JPH08281454A - Method for joining titanium-aluminide and low alloy steel or plain steel - Google Patents

Method for joining titanium-aluminide and low alloy steel or plain steel

Info

Publication number
JPH08281454A
JPH08281454A JP8101395A JP8101395A JPH08281454A JP H08281454 A JPH08281454 A JP H08281454A JP 8101395 A JP8101395 A JP 8101395A JP 8101395 A JP8101395 A JP 8101395A JP H08281454 A JPH08281454 A JP H08281454A
Authority
JP
Japan
Prior art keywords
joining
steel
low alloy
steel member
titanium aluminide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8101395A
Other languages
Japanese (ja)
Inventor
Kazuaki Mino
和明 美野
Satoshi Takahashi
聰 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP8101395A priority Critical patent/JPH08281454A/en
Publication of JPH08281454A publication Critical patent/JPH08281454A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE: To prevent crack and to obtain welding strength by using a metal which does not develop a phase transformation at the time of cooling, as an intermediate material, in a natural cooling process of a member joined by passing while heating with the friction. CONSTITUTION: A recessed part 4 is arrange on the joining surface of a low alloy steel member or a general steel member 1 and the intermediate material 3 which is small in vol. change by cooling after heating, is fitted to the recessed part 4 so as to project from the joining surface. A titanium-aluminide member 2 is pressed and both members 1, 2 are joined while being heated by the friction caused by relatively rotation. In such a way, the intermediate material 3 does not cause the phase transformation and rejects the vol. expansion caused by the phase transformation of the low alloy steel member or the plane steel member 1 or absorbs a part of the vol. expansion. Therefore, the generation of crack, etc., on the joining part is prevented and also, the sufficient strength can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、チタンアルミナイドと
低合金鋼または普通鋼の接合方法に係るもので、特にチ
タンアルミナイドのような延性の小さな材料と低合金鋼
または普通鋼のような加熱後の冷却による体質変化の大
きな材料との接合方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for joining titanium aluminide and low alloy steel or ordinary steel, and particularly to a material having low ductility such as titanium aluminide and after heating such as low alloy steel or ordinary steel. The present invention relates to a method of joining with a material whose constitution changes greatly by cooling.

【0002】[0002]

【従来の技術】一般にセラミックスやチタンアルミナイ
ドなどの新素材といわれる材料は、従来の普通鋼などの
金属にはない優れた特性を有している。しかしながら、
これらの材料の中には、延性が小さいため、溶接の場合
は勿論のこと、摩擦圧接の場合でも、圧接中あるいはそ
の後の冷却中に割れが発生したりして十分な強度が得ら
れない材料もある。例えば、チタンアルミナイドの場合
など、チタンアルミナイドが金属間化合物であるため、
異種金属との溶接接合は困難とされ、今まで銀ろう付け
が用いられていた。その後、普通鋼に、チタンアルミと
接合性の良い耐熱合金を仲介部材として電子ビーム溶接
などの接合法により接合し、次に仲介部材とチタンアル
ミとを摩擦圧接する方法が提案された。
2. Description of the Related Art Materials, which are generally called new materials such as ceramics and titanium aluminide, have excellent characteristics not found in conventional metals such as ordinary steel. However,
Some of these materials have low ductility, so that not only in welding, but also in friction welding, cracks may occur during welding or during subsequent cooling, and sufficient strength cannot be obtained. There is also. For example, because titanium aluminide is an intermetallic compound, such as in the case of titanium aluminide,
Welding with dissimilar metals is considered difficult, and silver brazing has been used until now. After that, a method was proposed in which ordinary aluminum was joined to titanium aluminum by a joining method such as electron beam welding using a heat-resistant alloy having good joining properties as an intermediary member, and then the intermediary member and titanium aluminum were friction-welded.

【0003】このような、普通鋼に、チタンアルミと接
合性の良い、例えばインコロイ903のような耐熱合金
を仲介部材として電子ビーム溶接などの接合方法により
接合し、次に仲介部材とチタンアルミとを摩擦圧接する
方法としては、例えば、特開平2−157403に示す
ようなものがある。この例では、鋼製シャフトと耐熱合
金製中空インサート材を接合し、次にインサート材とチ
タンアルミ製タービンホイールとを摩擦圧接するもので
ある。
Such ordinary steel is joined by a joining method such as electron beam welding using a heat-resistant alloy such as Incoloy 903, which has a good joining property with titanium aluminum, as an intermediary member, and then the intermediary member and titanium aluminum are joined. As a method of frictionally pressure-contacting, there is, for example, a method disclosed in Japanese Patent Laid-Open No. 2-157403. In this example, a steel shaft and a heat-resistant alloy hollow insert material are joined, and then the insert material and a titanium-aluminum turbine wheel are friction-welded.

【0004】前記特開平2−157403の例では、普
通鋼と耐熱合金製インサート材とは電子ビーム溶接など
で接合し、かつ、その耐熱合金製インサート材はシャフ
トへの伝熱量を小さくするため中空としている。
In the example of JP-A-2-157403, the ordinary steel and the heat resistant alloy insert material are joined by electron beam welding or the like, and the heat resistant alloy insert material is hollow in order to reduce the amount of heat transfer to the shaft. I am trying.

【0005】図2は従来のチタンアルミタービンホイー
ルの接合法を示すものである。aはターボチャージャの
チタンアルミタービンホイールであり、bは鋼製のシャ
フトである。cはそれらチタンアルミタービンホイール
aと鋼製のシャフトbとの間に介在させている中空のイ
ンサート材である。また、このインサート材cとシャフ
トbとは、まず電子ビームなどの接合法により接合
(e)され、次にインサートcとタービンホイールaと
が摩擦圧接により接合(e’)されている。
FIG. 2 shows a conventional method for joining titanium aluminum turbine wheels. a is a titanium aluminum turbine wheel of a turbocharger, and b is a steel shaft. Reference numeral c is a hollow insert material interposed between the titanium aluminum turbine wheel a and the steel shaft b. The insert material c and the shaft b are first joined (e) by a joining method such as an electron beam, and then the insert c and the turbine wheel a are joined (e ') by friction welding.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述の
銀ろう付けでは、強度が低く、しかも温度が上がると弱
くなり、信頼性が十分ではない。
However, in the above-mentioned silver brazing, the strength is low, and further, it becomes weak as the temperature rises, and the reliability is not sufficient.

【0007】また、摩擦圧接による接合でも、普通鋼と
耐熱合金製インサート材とは電子ビーム溶接などで接合
し、かつ、その耐熱合金製インサート材はシャフトへの
伝熱量を小さくするため中空としなければならないなど
の問題があった。
Even in the case of friction welding, the ordinary steel and the heat resistant alloy insert material are bonded by electron beam welding or the like, and the heat resistant alloy insert material must be hollow in order to reduce the amount of heat transfer to the shaft. There were problems such as having to do it.

【0008】本発明は、上記課題に鑑み案出されたもの
で、チタンアルミナイドのような延性の小さな材料と低
合金鋼または普通鋼のような加熱後の冷却による体質変
化の大きな材料との接合方法を提供することを目的とす
るものである。
The present invention has been devised in view of the above problems, and joins a material having a small ductility such as titanium aluminide and a material having a large change in constitution due to cooling after heating such as low alloy steel or ordinary steel. It is intended to provide a method.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明のチタンアルミナイドと低合金鋼または普通
鋼の接合方法は、チタンアルミナイド部材と低合金鋼部
材または普通鋼部材とを仲介材料を介して摩擦圧接する
接合方法であって、前記チタンアルミナイド部材と低合
金鋼部材または普通鋼部材のいずれか一方の接合表面に
凹部を設ける工程と、該凹部に、凹部の深さより厚い仲
介材料を嵌合する工程と、前記チタンアルミナイド部材
と低合金鋼部材または普通鋼部材を相対回転させて摩擦
により加熱しながら押し付けて接合する工程と、これら
一体となった部材を自然冷却する工程とを有するもので
あり、また、前記仲介材料は自然冷却中に結晶構造の変
化による相変態のない金属材料を有するものである。
In order to achieve the above object, the method for joining titanium aluminide and low alloy steel or ordinary steel according to the present invention uses a titanium aluminide member and a low alloy steel member or ordinary steel member as an intermediary material. In the joining method of friction welding through, a step of providing a recess on the joining surface of any one of the titanium aluminide member and the low alloy steel member or the ordinary steel member, and in the recess, an intermediate material thicker than the depth of the recess is provided. There is a step of fitting, a step of pressing the titanium aluminide member and the low alloy steel member or the ordinary steel member relative to each other while heating them by friction and joining them, and a step of naturally cooling these integrated members. The mediating material is a metal material that does not undergo phase transformation due to a change in crystal structure during natural cooling.

【0010】[0010]

【作用】上述した接合方法によれば、チタンアルミナイ
ド部材と低合金鋼部材または普通鋼部材のいずれか一方
の接合表面に凹部を設け、該凹部に仲介材料を嵌合し、
それらを相対回転させて摩擦により加熱しながら押し付
けて接合するが、仲介材料が自然冷却中に相変態せず、
低合金鋼部材または普通鋼部材の相変態による体積膨張
を撥ねつけまたは一部吸収するので、その接合部にクラ
ックなどの発生を防止することができる。
According to the above-mentioned joining method, a recess is provided in the joining surface of either the titanium aluminide member and the low alloy steel member or the ordinary steel member, and the intermediary material is fitted into the recess.
Although they are pressed against each other while rotating relative to each other and heating by friction, the intermediary material does not undergo phase transformation during natural cooling,
Since the volume expansion due to the phase transformation of the low alloy steel member or the ordinary steel member is repelled or partially absorbed, it is possible to prevent the occurrence of cracks or the like at the joint.

【0011】[0011]

【実施例】以下本発明の一実施例について図面を参照し
つつ説明する。図1は本発明の実施例に係る接合部の一
部を切り欠いた側面図である。図中1は接合すべき一方
の部材である低合金鋼部材または普通鋼部材であり、2
は接合すべき他方の部材であるチタンアルミナイド部材
である。4は低合金鋼部材または普通鋼部材1の接合表
面に設けた凹部であり、その凹部4に嵌合された仲介材
料3が回転する際飛び散るのを防止する。また、仲介材
料3は、その凹部の接合表面よりも突出するように嵌合
されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a side view in which a part of a joint portion according to an embodiment of the present invention is cut away. In the figure, 1 is a low alloy steel member or ordinary steel member which is one member to be joined, and 2
Is a titanium aluminide member which is the other member to be joined. Reference numeral 4 denotes a recess provided on the joining surface of the low alloy steel member or the ordinary steel member 1, and prevents the intermediary material 3 fitted in the recess 4 from scattering when rotating. Further, the intermediary material 3 is fitted so as to protrude from the joint surface of the recess.

【0012】なお、この実施例では、凹部を低合金鋼部
材または普通鋼部材1の接合表面に設けた例を示した
が、チタンアルミナイド部材2の接合表面に設けてもよ
い。
In this embodiment, the recess is provided on the joining surface of the low alloy steel member or the ordinary steel member 1, but it may be provided on the joining surface of the titanium aluminide member 2.

【0013】低合金鋼部材または普通鋼部材1とチタン
アルミナイド部材2との接合は、摩擦圧接装置(図示せ
ず)を用いて行うが、それらの部材を相対回転させ、摩
擦により加熱しながら軸方向に強く押し付け仲介材料3
を仲介して接合する。
The low alloy steel member or ordinary steel member 1 and the titanium aluminide member 2 are joined together by using a friction welding device (not shown). These members are rotated relative to each other and the shaft is heated by friction. Strongly pressed in the direction 3
To mediate and join.

【0014】以下、本実施例の作用として接合方法の具
体的な例を詳述する。接合試験は、接合すべき一方の部
材にクロムモリブデン鋼(SCM435鋼)を、他方の
部材にチタンアルミナイド化合物を用い、クロムモリブ
デン鋼(低合金鋼部材)1の寸法を、外径20mm,長
さ30mmとし、チタンアルミナイド化合物2の寸法
を、外径15mm,長さ25mmとした。また、最初は
仲介材料を使用しないで直接接合し、次に、仲介材料を
使用して接合した。
A specific example of the joining method will be described in detail below as the operation of this embodiment. The joining test was conducted by using chromium molybdenum steel (SCM435 steel) for one member to be joined and a titanium aluminide compound for the other member, and measuring the dimensions of chromium molybdenum steel (low alloy steel member) 1 with an outer diameter of 20 mm and a length. The dimensions of the titanium aluminide compound 2 were 30 mm, and the outer diameter was 15 mm and the length was 25 mm. In addition, first, direct bonding was performed without using a mediating material, and then, bonding was performed using a mediating material.

【0015】第1回目の接合試験、すなわち、仲介材料
を使用しない接合試験では、 回転数:2000rpm 摩擦圧力と時間:150MPa,1sec アプセット圧力と時間:250MPa,6sec この条件の基に、4回行った後、接合試験片の引張試験
を、室温で行ったが、その結果は、次のとおりである。
In the first joining test, that is, the joining test using no intermediary material, the number of revolutions: 2000 rpm, the friction pressure and the time: 150 MPa, 1 sec, the upset pressure and the time: 250 MPa, 6 sec. After that, the tensile test of the joining test piece was performed at room temperature, and the results are as follows.

【0016】接合試験片を機械加工中に接合面で分離し
たが、その強度はすべてゼロであることが確認された。
また、接合試験中、クラックの発生する音が聞こえ、さ
らに、接合試験片を切断し、顕微鏡でその組織を観察す
ると接合界面でクラックが多数発生していることが観察
された。第2回目の接合試験、すなわち、仲介材料を使
用した接合試験では、低合金鋼部材(SCM435鋼)
の接合表面に、直径15mm,深さ1mmの浅い凹部を
設け、その凹部に、ニッケル合金材料のIN617を用
いた直径15mm,厚さ2mmの円盤の仲介材料3を嵌
合した。
The joint test pieces were separated at the joint surface during machining, and it was confirmed that their strengths were all zero.
Further, during the bonding test, the sound of cracks was heard, and further, when the bonding test piece was cut and its structure was observed with a microscope, it was observed that many cracks were generated at the bonding interface. In the second joining test, that is, the joining test using the intermediary material, a low alloy steel member (SCM435 steel)
A shallow recess having a diameter of 15 mm and a depth of 1 mm was provided on the joint surface of No. 3, and a disk-shaped intermediate material 3 having a diameter of 15 mm and a thickness of 2 mm, which was made of nickel alloy material IN617, was fitted into the recess.

【0017】回転数:2000rpm 摩擦圧力と時間:200MPa,40sec アプセット圧力と時間:300MPa,6sec この条件の基に、4回行った後、第1回目同様、接合試
験片の引張試験を、室温で行ったが、その結果は次のと
おりである。
Rotational speed: 2000 rpm Friction pressure and time: 200 MPa, 40 sec Upset pressure and time: 300 MPa, 6 sec Under these conditions, after performing 4 times, the tensile test of the joining test piece was conducted at room temperature in the same manner as the first time. The results are as follows.

【0018】4回のうち、220MPa,240MP
a,190MPa,220MPaの引張り強さを有する
ことがそれぞれ確認された。また、接合試験中、クラッ
クの発生する音は聞こえなかつたが、これは仲介材料の
ニッケル合金材料IN617が、圧接後、SCM435
鋼の冷却中における相変態による約4%の体積膨張に伴
う歪みを撥ねつけ一部吸収することにより、破断伸びが
1%あるいはそれ以下のチタンアルミナイド化合物材料
にほとんど変態歪みを伝えなかったこと、つまり歪みを
鋼自身に吸収させていることによるものである。
220MPa, 240MP out of 4 times
It was confirmed to have tensile strengths of a, 190 MPa, and 220 MPa, respectively. In addition, during the joining test, the sound of cracks was not heard, but this is because the nickel alloy material IN617 as the intermediary material is SCM435 after pressure welding.
The strain due to the volume expansion of about 4% due to the phase transformation during cooling of the steel was repelled and partially absorbed, so that almost no transformation strain was transmitted to the titanium aluminide compound material having a fracture elongation of 1% or less, In other words, it is because the steel itself absorbs the strain.

【0019】[0019]

【発明の効果】本発明は、以上述べたように、チタンア
ルミナイドのような延性の小さな材料と低合金鋼または
普通鋼のような加熱後の冷却による体質変化の大きな材
料との接合であっても、接合すべき部材のいずれか一方
の部材に凹部を設け、その凹部に加熱後の冷却による体
質変化の小さな材料を仲介させ、相対回転させて摩擦に
より加熱しながら押し付けて接合するので、その接合部
にクラックなどの発生を防止することができ、しかも十
分な強度を得ることができるなど優れた効果を奏する。
As described above, the present invention provides a method for joining a material having small ductility such as titanium aluminide and a material having a large change in constitution by cooling after heating such as low alloy steel or ordinary steel. In addition, a concave portion is provided in one of the members to be joined, and a material having a small change in constitution due to cooling after heating is intervened in the concave portion, and they are joined by being pressed while heating by friction by relative rotation. It is possible to prevent the occurrence of cracks and the like at the joint portion and to obtain sufficient strength, which is an excellent effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る接合部の一部を切り欠い
た側面図である。
FIG. 1 is a side view in which a part of a joint portion according to an embodiment of the present invention is cut away.

【図2】従来の方法による接合部を示す断面図である。FIG. 2 is a cross-sectional view showing a joint portion according to a conventional method.

【符号の説明】[Explanation of symbols]

1 低合金鋼または普通鋼部材 2 チタンアルミナイド部材 3 仲介部材 4 凹部 1 Low alloy steel or ordinary steel member 2 Titanium aluminide member 3 Intermediary member 4 Recess

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 チタンアルミナイド部材と低合金鋼部材
または普通鋼部材とを仲介材料を介して摩擦圧接する接
合方法であって、 前記チタンアルミナイド部材と低合金鋼部材または普通
鋼部材のいずれか一方の接合表面に凹部を設ける工程
と、 該凹部に、凹部の深さより厚い仲介材料を嵌合する工程
と、 前記チタンアルミナイド部材と低合金鋼部材または普通
鋼部材を相対回転させて摩擦により加熱しながら押し付
けて接合する工程と、 これら一体となった部材を自然冷却する工程とを有し、
前記仲介材料は自然冷却中に結晶構造の変化による相変
態のない金属材料であることを特徴とするチタンアルミ
ナイドと低合金鋼または普通鋼の接合方法。
1. A joining method in which a titanium aluminide member and a low alloy steel member or a normal steel member are friction-welded via an intermediary material, wherein either the titanium aluminide member and the low alloy steel member or a normal steel member is joined. A step of providing a concave portion on the joint surface of, a step of fitting an intermediate material thicker than the depth of the concave portion into the concave portion, and the titanium aluminide member and the low alloy steel member or the ordinary steel member are relatively rotated and heated by friction. While having the steps of pressing and joining together, and the step of naturally cooling these integrated members,
The method for joining titanium aluminide and low alloy steel or ordinary steel, wherein the intermediary material is a metal material that does not undergo phase transformation due to a change in crystal structure during natural cooling.
【請求項2】仲介材料は、ニッケル基合金,オーステナ
イト系鉄基合金,チタン基合金,コバルト基合金の内の
1つである請求項1記載のチタンアルミナイドと低合金
鋼または普通鋼の接合方法。
2. The method for joining titanium aluminide to low alloy steel or ordinary steel according to claim 1, wherein the intermediary material is one of a nickel base alloy, an austenitic iron base alloy, a titanium base alloy and a cobalt base alloy. .
JP8101395A 1995-04-06 1995-04-06 Method for joining titanium-aluminide and low alloy steel or plain steel Pending JPH08281454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8101395A JPH08281454A (en) 1995-04-06 1995-04-06 Method for joining titanium-aluminide and low alloy steel or plain steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8101395A JPH08281454A (en) 1995-04-06 1995-04-06 Method for joining titanium-aluminide and low alloy steel or plain steel

Publications (1)

Publication Number Publication Date
JPH08281454A true JPH08281454A (en) 1996-10-29

Family

ID=13734623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8101395A Pending JPH08281454A (en) 1995-04-06 1995-04-06 Method for joining titanium-aluminide and low alloy steel or plain steel

Country Status (1)

Country Link
JP (1) JPH08281454A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006131212A1 (en) * 2005-06-09 2006-12-14 Schaeffler Kg Method for connecting two components by means of friction welding using an intermediate element, and welded connection
JP2015205329A (en) * 2014-04-22 2015-11-19 オーエスジー株式会社 Cutting tool that bonds superhard alloy and steel material, and method of manufacturing the cutting tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006131212A1 (en) * 2005-06-09 2006-12-14 Schaeffler Kg Method for connecting two components by means of friction welding using an intermediate element, and welded connection
JP2015205329A (en) * 2014-04-22 2015-11-19 オーエスジー株式会社 Cutting tool that bonds superhard alloy and steel material, and method of manufacturing the cutting tool

Similar Documents

Publication Publication Date Title
US7156282B1 (en) Titanium-aluminide turbine wheel and shaft assembly, and method for making same
EP0816007B1 (en) Method of friction-welding a shaft to a titanium aluminide turbine rotor
PL169339B1 (en) Method of jointing permanently together steel components with those made of aluminium or titanium and supercharging turbine unit build using that method
JP2001314981A (en) Treatment method for metal member
WO1998045081A1 (en) Friction welding interlayer and method for joining gamma titanium aluminide to steel, and turbocharger components thereof
JPH05347122A (en) Brazed x-ray tube anode
JP3445579B2 (en) Bonding structure between dissimilar metal hollow members and bonding method thereof
JPH08281454A (en) Method for joining titanium-aluminide and low alloy steel or plain steel
JP3197835B2 (en) Composite joint of beryllium, copper alloy and stainless steel and composite joint method
JP3132602B2 (en) Manufacturing method of friction welding valve
JP3646742B2 (en) Low alloy steel shaft or joining method of steel shaft and titanium aluminide rotating body
JP3240211B2 (en) Copper-aluminum dissimilar metal joint material
JPS58128281A (en) Diffusion bonding method of sintered hard alloy and steel
JPH05263875A (en) Metallic composite counterweight for aluminum drive shaft and attachment technique
JP2005271015A (en) Friction welding method of steel tube and aluminum alloy hollow member
JPH0278734A (en) Supercharger
JPH03243288A (en) Method for joining al-base composite material to al material
JP2000015462A (en) Friction welded member, and its manufacture
JP2001205443A (en) Method for joining steel to titanium material
JP2003053557A (en) Bonding method and bonded structure between different kinds of metallic material
JPH04294884A (en) Method of liquid phase diffusion joining of stainless steel
JPH0351321Y2 (en)
JPS59127982A (en) Joining by frictional pressure welding of member of different kind
JPH0494889A (en) Ti-al series alloy-made engine valve
JPH04367382A (en) High-strength tial joined body and joining method thereof