応
力が高いため、室温圧入では圧入荷重が大きくなり、セ
ラミックス部材が破損し易いのであり、またそのような
問題を回避すべく、加熱により金属部材を膨張させて、
セラミックス部材の圧入荷重を低くして、高温圧入操作
にて嵌入・結合を行なうと、前記したように、酸化膜の
発生によりセラミックスの破損等の問題が惹起されるの
である。
On the other hand, when a metal member made of maraging steel, which is one of precipitation hardening alloys, is used, such maraging steel has a large elastic modulus and a high yield stress. Since the press-fitting load becomes large and the ceramic member is easily damaged, and in order to avoid such a problem, the metal member is expanded by heating,
When the press-fitting load of the ceramic member is reduced and the fitting and joining are performed by the high-temperature press-fitting operation, as described above, the generation of the oxide film causes problems such as breakage of the ceramics.

なお、ここで用いられる金属部材を構成する析出硬化
型のFe−Ni−Co基低膨張耐熱合金とは、一般に、高含量
(30〜45%程度)にNiと共に、Coを、Feに含有せしめて
なる時効硬化型の高強度合金であって、熱膨脹率の低い
ものである。そして、有利には、それら合金成分の他に
も、Al,Nb,Ti,Si等の成分が、更に加えられてなるもの
であり、インコロイ903,907,909;HRA903(日立金属);M
GA93(三菱金属)等として市販されているものが、有利
に用いられる。
The precipitation-hardening type Fe-Ni-Co-based low expansion heat-resistant alloy that constitutes the metal member used here is generally a high content (about 30 to 45%) together with Ni and Co. Is an age hardening type high strength alloy having a low coefficient of thermal expansion. And, in addition to those alloy components, components such as Al, Nb, Ti, and Si are advantageously added, and Incoloy 903, 907, 909; HRA903 (Hitachi Metals); M
Commercially available products such as GA93 (Mitsubishi Metals) are advantageously used.

そして、このような析出硬化型のFe−Ni−Co基低膨張
耐熱合金にて形成された金属部材には、常法に従って、
析出硬化(時効硬化)処理が施され、析出硬化せしめら
れた金属部材とされた後、その析出硬化した金属部材に
対して、セラミックス部材の凸部に対応する凹部が、前
記式にて規定される圧入代〔(a−b)/a〕となるよう
に加工されるのである。
Then, the metal member formed of such precipitation hardening type Fe-Ni-Co-based low expansion heat-resistant alloy, according to a conventional method,
After a precipitation hardening (aging hardening) treatment is applied to form a precipitation hardened metal member, a concave part corresponding to the convex part of the ceramic member is defined by the above formula for the precipitation hardened metal member. The press-fitting margin [(ab) / a] is processed.

このように、本発明にあっては、析出硬化処理を金属
部材のみで行ない、結合体の形態において実施するもの
ではないところから、一度に大量の金属部材を析出硬化
処理することが出来る利点があるのであり、また析出硬
化処理後に、金属部材に凹部を加工するものであるとこ
ろから、金属酸化の影響を全く受けることがなく、この
ため、凹部嵌合面における酸化膜の存在を全く顧慮する
必要が無くなったのである。
As described above, in the present invention, the precipitation hardening treatment is performed only on the metal member and is not performed in the form of the bonded body, and therefore, there is an advantage that a large number of metal members can be precipitation hardening treated at one time. In addition, since the recess is processed in the metal member after the precipitation hardening treatment, it is not affected by the metal oxidation at all. Therefore, the existence of the oxide film on the recess fitting surface is completely taken into consideration. The need is gone.

なお、セラミックス部材の凸部の外径をa、金属部材
の凹部の内径をbとしたとき、それら両部材の圧入代
〔(a−b)/a〕に関して、その値が0.4%未満、換言
すれば凸部と凹部の寸法差が小さいと、それら両部材の
熱膨脹係数の差が大きいところから、接合体の高温下に
おける充分な捩じり強度の確保が困難となる問題が惹起
されるのであり、一方、かかる圧入代が2.5%を越える
ようになると、圧入荷重が著しく増大するようになり、
セラミックス部材が破損する可能性が大となる等の問題
を惹起することとなる。
When the outer diameter of the convex portion of the ceramic member is a and the inner diameter of the concave portion of the metal member is b, the press-fitting margin [(ab) / a] of both members is less than 0.4%. If the dimensional difference between the convex portion and the concave portion is small, the difference in the coefficient of thermal expansion between the two members is large, which causes a problem that it is difficult to secure sufficient torsional strength of the joined body at high temperature. On the other hand, if the press-fitting margin exceeds 2.5%, the press-fitting load will increase significantly,
This causes problems such as a high possibility that the ceramic member will be damaged.

その後、かかる加工された金属部材の凹部に対して、
セラミックス部材の凸部が常温下において圧入せしめら
れ、以て目的とするセラミックス・金属結合体が形成さ
れるのであるが、このような圧入による凹凸嵌合操作に
あっては、その圧入作業が常温下で行なわれるために、
装置も簡易化することが出来、且つ作業性も容易とな
り、その生産性を高めることが出来るのである。
After that, with respect to the recess of the processed metal member,
The convex portion of the ceramics member is press-fitted at room temperature to form the desired ceramic-metal combination.However, in such a press-fitting concavo-convex fitting operation, the press-fitting operation is performed at room temperature. To be done below,
The device can be simplified and the workability is facilitated, and the productivity can be improved.

また、かかる圧入嵌合に際して、金属部材は、析出硬
化されているために、それにセラミックス部材を圧入し
ても、塑性変形しにくく、目的とする締付力の結合体を
容易に得ることが出来るのである。
Further, during such press-fitting, since the metal member has been precipitation hardened, even if a ceramic member is press-fitted into it, it is unlikely to be plastically deformed, and a combined body having a desired tightening force can be easily obtained. Of.

(実施例) 以下に、本発明の幾つかの実施例を示し、本発明を更
に具体的に明らかにすることとするが、本発明が、その
ような実施例の記載によって何等の制約をも受けるもの
でないことは、言うまでもないところである。
(Examples) Hereinafter, several examples of the present invention will be shown to clarify the present invention more specifically, but the present invention does not have any restrictions due to the description of such examples. It goes without saying that you do not receive it.

また、本発明には、以下の実施例の他にも、更には上
記の具体的記述以外にも、本発明の趣旨を逸脱しない限
りにおいて、当業者の知識に基づいて種々なる変更、修
正、改良等を加え得るものであることが、理解されるべ
きである。
In addition, in addition to the following examples, the present invention, in addition to the above-described specific description, various changes, corrections, and modifications based on the knowledge of those skilled in the art without departing from the spirit of the present invention. It should be understood that improvements can be made.

実施例1 第1図に示されるようなセラミックス部材2の凸部4
を金属部材6の凹部8に圧入せしめて得られるセラミッ
クス・金属結合体を得るべく、図示の如き形状のセラミ
ックス部材2を、窒化珪素焼結体から、その凸部4の外
径(a)が8,10,12,15mmとなるようにして作製した。
Example 1 A convex portion 4 of a ceramic member 2 as shown in FIG.
In order to obtain a ceramics-metal bonded body obtained by press-fitting into the concave portion 8 of the metal member 6, the ceramic member 2 having the shape shown in the drawing is formed from a silicon nitride sintered body, and the outer diameter (a) of the convex portion 4 is It was made to have a size of 8,10,12,15 mm.

一方、析出硬化型Fe−Ni−Co基低膨張耐熱合金である
インコロイ903(42%Fe−38%Ni−15%Co−3.0%Nb−1.
4%Ti−0.7%Al−0.1%Si)を用い、720℃×8時間と62
0℃×8時間の加熱により、析出硬化処理を施した後、
下記第1表に示される内径(b)を与えるように、深
さ:7mmの凹部(8)を切削加工により設け、それぞれの
金属部材6を得た。
On the other hand, precipitation hardening type Fe-Ni-Co based low expansion heat-resistant alloy Incoloy 903 (42% Fe-38% Ni-15% Co-3.0% Nb-1.
4% Ti-0.7% Al-0.1% Si) at 720 ℃ for 8 hours and 62
After performing precipitation hardening treatment by heating at 0 ° C for 8 hours,
A recess (8) having a depth of 7 mm was provided by cutting so as to give an inner diameter (b) shown in Table 1 below, and each metal member 6 was obtained.

次いで、圧入用治具をオートグラフに載置し、圧入状
態を該オートグラフで確認しながら、上記のセラミック
ス部材(2)と金属部材(6)とを種々組み合わせて、
それぞれ圧入し、目的とするセラミックス・金属結合体
を作製した。
Next, the press-fitting jig is placed on the autograph, and while confirming the press-fitting state on the autograph, various combinations of the above ceramic member (2) and metal member (6) are used.
Each was press-fitted to produce the intended ceramic-metal bonded body.

また、比較のために、圧入温度を高めたものや圧入後
において同様な析出硬化処理を施したもの、更に従来の
マルエージング鋼からなる金属部材を用いて、圧入前ま
たは圧入後に析出硬化処理(550℃×3時間)を施した
ものについても、それぞれ、セラミックス・金属結合体
を作製した。
Further, for comparison, those having a higher press-fitting temperature and those subjected to the same precipitation hardening treatment after the press-fitting, and further using a metal member made of conventional maraging steel, the precipitation hardening treatment before the press-fitting or after the press-fitting ( The ceramic-metal bonded body was also produced for each of those subjected to 550 ° C. × 3 hours).

そして、このようにして得られた各種のセラミックス
・金属結合体について、それらを、小型電気炉に組み付
けたネジリ試験機にそれぞれセットし、500℃の温度で1
0分間保持した後、ネジリトルクレンチでネジリ強さを
測定し、その結果を、下記第1表に併わせ示した。
Then, for each of the various types of ceramic-metal composites thus obtained, they were set in a twist tester assembled in a small electric furnace, and the
After holding for 0 minutes, the twist strength was measured with a twist torque wrench, and the results are also shown in Table 1 below.

なお、このネジリ試験結果を示すネジリ強度:P(Kg/m
m2)は、単位面積当りの強度として、下式に基づいて算
出されるものである。
The torsional strength showing the result of this torsional test: P (Kg / m
m 2 ) is calculated as the intensity per unit area based on the following formula.

但し、a:セラミックス部材の凸部の外径(mm) Tr:ネジリトルク(kg・mm) L:接合長さ(mm) かかる第1表の結果から明らかなように、圧入前に析
出硬化処理が施された金属部材を用いて得られた結合体
において、その圧入代が0.4〜2.5%のものにあっては、
そのネジリ強度が約5Kg/mm2程度あり、良好な締付状態
であることが確認された。
However, a: Outer diameter of convex part of ceramics member (mm) Tr: Torsion torque (kg ・ mm) L: Bonding length (mm) As is clear from the results shown in Table 1, in the bonded body obtained by using the metal member subjected to the precipitation hardening treatment before the press-fitting and the press-fitting margin is 0.4 to 2.5%,
The twist strength was about 5 kg / mm 2, and it was confirmed that the tightening was good.

これに対して、圧入代が0.4%未満、即ち凸部と凹部
の寸法差が小さい場合にあっては、充分なネジリ強度が
得られず、また結合後に析出硬化処理した場合のネジリ
強度は4Kg/mm2以下となり、締付力が小さく、更に結合
前に析出硬化させたインコロイ903からなる金属部材を
加熱して圧入した結合体にあっては、その冷却時にセラ
ミックス部材が破損し、目的とするセラミックス・金属
結合体を得ることが出来なかった。
On the other hand, when the press-fitting margin is less than 0.4%, that is, when the dimensional difference between the convex portion and the concave portion is small, sufficient twist strength cannot be obtained, and the twist strength after precipitation hardening treatment after bonding is 4 Kg. / mm 2 or less, the tightening force is small, and in the case of a joined body in which a metal member made of Incoloy 903 that has been precipitation hardened before joining is heated and press-fitted, the ceramic member is damaged during cooling, It was not possible to obtain a ceramic / metal combination that does.

実施例2 第2図に示されるターボチャージャロータを、Si3N4
よりなるセラミックロータ12に設けた直径:12mmの凸部1
4と、合金鋼(SNCM439)よりなる金属軸(ジャーナル
部)15の一端に摩擦圧接により接合された析出硬化処理
済みの析出硬化型合金(インコロイ903)からなるスリ
ンガー部16に設けた内径:11.9mmの凹部18とを、常温下
で圧入することにより、製作した。なお、摩擦圧接は、
スリンガー部(16)とジャーナル部(15)の段付アール
部において行なった。
The turbocharger rotor shown in Example 2 Figure 2, Si 3 N 4
A ceramic rotor 12 consisting of a convex portion 1 with a diameter of 12 mm
4 and the slinger part 16 made of the precipitation hardening alloy (Incoloy 903) that has been precipitation hardened by friction welding to one end of the metal shaft (journal part) 15 made of alloy steel (SNCM439). It was manufactured by press-fitting the concave portion 18 of mm at room temperature. The friction welding is
It was carried out in the stepped radius part of the slinger part (16) and the journal part (15).

かくして得られたセタミックターボチャージャロータ
を高温回転試験装置に組み込んで、900℃の温度の燃焼
ガスにより、周速500m/secの回転速度で100時間回転試
験を行なったが、何等の異常も認められなかった。
The thus obtained cetamic turbocharger rotor was incorporated into a high-temperature rotation tester, and a 100-hour rotation test was performed at a peripheral speed of 500 m / sec with a combustion gas at a temperature of 900 ° C., but no abnormalities were found. I couldn't do it.

(発明の効果) 以上の説明から明らかなように、本発明によれば、充
分な締付力を確保しつつ、圧入荷重によるセラミックス
部材の破損を防止せしめて、有効なセラミックス・金属
結合体を得ることが出来るのであり、特に析出硬化せし
めた材料を加工して得られる金属部材に対して、セラミ
ックス部材を常温圧入するものであるところから、金属
酸化の影響も全く受けることがないので、圧入嵌合にお
ける酸化膜の存在による問題も悉く排除し得、更には圧
入装置も簡易化され得て、その作業性も容易となる等の
特徴を発揮し、そこに、本発明の大きな工業的意義が存
するのである。
(Effects of the Invention) As is clear from the above description, according to the present invention, it is possible to prevent the ceramic member from being damaged by the press-fitting load while ensuring a sufficient tightening force, thereby providing an effective ceramic-metal combination. In particular, since the ceramic member is press-fitted at room temperature into a metal member obtained by processing a material that has been precipitation hardened, it is not affected by metal oxidation at all. The problems due to the presence of the oxide film in the fitting can be eliminated without difficulty, and the press-fitting device can be simplified and the workability thereof can be facilitated. Exists.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は、それぞれ、実施例1及び2におい
て作製されるセラミックス・金属結合体を示す説明図で
ある。 2:セラミックス部材、4:凸部 6:金属部材、8:凹部 12:セラミックロータ、14:凸部 15:金属軸(ジャーナル部) 16:スリンガー部、18:凹部
FIG. 1 and FIG. 2 are explanatory views showing the ceramic-metal bonded bodies produced in Examples 1 and 2, respectively. 2: Ceramics member, 4: Convex part 6: Metal member, 8: Recessed part 12: Ceramic rotor, 14: Convex part 15: Metal shaft (journal part) 16: Slinger part, 18: Recessed part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】セラミックス部材に設けられた凸部を、金
属部材に設けられた凹部内に圧入して、それらセラミッ
クス部材と金属部材とを結合せしめてなるセラミックス
・金属結合体を製造するに際して、 前記金属部材を析出硬化型Fe−Ni−Co基低膨張耐熱合金
にて形成し、それを析出硬化せしめた後、前記凹部を加
工して、該金属部材の凹部の内径(b)と前記セラミッ
クス部材の凸部の外径(a)とが、次式: を満足するように為し、その後かかる加工された金属部
材の凹部に対して、前記セラミックス部材の凸部を常温
下において圧入することを特徴とするセラミックス・金
属結合体の製造方法。
1. When manufacturing a ceramic-metal bonded body in which a convex portion provided on a ceramic member is press-fitted into a concave portion provided on a metal member to bond the ceramic member and the metal member together, The metal member is formed of a precipitation-hardening Fe-Ni-Co-based low expansion heat-resistant alloy, and after it is precipitation hardened, the recess is processed to form an inner diameter (b) of the recess of the metal member and the ceramics. The outer diameter (a) of the convex portion of the member is expressed by the following equation: And then press-fitting the convex portions of the ceramic member into the concave portions of the processed metal member at room temperature.
JP2201812A 1990-07-30 1990-07-30 Method for manufacturing ceramic / metal combination Expired - Fee Related JPH0829991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2201812A JPH0829991B2 (en) 1990-07-30 1990-07-30 Method for manufacturing ceramic / metal combination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2201812A JPH0829991B2 (en) 1990-07-30 1990-07-30 Method for manufacturing ceramic / metal combination

Publications (2)

Publication Number Publication Date
JPH0489368A JPH0489368A (en) 1992-03-23
JPH0829991B2 true JPH0829991B2 (en) 1996-03-27

Family

ID=16447322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2201812A Expired - Fee Related JPH0829991B2 (en) 1990-07-30 1990-07-30 Method for manufacturing ceramic / metal combination

Country Status (1)

Country Link
JP (1) JPH0829991B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026477A (en) * 2010-07-20 2012-02-09 Ngk Spark Plug Co Ltd Joined body of ceramics and metal and solid oxide type fuel cell
JP6248837B2 (en) * 2014-07-11 2017-12-20 トヨタ自動車株式会社 Insert member

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140879A (en) * 1984-08-03 1986-02-27 日本碍子株式会社 Metal ceramic bonded body and manufacture
JPS624528A (en) * 1985-06-12 1987-01-10 Ngk Insulators Ltd Ceramics-metal combined structure

Also Published As

Publication number Publication date
JPH0489368A (en) 1992-03-23

Similar Documents

Publication Publication Date Title
JPS6278172A (en) Bonded structure of ceramic to metal
JPH0248514B2 (en)
WO1996009266A1 (en) Bonded body of aluminum and silicon nitride and production method thereof
JPS63251127A (en) Combined construction of members with different thermal expansion and combining method thereof
JPH05155668A (en) Combination of ceramic with metal
JPS62191478A (en) Ceramics-metal bonded body
EP0323207B1 (en) Joined metal-ceramic assembly method of preparing the same
JPH0329031B2 (en)
JPH0829991B2 (en) Method for manufacturing ceramic / metal combination
JPH10193087A (en) Manufacture of titanium-aluminum-made turbine rotor
US5922479A (en) Brazing alloy and composite assembly joined by using the same
JPS61286274A (en) Metal ceramic joinned body and manufacture
JP2769567B2 (en) Joint of ceramic and metal
JPH10118764A (en) Method for joining tial turbine impeller with rotor shaft
JP2619216B2 (en) Combined ceramic and metal
JPH0516192Y2 (en)
JPH02124781A (en) Method for coupling rotor made of ceramic with metallic shaft
JP3119981B2 (en) Combined body of ceramic member and metal member and method of combining the same
JP2883223B2 (en) Method of joining ceramic member and metal member
JP3270893B2 (en) Combined structure of ceramic and metal
JPH01215769A (en) Production of ceramic-metal coupled body
JPH0431772B2 (en)
JPS6379772A (en) Method of joining ceramic to metal
JPS61155268A (en) Diffusion bonding method
JPH052585Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees