JP3646742B2 - Low alloy steel shaft or joining method of steel shaft and titanium aluminide rotating body - Google Patents

Low alloy steel shaft or joining method of steel shaft and titanium aluminide rotating body Download PDF

Info

Publication number
JP3646742B2
JP3646742B2 JP23361795A JP23361795A JP3646742B2 JP 3646742 B2 JP3646742 B2 JP 3646742B2 JP 23361795 A JP23361795 A JP 23361795A JP 23361795 A JP23361795 A JP 23361795A JP 3646742 B2 JP3646742 B2 JP 3646742B2
Authority
JP
Japan
Prior art keywords
steel shaft
titanium aluminide
heat
rotating body
low alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23361795A
Other languages
Japanese (ja)
Other versions
JPH0976079A (en
Inventor
和明 美野
聰 高橋
暢宏 近藤
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP23361795A priority Critical patent/JP3646742B2/en
Publication of JPH0976079A publication Critical patent/JPH0976079A/en
Application granted granted Critical
Publication of JP3646742B2 publication Critical patent/JP3646742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低合金鋼製シャフトまたは鋼製シャフトとチタンアルミナイド製回転体との接合方法に係るもので、特に低合金鋼または普通鋼のような加熱後の冷却中におこる結晶構造変化にともなう体質変化の大きな材料とチタンアルミナイドのような延性の小さな材料との接合方法に関するものである。
【0002】
【従来の技術】
一般にセラミックスやチタンアルミナイドなどの新素材といわれる材料は、従来の普通鋼などの金属にはない優れた特性を有している。しかしながら、これらの材料の中には、延性が小さいため、溶接の場合は勿論のこと、摩擦圧接の場合でも、圧接中あるいはその後の冷却中に割れが発生したりして十分な強度が得られない材料もある。例えば、チタンアルミナイドの場合など、チタンアルミナイドが金属間化合物であるため、異種金属との溶接接合は困難とされ、今まで銀ろう付けが用いられていた。その後、普通鋼に、チタンアルミと接合性の良い耐熱合金を仲介部材として電子ビーム溶接などの接合法により接合し、次に仲介部材とチタンアルミとを摩擦圧接する方法が提案された。
【0003】
このような、普通鋼に、チタンアルミと接合性の良い、例えばインコロイ903のような耐熱合金を仲介部材として電子ビーム溶接などの接合方法により接合し、次に仲介部材とチタンアルミとを摩擦圧接する方法としては、例えば、特開平2−157403に示すようなものがある。この例では、鋼製シャフトと耐熱合金製中空インサート材を接合し、次にインサート材とチタンアルミ製タービンホイールとを摩擦圧接するものである。
【0004】
前記特開平2−157403の例では、普通鋼と耐熱合金製インサート材とは電子ビーム溶接などで接合し、かつ、その耐熱合金製インサート材はシャフトへの伝熱量を小さくするため中空としている。
【0005】
図4は上記公報に開示された従来のチタンアルミタービンホイールの接合法を示すものである。aはターボチャージャのチタンアルミタービンホイールであり、bは鋼製のシャフトである。cはそれらチタンアルミタービンホイールaと鋼製のシャフトbとの間に介在させている中空のインサート材である。また、このインサート材cとシャフトbとは、まず電子ビームなどの接合法により接合(e)され、次にインサートcとタービンホイールaとが摩擦圧接により接合(f)されている。
【0006】
また、本願出願人は、上記従来の技術が有している課題を解決するため、図3に示すように、チタンアルミナイド部材2と低合金鋼部材または普通鋼部材1のいずれか一方の接合表面に凹部4を設ける工程と、該凹部4に、凹部4の深さより厚い仲介材料3を嵌合する工程と、前記チタンアルミナイド部材2と低合金鋼部材または普通鋼部材1を相対回転させて摩擦により加熱しながら押し付けて接合する工程と、これら一体となった部材を自然冷却する工程とを有するチタンアルミナイドと低合金鋼または普通鋼の接合方法の発明をなし、特許出願を行った(特願平7−81013(未公開))。
【0007】
【発明が解決しようとする課題】
しかしながら、上述の銀ろう付けでは強度が低く、しかも、温度が上がると弱くなり信頼性が十分ではない。
【0008】
また、摩擦圧接による接合でも、普通鋼と耐熱合金製インサート材とは電子ビーム溶接などで接合し、かつ、その耐熱合金製インサート材はシャフトへの伝熱量を小さくするため中空としなければならない。
【0009】
本願出願人の出願に係わる特願平7−81013(未公開)の技術の、チタンアルミナイド部材と低合金鋼部材または普通鋼部材のいずれか一方の接合表面に凹部を設け、この凹部に仲介材料を嵌合して摩擦により加熱しながら押し付ける接合でも、接合表面に凹部を設ける都合上、その外径は製品寸法よりも凹部の縁の部分だけ大きくしなければならず、接合後の加工量を著しく増大する。
などの問題があった。
【0010】
本発明は、上記課題に鑑み案出されたもので、加熱後の冷却による体質変化の大きな低合金鋼製シャフトまたは鋼製シャフトと延性の小さなチタンアルミナイド製回転体とを容易に、かつ、無駄なく接合する接合方法を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
上記目的を達成するため、本発明の低合金鋼製シャフトまたは鋼製シャフトとチタンアルミナイド製回転体との接合方法の第1の発明では、低合金鋼製シャフトまたは鋼製シャフトとチタンアルミナイド製回転体との接合方法であって、
前記低合金鋼製シャフトまたは鋼製シャフトの接合表面に、穴を設けた耐熱合金製部材を載せる工程と、
該穴の部分を耐熱合金で溶接して前記低合金鋼製シャフトまたは鋼製シャフトと耐熱合金製部材とを一体に固定する工程と、
前記低合金鋼製シャフトまたは鋼製シャフトとチタンアルミナイド製回転体とを相対回転させて摩擦により加熱しながら押し付けて接合する工程とを有する。
【0012】
第2の発明では、耐熱合金製部材は、円板状に形成している。
【0013】
第3の発明では、低合金鋼製シャフトまたは鋼製シャフトとチタンアルミナイド製回転体との接合方法であって、前記低合金鋼製シャフトまたは鋼製シャフトの接合表面に、耐熱合金を円板状に溶接で盛金被覆する工程と、前記低合金鋼製シャフトまたは鋼製シャフトとチタンアルミナイド製回転体とを相対回転させて摩擦により加熱しながら押し付けて接合する工程とを有する。
【0014】
上述した接合方法によれば、チタンアルミナイド製回転体の軸径と略同じ外径を有する低合金鋼製シャフトまたは鋼製シャフトの接合表面に、穴を設けた耐熱合金部材を載せ、該穴の部分を耐熱合金で溶接して前記低合金鋼製シャフトまたは鋼製シャフトと耐熱合金部材とを一体に固定した後、あるいは、低合金鋼製シャフトまたは鋼製シャフトの接合表面に、耐熱合金を円板状に溶接で盛金被覆した後、前記低合金鋼製シャフトまたは鋼製シャフトとチタンアルミナイド製回転体とを相対回転させて摩擦により加熱しながら押し付けて接合することにより、耐熱合金の部分が冷却中におこる普通鋼または低合金鋼とチタンアルミナイドの体積変化の差を吸収するので、その接合部にクラックなどの発生を防止することができる。
【0015】
なお、チタンアルミナイド製回転体の軸径と略同じ外径を有する低合金鋼製シャフトまたは鋼製シャフトを接合するようにすれば、摩擦圧接後の機械加工代を最小限に止めることができる。
【0016】
【発明の実施の形態】
以下本発明の一実施形態について図面を参照しつつ説明する。
図1および図2は本発明の実施形態に係る接合部の一部を切り欠いた側面図である。
図1および図2において、11は接合すべき一方の部材である低合金鋼製シャフトまたは普通鋼製シャフトであり、12は接合すべき他方の部材であるチタンアルミナイド製回転体である。13は低合金鋼製シャフトまたは普通鋼製シャフト11の接合表面に載せた中央に穴14を設けた耐熱合金製部材であり、15はこの穴14に溶接盛りして耐熱合金製部材13と低合金鋼製シャフトまたは普通鋼製シャフト11とを固定した耐熱合金である。また、図2に示す16は耐熱合金製部材13に替えて低合金鋼製シャフトおよび普通鋼製シャフト11の接合表面に溶接で円板状に盛金被覆した耐熱合金製部材である。
【0017】
低合金鋼シャフトおよび普通鋼製シャフト11とチタンアルミナイド製回転体12との接合は、摩擦圧接装置(図示せず)を用いて行うが、それらの部材を相対回転させ、摩擦により加熱しながら軸方向に強く押し付け、穴14を設けた耐熱合金製部材13または溶接で盛金被覆した耐熱合金製部材15を仲介して接合する。
【0018】
【実施例】
以下、本実施形態の実施例を詳述する。
接合試験は、接合すべき一方の部材にクロムモリブデン鋼(SCM435鋼)を、他方の部材にチタンアルミナイド化合物を用い、クロムモリブデン鋼(低合金鋼部材)1の寸法を、外径15mm,長さ30mmとし、チタンアルミナイド化合物2の寸法を、外径15mm,長さ25mmとした。また、最初は、図1に示す穴14を設けた耐熱合金製部材13を使用して接合したが、この耐熱合金製部材13には板厚2mmのニッケル合金材料(NCF600ーJIS規格)の円盤を使用して接合し、次に、図2に示す溶接で盛金被覆した耐熱合金製部材16を使用して接合した。なお、これらの溶接に使用した溶接棒は、市販されているニッケル合金材料(Inco Weld82)を用いた。また、溶接は、一般的なTig溶接により行い、固定または盛金被覆を行った。
【0019】
第1回目の接合試験、すなわち、穴14を設けた耐熱合金製部材13を使用した接合試験では、
回転数:2000rpm
摩擦圧力と寄り代:294MPa,1.5mm
アプセット圧力と時間:392MPa,6sec
この条件の下に、2回行った後、接合試験片の引張試験を、室温で行ったが、その結果は、次のとおりである。
【0020】
試験結果は、270MPa,350MPaの引張り強さを有することが確認された。
第2回目の接合試験、すなわち、溶接で盛金被覆した耐熱合金製部材16を使用した接合試験では、低合金鋼部材(SCM435鋼)の接合表面に、1.5mm〜2.0mmの高さの盛金被覆を行った。この盛金被覆後、第1回目の接合試験と同じ条件の下に、摩擦圧接を2回行った後、接合試験片の引張試験を、室温で行ったが、その結果は、次のとおりである。
【0021】
試験結果は、414MPa,480MPaの引っ張り強さを有することが確認された。この強さはチタンアルミナイド母材と略等しく、接手効率は100に近い。
【0022】
【発明の効果】
本発明は、以上述べたように、加熱後の冷却による体積変化の大きな低合金鋼製シャフトまたは普通鋼製シャフトと延性の小さなチタンアルミナイド製回転体との接合であっても、接合すべき低合金鋼製シャフトまたは普通鋼製シャフトの接合表面に、穴を設けた耐熱合金部材を載せ、穴を溶接して固定するか、または、溶接で盛金被覆した耐熱合金部材を仲介させ、相対回転させて摩擦により加熱しながら押し付けて接合するので、冷却時の体積変化の差を耐熱合金が吸収し、その接合部にクラックなどの発生を防止することができ、しかも、十分な強度を得ることができるなど優れた効果を有する。
【図面の簡単な説明】
【図1】本発明の実施形態に係る接合部の一部を切り欠いた側面図である。
【図2】本発明の他の実施形態に係る接合部の一部を切り欠いた側面図である。
【図3】既出願に係わる特願平7−81013の接合部を示す側面図である。
【図4】従来の方法による接合部を示す断面図である。
【符号の説明】
1 低合金鋼または普通鋼部材
2 チタンアルミナイド部材
3 仲介部材
4 凹部
11 低合金鋼製シャフトおよび普通鋼製シャフト
12 チタンアルミナイド製回転体
13 耐熱合金部材
14 穴
15 溶接部
16 溶接で盛金被覆した耐熱合金部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low alloy steel shaft or a joining method of a steel shaft and a titanium aluminide rotating body, and particularly, due to a change in crystal structure that occurs during cooling after heating, such as low alloy steel or ordinary steel. The present invention relates to a method for joining a material having a large constitution change and a material having a small ductility such as titanium aluminide.
[0002]
[Prior art]
In general, materials called new materials such as ceramics and titanium aluminide have excellent characteristics not found in conventional metals such as ordinary steel. However, since these materials have low ductility, not only welding but also friction welding, cracks may occur during pressure welding or subsequent cooling, and sufficient strength can be obtained. Some materials are not. For example, in the case of titanium aluminide, titanium aluminide is an intermetallic compound, so that it is difficult to weld and bond with dissimilar metals, and silver brazing has been used so far. After that, a method was proposed in which ordinary steel was joined by a joining method such as electron beam welding with a heat-resistant alloy having good joining properties to titanium aluminum as a mediating member, and then the mediating member and titanium aluminum were friction welded.
[0003]
Such steel is joined to ordinary steel by a joining method such as electron beam welding using a heat-resistant alloy such as Incoloy 903, which has good joining properties with titanium aluminum, as an intermediate member, and then the intermediate member and titanium aluminum are friction welded. For example, Japanese Patent Laid-Open No. 2-157403 discloses a method for doing this. In this example, a steel shaft and a heat-resistant alloy hollow insert material are joined, and then the insert material and a titanium aluminum turbine wheel are friction welded.
[0004]
In the example of JP-A-2-157403, ordinary steel and a heat-resistant alloy insert are joined by electron beam welding or the like, and the heat-resistant alloy insert is hollow in order to reduce the amount of heat transfer to the shaft.
[0005]
FIG. 4 shows a conventional method of joining a titanium aluminum turbine wheel disclosed in the above publication. a is a titanium aluminum turbine wheel of a turbocharger, and b is a steel shaft. c is a hollow insert material interposed between the titanium aluminum turbine wheel a and the steel shaft b. The insert material c and the shaft b are first joined (e) by a joining method such as an electron beam, and then the insert c and the turbine wheel a are joined (f) by friction welding.
[0006]
Further, in order to solve the above-described problems of the conventional technique, the applicant of the present application is as shown in FIG. 3, as shown in FIG. 3, the joining surface of either the titanium aluminide member 2 and the low alloy steel member or the ordinary steel member 1. And a step of fitting a mediator material 3 thicker than the depth of the concave portion 4 into the concave portion 4. The titanium aluminide member 2 and the low alloy steel member or the ordinary steel member 1 are rotated relative to each other for friction. Invented a method of joining titanium aluminide and low alloy steel or ordinary steel, which has a step of pressing and joining while heating and a step of naturally cooling these integrated members, and filed a patent application (patent application) Hei 7-81013 (unpublished)).
[0007]
[Problems to be solved by the invention]
However, the silver brazing described above has low strength, and becomes weaker as the temperature rises, so that the reliability is not sufficient.
[0008]
In addition, even in joining by friction welding, ordinary steel and a heat-resistant alloy insert material must be joined by electron beam welding or the like, and the heat-resistant alloy insert material must be hollow in order to reduce the amount of heat transfer to the shaft.
[0009]
In the technology of Japanese Patent Application No. 7-81013 (unpublished) relating to the application of the present applicant, a concave portion is provided on the joining surface of one of a titanium aluminide member and a low alloy steel member or a normal steel member, and a mediating material is provided in the concave portion. Even in joining that is pressed while heating by friction, for the convenience of providing a recess on the joining surface, the outer diameter must be larger only at the edge of the recess than the product dimension, and the amount of processing after joining is increased. Increase significantly.
There were problems such as.
[0010]
The present invention has been devised in view of the above problems, and easily and wastefully uses a low alloy steel shaft or steel shaft having a large change in constitution due to cooling after heating and a titanium aluminide rotating body having a small ductility. An object of the present invention is to provide a joining method for joining together.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, in the first invention of the low alloy steel shaft or the method of joining the steel shaft and the titanium aluminide rotating body of the present invention, the low alloy steel shaft or the steel shaft and the titanium aluminide rotation A joining method with the body,
Placing the heat-resistant alloy member provided with a hole on the low alloy steel shaft or the joining surface of the steel shaft;
Welding the portion of the hole with a heat-resistant alloy and fixing the low alloy steel shaft or the steel shaft and the heat-resistant alloy member integrally;
The low alloy steel shaft or the steel shaft and the titanium aluminide rotating body are relatively rotated and pressed while being heated by friction to be joined.
[0012]
In the second invention, the heat-resistant alloy member is formed in a disc shape.
[0013]
In the third invention, a low alloy steel shaft or a method of joining a steel shaft and a titanium aluminide rotating body, wherein a heat resistant alloy is formed in a disc shape on the joining surface of the low alloy steel shaft or the steel shaft. And a step of covering the low alloy steel shaft or the steel shaft and the titanium aluminide rotating body by relatively rotating and pressing and joining them while heating by friction.
[0014]
According to the above-described joining method, the heat-resistant alloy member provided with the hole is placed on the joining surface of the low alloy steel shaft or the steel shaft having an outer diameter substantially the same as the shaft diameter of the titanium aluminide rotating body, After the part is welded with a heat-resistant alloy and the low-alloy steel shaft or the steel shaft and the heat-resistant alloy member are fixed together, or the heat-resistant alloy is applied to the joint surface of the low-alloy steel shaft or the steel shaft. After covering the plate with welding by welding, the low alloy steel shaft or the steel shaft and the titanium aluminide rotating body are rotated relative to each other and pressed and joined while being heated by friction. Since the difference in volume change between ordinary steel or low alloy steel and titanium aluminide that occurs during cooling is absorbed, it is possible to prevent the occurrence of cracks or the like at the joint.
[0015]
If a low alloy steel shaft or a steel shaft having an outer diameter substantially the same as the shaft diameter of the titanium aluminide rotating body is joined, the machining cost after friction welding can be minimized.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
1 and 2 are side views in which a part of a joint according to an embodiment of the present invention is cut away.
In FIGS. 1 and 2, 11 is a low alloy steel shaft or a plain steel shaft, which is one member to be joined, and 12 is a titanium aluminide rotating body, which is the other member to be joined. Reference numeral 13 denotes a heat-resistant alloy member having a hole 14 in the center placed on the joining surface of the low alloy steel shaft or the plain steel shaft 11. It is a heat resistant alloy in which an alloy steel shaft or a plain steel shaft 11 is fixed. Further, reference numeral 16 shown in FIG. 2 denotes a heat-resistant alloy member in which the joint surfaces of the low-alloy steel shaft and the ordinary steel shaft 11 are covered with a weld plate in a disk shape instead of the heat-resistant alloy member 13.
[0017]
The low-alloy steel shaft and the ordinary steel shaft 11 and the titanium aluminide rotating body 12 are joined by using a friction welding apparatus (not shown). The heat-resistant alloy member 13 provided with the hole 14 or the heat-resistant alloy member 15 that is covered with a metal plate by welding is joined as a medium.
[0018]
【Example】
Hereinafter, examples of the present embodiment will be described in detail.
In the joining test, chromium molybdenum steel (SCM435 steel) is used for one member to be joined, titanium aluminide compound is used for the other member, and the dimensions of chromium molybdenum steel (low alloy steel member) 1 are 15 mm in outer diameter and length. The dimensions of the titanium aluminide compound 2 were 30 mm and the outer diameter was 15 mm and the length was 25 mm. In addition, at first, the heat-resistant alloy member 13 provided with the holes 14 shown in FIG. 1 was used for joining, and the heat-resistant alloy member 13 was a disk of nickel alloy material (NCF600-JIS standard) having a thickness of 2 mm. Next, it joined using the member 16 made from a heat-resistant alloy which was covered by welding as shown in FIG. In addition, the nickel alloy material (Inco Weld82) marketed was used for the welding rod used for these welding. In addition, welding was performed by general Tig welding, and fixed or metallized.
[0019]
In the first joining test, that is, the joining test using the heat-resistant alloy member 13 provided with the holes 14,
Rotation speed: 2000rpm
Frictional pressure and offset: 294 MPa, 1.5 mm
Upset pressure and time: 392 MPa, 6 sec
Under this condition, after performing twice, the tensile test of the joining test piece was performed at room temperature, and the result is as follows.
[0020]
The test results were confirmed to have a tensile strength of 270 MPa and 350 MPa.
In the second joining test, that is, the joining test using the heat-resistant alloy member 16 coated with welding by welding, a height of 1.5 mm to 2.0 mm is formed on the joining surface of the low alloy steel member (SCM435 steel). The metal plating was applied. After this metal plating, the friction welding was performed twice under the same conditions as the first bonding test, and then the tensile test of the bonding test piece was performed at room temperature. The results are as follows. is there.
[0021]
The test results were confirmed to have tensile strengths of 414 MPa and 480 MPa. This strength is substantially equal to that of the titanium aluminide base material, and the joint efficiency is close to 100.
[0022]
【The invention's effect】
As described above, the present invention is a low alloy to be joined even when joining a low alloy steel shaft or a normal steel shaft having a large volume change due to cooling after heating and a titanium aluminide rotating body having a small ductility. Relative rotation by placing a heat-resistant alloy member with holes on the joint surface of an alloy steel shaft or ordinary steel shaft and welding the holes to fix them, or by mediating the heat-resistant alloy members coated with welding by welding Because it is heated and pressed by friction and joined, the heat-resistant alloy absorbs the difference in volume change at the time of cooling, can prevent the occurrence of cracks etc., and obtain sufficient strength It has excellent effects such as
[Brief description of the drawings]
FIG. 1 is a side view in which a part of a joint according to an embodiment of the present invention is cut away.
FIG. 2 is a side view in which a part of a joint according to another embodiment of the present invention is cut away.
FIG. 3 is a side view showing a joint portion of Japanese Patent Application No. 7-81013 relating to an existing application.
FIG. 4 is a cross-sectional view showing a joint portion by a conventional method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Low alloy steel or ordinary steel member 2 Titanium aluminide member 3 Mediating member 4 Recess 11 Low alloy steel shaft and ordinary steel shaft 12 Titanium aluminide rotating body 13 Heat-resistant alloy member 14 Hole 15 Welded portion 16 Welded by welding Heat-resistant alloy member

Claims (3)

低合金鋼製シャフトまたは鋼製シャフトとチタンアルミナイド製回転体との接合方法であって、
前記低合金鋼製シャフトまたは鋼製シャフトの接合表面に、穴を設けた耐熱合金製部材を載せる工程と、
該穴の部分を耐熱合金で溶接して前記低合金鋼製シャフトまたは鋼製シャフトと耐熱合金製部材とを一体に固定する工程と、
前記低合金鋼製シャフトまたは鋼製シャフトとチタンアルミナイド製回転体とを相対回転させて摩擦により加熱しながら押し付けて接合する工程と、
を有する低合金鋼製シャフトまたは鋼製シャフトとチタンアルミナイド製回転体との接合方法。
A low alloy steel shaft or a joining method of a steel shaft and a titanium aluminide rotating body,
Placing the heat-resistant alloy member provided with a hole on the low alloy steel shaft or the joining surface of the steel shaft;
Welding the portion of the hole with a heat-resistant alloy and fixing the low alloy steel shaft or the steel shaft and the heat-resistant alloy member integrally;
The low alloy steel shaft or the steel shaft and the titanium aluminide rotating body are relatively rotated and pressed while being heated by friction and joined together.
A low alloy steel shaft or a joining method of a steel shaft and a titanium aluminide rotating body.
耐熱合金製部材は、円板状に形成している請求項1記載の低合金鋼製シャフトまたは鋼製シャフトとチタンアルミナイド製回転体との接合方法。The low-alloy steel shaft or the steel shaft and the titanium aluminide rotating body according to claim 1, wherein the heat-resistant alloy member is formed in a disk shape. 低合金鋼製シャフトまたは鋼製シャフトとチタンアルミナイド製回転体との接合方法であって、前記低合金鋼製シャフトまたは鋼製シャフトの接合表面に、耐熱合金を円板状に溶接で盛金被覆する工程と、前記低合金鋼製シャフトまたは鋼製シャフトとチタンアルミナイド製回転体とを相対回転させて摩擦により加熱しながら押し付けて接合する工程と、を有する低合金鋼製シャフトまたは鋼製シャフトとチタンアルミナイド製回転体との接合方法。  A method of joining a low alloy steel shaft or a steel shaft and a titanium aluminide rotating body, wherein a heat-resistant alloy is welded in a disk shape to the joining surface of the low alloy steel shaft or steel shaft. A low alloy steel shaft or a steel shaft, and a step of relatively rotating the low alloy steel shaft or the steel shaft and the titanium aluminide rotating body and pressing them while being heated by friction. Bonding method with titanium aluminide rotating body.
JP23361795A 1995-09-12 1995-09-12 Low alloy steel shaft or joining method of steel shaft and titanium aluminide rotating body Expired - Fee Related JP3646742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23361795A JP3646742B2 (en) 1995-09-12 1995-09-12 Low alloy steel shaft or joining method of steel shaft and titanium aluminide rotating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23361795A JP3646742B2 (en) 1995-09-12 1995-09-12 Low alloy steel shaft or joining method of steel shaft and titanium aluminide rotating body

Publications (2)

Publication Number Publication Date
JPH0976079A JPH0976079A (en) 1997-03-25
JP3646742B2 true JP3646742B2 (en) 2005-05-11

Family

ID=16957858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23361795A Expired - Fee Related JP3646742B2 (en) 1995-09-12 1995-09-12 Low alloy steel shaft or joining method of steel shaft and titanium aluminide rotating body

Country Status (1)

Country Link
JP (1) JP3646742B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1068269C (en) * 1997-12-26 2001-07-11 冶金工业部钢铁研究总院 Method for connecting Ti-Al alloy turbine rotor with structure steel shaft
US6138896A (en) * 1998-10-05 2000-10-31 General Electric Company Superspeed inertia welding
WO2003048527A1 (en) * 2001-11-30 2003-06-12 Hitachi, Ltd. Gas turbine power generator and its assembling method
CN112207420B (en) * 2020-09-25 2021-12-24 北京科技大学 Method for heterogeneous rotary friction welding of titanium alloy and steel

Also Published As

Publication number Publication date
JPH0976079A (en) 1997-03-25

Similar Documents

Publication Publication Date Title
US6543670B2 (en) Interface preparation for weld joints
JP4257728B2 (en) Formation method of spatter target assembly
EP0816007B1 (en) Method of friction-welding a shaft to a titanium aluminide turbine rotor
JP2672182B2 (en) Joining method for steel-based materials and aluminum-based materials
JPH0249267B2 (en)
JP2004528990A (en) Anvil for friction stir welding of high temperature materials
JP3646742B2 (en) Low alloy steel shaft or joining method of steel shaft and titanium aluminide rotating body
JPH01283367A (en) Production of target for sputtering
JP3445579B2 (en) Bonding structure between dissimilar metal hollow members and bonding method thereof
US5633093A (en) Counterweight attachment technique
JP2726796B2 (en) Multi-layer sliding member and manufacturing method thereof
JP3240211B2 (en) Copper-aluminum dissimilar metal joint material
JPH05263875A (en) Metallic composite counterweight for aluminum drive shaft and attachment technique
JPH08270499A (en) Junction valve seat
JPH08281454A (en) Method for joining titanium-aluminide and low alloy steel or plain steel
JP2695377B2 (en) Composite member of beryllium thin plate and copper member, and joining method of beryllium thin plate and copper member
JP2002349216A (en) Method for joining valve seat
JPH069907B2 (en) Method for producing composite material composed of graphite and metal
JPS59127982A (en) Joining by frictional pressure welding of member of different kind
JPH06109085A (en) Joint of ring gear
JPH0263681A (en) Method of joining aluminum or aluminum alloy and stainless steel
JP3627461B2 (en) Braking drum of eddy current type speed reducer
JPS59215281A (en) Press welding method of two members of which surfaces to be joined consist of metal
JPH07151188A (en) Mounting method of balance weight made of steel onto driving shaft made of aluminum, driving shaft and metallic composite body for mounting thereof
JP2005040805A (en) Method for sealing working part of heat-resistant member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050201

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees