JPS61155268A - Diffusion bonding method - Google Patents

Diffusion bonding method

Info

Publication number
JPS61155268A
JPS61155268A JP27905684A JP27905684A JPS61155268A JP S61155268 A JPS61155268 A JP S61155268A JP 27905684 A JP27905684 A JP 27905684A JP 27905684 A JP27905684 A JP 27905684A JP S61155268 A JPS61155268 A JP S61155268A
Authority
JP
Japan
Prior art keywords
joining
diffusion bonding
bonding
diffusion
bonding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27905684A
Other languages
Japanese (ja)
Inventor
敏邦 草野
石井 正巳
三多 淳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP27905684A priority Critical patent/JPS61155268A/en
Publication of JPS61155268A publication Critical patent/JPS61155268A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はセラミックスと鉄系金属との接合において、接
合部及びその付近に発生する割れを防止する拡散接合、
方法に関するもので、自動車部品のターボチャージャな
どの溶接部品の利用されるものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to diffusion bonding, which prevents cracks from occurring in and around the joint in joining ceramics and ferrous metals.
This relates to a method for welding parts such as turbochargers for automobile parts.

(従来の技術) セラミックスと鉄系金属との拡散接合については、特開
昭58−95670号「窒化珪素セラミックスと金属と
の接合方法」の公報がある。
(Prior Art) Regarding the diffusion bonding of ceramics and iron-based metals, there is a publication in JP-A-58-95670 titled ``Method for bonding silicon nitride ceramics and metals.''

このものはCr−Ni−Fe−Mo−3i系合金と窒化
珪素セラミックスを接合する直接接合方法で、両者は共
に、濡れ性が良く融着時にセラミックス表面に前記合金
系の珪素化合物を生成しセラミックスと金属とを接合す
る旨開示されている。
This is a direct bonding method that joins a Cr-Ni-Fe-Mo-3i alloy and silicon nitride ceramics. It is disclosed that the method and metal are bonded together.

(発明が解決しようとする問題点) 然し前記セラミックスと金属との接合のような直接接合
の場合には引張り強度が約15〜20’kg/龍であり
、静的な荷重がかかる部品については使用可能であるが
、摩擦熱のため高温となりトルクのかかる状態で使用さ
れる回転軸においては熱膨張係数の相違により内部応力
によって接合面より破損し易く、また高温時に接合力が
20〜30%低下し信頼性に欠けるという問題点がある
(Problems to be Solved by the Invention) However, in the case of direct bonding such as the above-mentioned bonding of ceramics and metal, the tensile strength is about 15 to 20'kg/yaku, and for parts that are subject to static loads. Although it can be used, rotating shafts that are used under high temperature and torque conditions due to frictional heat are more likely to break than the joint surfaces due to internal stress due to differences in thermal expansion coefficients, and the joint strength is reduced by 20 to 30% at high temperatures. There is a problem that the performance is degraded and reliability is lacking.

そこで本発明はセラミックスと鉄系金属との接合におい
て、自動車用ターボの回転軸として使用しても、長期間
にわたって使用出来、少なくとも引張強度が15〜20
 kg/ vs#以上で更に、熱膨張係数の差があって
も内部応力により接合部から破損することなく、摩擦熱
により回転軸が高温となっても接合力が低下しない接合
方法を提供することを目的とするものである。
Therefore, the present invention can be used for a long period of time even when used as a rotating shaft of an automobile turbo in joining ceramics and ferrous metals, and has a tensile strength of at least 15 to 20.
To provide a joining method which does not cause damage to the joining part due to internal stress even if there is a difference in thermal expansion coefficients at kg/vs# or more, and does not reduce joining force even if a rotating shaft becomes high temperature due to frictional heat. The purpose is to

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記技術的課題を解決するために講じた技術的手段は、
窒化珪素系セラミックスと鉄系金属の拡散接合において
、接合すべき両部材の間に、ニッケル、チタン、又はモ
リブデンよりなる薄箔をインサート材として挿入して接
合する拡散接合方法であり、また両部材の接合において
、セラミックス部材の端面を円錐形状とし金属部材の端
面をカップ状とし、前記インサート材をカップ状として
両部材の間に挿入接合するものである。
(Means to solve the problem) The technical measures taken to solve the above technical problem are:
In diffusion bonding of silicon nitride ceramics and iron-based metals, this is a diffusion bonding method in which a thin foil made of nickel, titanium, or molybdenum is inserted as an insert material between the two parts to be joined. In this joining process, the ceramic member has a conical end face, the metal member has a cup-shaped end face, and the insert material is cup-shaped and inserted and joined between the two members.

(作用) 上記手段は次のように作用する。すなわち、被接合部材
の端面に挿入した、インサート材の熱膨張係数は、セラ
ミックスと鉄系金属とのほぼ中間にあるため、拡散接合
装置において接合すれば、積極的に接合反応がおこり、
インサート材がセラミックスと鉄系金属の原子間に拡散
し強力に接合することにより、引張強度が15〜20k
g/mで、かつ回転軸が回転摩擦により温度」二昇して
熱膨張係数の差があってもインサー1[が両部材の緩衝
材としての作用を行い、接合面のワレ、破損がなく引張
り強度の低下がまったく無いものである。
(Operation) The above means operates as follows. In other words, the coefficient of thermal expansion of the insert material inserted into the end face of the parts to be joined is approximately between that of ceramics and ferrous metals, so if they are joined using a diffusion bonding device, a joining reaction will occur actively.
The insert material diffuses between the atoms of the ceramic and iron-based metal, creating a strong bond, resulting in a tensile strength of 15 to 20K.
g/m, and even if the temperature of the rotating shaft rises due to rotational friction and there is a difference in thermal expansion coefficient, the insert 1 acts as a cushioning material for both parts, and there is no cracking or damage on the joint surface. There is no decrease in tensile strength at all.

また接合端面を一方をテーパー状とし、他方をカップ状
とし、カップ状のインサート材を挿入接合した接合材は
接合面積が多くなり、両部材のセンターも正確に合致し
接合強度も更に大きくなるものである。
In addition, when the joining end surfaces are tapered on one side and cup-shaped on the other, and a cup-shaped insert material is inserted and joined, the joining area increases, the centers of both parts match accurately, and the joining strength is further increased. It is.

(実施例) 以下具体的な実施例について説明する。(Example) Specific examples will be described below.

■は拡散溶接装置で、2及び3は被接合体で、4はヒー
ター、5a及び5bは加圧ロッド、6ば加熱電源、7は
真空ポンプ、8はコンプレツサーで、9はシリンダーで
ある。被接合体2及び3はヒータ4により、ロッド5a
、5bによる加圧により拡散接合するものである。
2 is a diffusion welding device, 2 and 3 are objects to be joined, 4 is a heater, 5a and 5b are pressure rods, 6 is a heating power source, 7 is a vacuum pump, 8 is a compressor, and 9 is a cylinder. The objects 2 and 3 to be welded are connected to the rod 5a by the heater 4.
, 5b to perform diffusion bonding.

被接合材の2は窒化珪素セラミックスで、3ばニッケル
・クローム・モリブデン鋼の鉄系金属で、10a、10
bはニッケル、チタン、モリブデンよりなるインサート
材で10aは平板、10bはカップ状である。
The materials to be joined 2 are silicon nitride ceramics, 3 are ferrous metals such as nickel-chromium-molybdenum steel, and 10a and 10 are
b is an insert material made of nickel, titanium, and molybdenum, 10a is a flat plate, and 10b is cup-shaped.

接合方法としては拡散接合装置I内にて、接合材2及び
3の端部にインサート材10aを挿入し接合を行い接合
材11を得るものである。
The bonding method is to insert the insert material 10a into the ends of the bonding materials 2 and 3 in the diffusion bonding apparatus I, and perform bonding to obtain the bonding material 11.

またセラミック材12及び鉄系金属材13との接合にお
いて、テーパ一部12a、カップ部13aを形成しカッ
プ状インサート10bを挿入、拡散接合装置1により接
合し接合材14を製造するものである。
Further, in joining the ceramic material 12 and the iron-based metal material 13, a tapered portion 12a and a cup portion 13a are formed, a cup-shaped insert 10b is inserted, and the joining material 14 is manufactured by joining by the diffusion bonding device 1.

実施例−1(インサート材、Ni箔とする)テストピー
スとしては第2図の102に示す平板形状のものを使用
し、被接合材として窒化珪素セラミックス(Si、7N
、f)とNi−Cr−M。
Example 1 (Insert material: Ni foil) A test piece in the shape of a flat plate shown at 102 in Figure 2 was used, and silicon nitride ceramics (Si, 7N) was used as the material to be joined.
, f) and Ni-Cr-M.

鋼(SNCM≠Q)箔で、簡単なアセトン脱脂による前
処理を行ない、約10−4′Torrの真空中で接合温
度約1100℃接合圧力、約l kg / Ilmで6
0分間拡散接合を行った。次に数個のテストピースの引
張試験の結果引張強度は15〜20kg/inでいずれ
もS i 3 %とNi界面において破壊が発生した。
Steel (SNCM≠Q) foils were pretreated with simple acetone degreasing and bonded at a bonding temperature of about 1100°C in a vacuum of about 10-4'Torr and a bonding pressure of about 1 kg/Ilm.
Diffusion bonding was performed for 0 minutes. Next, as a result of a tensile test of several test pieces, the tensile strength was 15 to 20 kg/in, and fracture occurred at the Si 3 % and Ni interface in all cases.

次に前記接合材を約900℃の温度にて毎分20万回転
にて5時間の連続高温耐久テストを実施したが接合部に
異状は見受けられなかった。
Next, the bonding material was subjected to a continuous high temperature durability test for 5 hours at a temperature of about 900° C. and 200,000 revolutions per minute, but no abnormality was observed in the bonded portion.

実施例−2(インサートカップ材、Ti箔とする)テス
トピースは0.1 nの板厚のTi箔よりなるインサー
ト材で、他の条件は実施例−1と同じである。数個の引
張試験の結果、引張強度は16〜20kg/璽曹でSi
、N、とTi界面にて破壊が発生した。
Example 2 (Insert cup material, Ti foil) The test piece was an insert material made of Ti foil with a thickness of 0.1 nm, and the other conditions were the same as in Example 1. As a result of several tensile tests, the tensile strength was 16-20 kg/Si
, N, and Ti interface.

実施例−3(インサート材、Mo箔) テストピースは0.1 Illの板厚よりなるインサー
ト材で、他の条件は実施例−1と同じである。
Example-3 (insert material, Mo foil) The test piece was an insert material having a thickness of 0.1 Ill, and the other conditions were the same as in Example-1.

引張強度は18〜21kg/mで、数個の引張状験の結
果S ia NyとMo界面において破壊が発生した。
The tensile strength was 18-21 kg/m, and as a result of several tensile tests, fracture occurred at the S ia Ny and Mo interface.

〔発明の効果〕〔Effect of the invention〕

本発明は次の特有の効果を有する。すなわち、直接接合
に対して、インサート材を使用する間接接合は、接合部
分が高温になってもインサート材が異種材間の緩衝材の
作用に行って、熱膨張係数の差を調整し、引張強度の低
下がなく、高温下の回転軸に使用出来、バラツキも少な
く極めて信頼性のあるものである。
The present invention has the following unique effects. In other words, in contrast to direct bonding, indirect bonding using an insert material allows the insert material to act as a buffer between dissimilar materials even if the bonded part becomes high temperature, adjusting the difference in thermal expansion coefficient and reducing tensile strength. There is no decrease in strength, it can be used for rotating shafts under high temperatures, and there is little variation, making it extremely reliable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は拡散接合装置の説明図であり、第2図はインサ
ート材で、(イ)は平板、(ロ)はカップ状の断面図で
ある。第3図は丸棒形状の接合エム 程図で(イ)は接合前、(ロ)は接合中、(・)は接合
後の断面図である。 第4図は端面がテーパー状及びカップ状の接合部材の接
合工程図で、(イ)は準備工程、(ロ)は接合前、(ハ
)は接合中、(ニ)は接合後を示す断面図である。 ■・・・拡散接合装置、2・・・セラミックス。 3・・・鉄系金属、10a、10b・・・インサート部
FIG. 1 is an explanatory diagram of a diffusion bonding apparatus, and FIG. 2 is a cross-sectional view of an insert material, in which (A) is a flat plate and (B) is a cup-shaped one. FIG. 3 is a cross-sectional view of a round bar-shaped welding process; (a) is a cross-sectional view before welding, (b) is a cross-sectional view during welding, and (·) is a cross-sectional view after welding. Figure 4 is a diagram of the joining process for joining members with tapered and cup-shaped end faces, in which (a) is the preparation process, (b) is before joining, (c) is during joining, and (d) is a cross section after joining. It is a diagram. ■... Diffusion bonding device, 2... Ceramics. 3... Iron-based metal, 10a, 10b... Insert member

Claims (2)

【特許請求の範囲】[Claims] (1)拡散溶接装置によりセラミックスと鉄系の金属と
を拡散溶接により接合する方法において、前記拡散接合
材の間に、ニッケル、チタン、又はモリブデンの薄箔よ
りなるインサート材を挿入して接合する拡散接合方法。
(1) In a method of joining ceramics and iron-based metals by diffusion welding using a diffusion welding device, an insert material made of a thin foil of nickel, titanium, or molybdenum is inserted between the diffusion joining materials and joined. Diffusion bonding method.
(2)前記セラミックスは窒素化珪素系セラミックス(
Si_3N_4)で、前記金属は鉄系金属のニッケル・
クローム・モリブデン鋼(SNCM40)よりなる、特
許請求の範囲第1項記載の拡散接合方法。
(2) The ceramic is silicon nitride ceramic (
Si_3N_4), the metal is iron-based metal nickel.
The diffusion bonding method according to claim 1, which is made of chrome-molybdenum steel (SNCM40).
JP27905684A 1984-12-27 1984-12-27 Diffusion bonding method Pending JPS61155268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27905684A JPS61155268A (en) 1984-12-27 1984-12-27 Diffusion bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27905684A JPS61155268A (en) 1984-12-27 1984-12-27 Diffusion bonding method

Publications (1)

Publication Number Publication Date
JPS61155268A true JPS61155268A (en) 1986-07-14

Family

ID=17605782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27905684A Pending JPS61155268A (en) 1984-12-27 1984-12-27 Diffusion bonding method

Country Status (1)

Country Link
JP (1) JPS61155268A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5042872A (en) * 1988-07-30 1991-08-27 Mazda Motor Corporation Pillar structure for front body portion of automobile
CN109317810A (en) * 2018-09-11 2019-02-12 南京航空航天大学 A kind of raising Si3N4The surface treatment method of ceramics and titanium alloy welding performance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5042872A (en) * 1988-07-30 1991-08-27 Mazda Motor Corporation Pillar structure for front body portion of automobile
CN109317810A (en) * 2018-09-11 2019-02-12 南京航空航天大学 A kind of raising Si3N4The surface treatment method of ceramics and titanium alloy welding performance
CN109317810B (en) * 2018-09-11 2019-11-12 南京航空航天大学 A kind of raising Si3N4The surface treatment method of ceramics and titanium alloy welding performance

Similar Documents

Publication Publication Date Title
JPH0444632B2 (en)
JPS61111981A (en) Method of bonding ceramic part and metal part
JPH043129Y2 (en)
JPS62191478A (en) Ceramics-metal bonded body
EP1135348B1 (en) Method for joining ceramic to metal
JPS61155268A (en) Diffusion bonding method
JPH01176284A (en) Conjugate of metal and ceramics
JPS61227971A (en) Method of joining silicon nitride or sialon and metal
JP3174979B2 (en) Rotating body of ceramic and metal
JPS62167041A (en) Composite material consisting of graphite and metal
JPH0328391B2 (en)
JPS6191073A (en) Structure for bonding ceramic axis and metal axis
JP3270893B2 (en) Combined structure of ceramic and metal
JPS61219766A (en) Joint structure of ceramic shaft and metal shaft
JP2536630B2 (en) Method for joining ceramic member and metal member
JPH0142914B2 (en)
JPH04367382A (en) High-strength tial joined body and joining method thereof
JPH01282166A (en) Joined body of ceramics and metal
JPH0159998B2 (en)
JPH0516192Y2 (en)
JPH08281454A (en) Method for joining titanium-aluminide and low alloy steel or plain steel
JPH0829991B2 (en) Method for manufacturing ceramic / metal combination
JPS6351994B2 (en)
JPH02149477A (en) Method for joining ceramic rotor and metallic shaft
JPH02124781A (en) Method for coupling rotor made of ceramic with metallic shaft