JP2005271015A - Friction welding method of steel tube and aluminum alloy hollow member - Google Patents
Friction welding method of steel tube and aluminum alloy hollow member Download PDFInfo
- Publication number
- JP2005271015A JP2005271015A JP2004086064A JP2004086064A JP2005271015A JP 2005271015 A JP2005271015 A JP 2005271015A JP 2004086064 A JP2004086064 A JP 2004086064A JP 2004086064 A JP2004086064 A JP 2004086064A JP 2005271015 A JP2005271015 A JP 2005271015A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- friction
- mpa
- hollow member
- steel pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Description
本発明は、鋼管とアルミニウム合金中空部材の摩擦圧接方法、詳しくは、直径50mm以上、肉厚5mm未満の炭素鋼管または合金鋼管(ステンレス鋼管を除く)と、アルミニウム合金の管、中空押出材、中空鋳物などからなるアルミニウム合金中空部材とを摩擦圧接する方法に関する。 The present invention relates to a friction welding method between a steel pipe and an aluminum alloy hollow member. Specifically, a carbon steel pipe or an alloy steel pipe (excluding a stainless steel pipe) having a diameter of 50 mm or more and less than 5 mm in thickness, an aluminum alloy pipe, a hollow extruded material, a hollow The present invention relates to a method of friction welding a hollow aluminum alloy member made of a casting or the like.
鋼材とアルミニウム合金材との接合においては、MIG溶接、TIG溶接や電子ビーム溶接のような溶融溶接は、溶接の際、鉄とアルミニウムの脆い金属間化合物が形成されるために困難であり、接合時に液相を形成しない摩擦圧接が試みられているが、両者の摩擦圧接も容易ではなく、アルミニウム合金母材強度に近い継ぎ手強度が得られていないのが現状であり、摩擦圧接されたプロペラシャフトが実用化された唯一の量産品として知られているに過ぎない(ATZ Automobiltecnische Zeitschrift 99(1997)5,256-263頁) 。 In joining steel and aluminum alloy materials, fusion welding such as MIG welding, TIG welding, and electron beam welding is difficult because a brittle intermetallic compound of iron and aluminum is formed during welding. Friction welding that does not form a liquid phase is sometimes attempted, but the friction welding between the two is not easy and the joint strength close to the strength of the aluminum alloy base material has not been obtained. Is only known as the only mass-produced product (ATZ Automobiltecnische Zeitschrift 99 (1997) 5, pages 256-263).
このような背景から、改善された鋼材とアルミニウム合金材との摩擦圧接方法を得るために、種々の技術が提案されている。例えば、アルミニウム合金母材に近い継ぎ手強度を得るために、アルミニウム合金のMg含有量と鋼材の炭素含有量とを特定し、2つの部材の実質摩擦時間を炭素含有量との関係で規制するとともに、アプセット圧力を特定範囲として摩擦圧接する方法(特許文献1参照)、母材としてのアルミニウムと強化材としてのステンレス鋼繊維からなるインサート材を介在させて、アルミニウム管と鋼管を摩擦圧接し強固な継ぎ手を得る方法(特許文献2参照)が提案されている。 Against this background, various techniques have been proposed in order to obtain an improved friction welding method between a steel material and an aluminum alloy material. For example, in order to obtain a joint strength close to that of an aluminum alloy base material, the Mg content of the aluminum alloy and the carbon content of the steel material are specified, and the actual friction time of the two members is regulated in relation to the carbon content. , A method of friction welding with an upset pressure as a specific range (see Patent Document 1), an aluminum tube and a steel tube are interposed between an aluminum material as a base material and a stainless steel fiber as a reinforcing material, and the aluminum tube and the steel tube are friction welded. A method for obtaining a joint (see Patent Document 2) has been proposed.
しかしながら、これらの方法は、自動車のプロペラシャフト、アクスルハウジング、トーションバーなど、直径50mm以上の大寸法の鋼製中空部材で構成されている自動車部材について部分的にアルミニウム合金中空部材で置換した構造を実現するために、鋼管とアルミニウム合金中空部材とを摩擦圧接する量産方法とした場合に適用するには、圧接機の機械的能力や製造コストの面で必ずしも満足すべきものではない。
摩擦圧接は、図1〜2に示すように、接合すべき2つの材料A、Bを突き合わせ、摩擦圧力(P1)を負荷しながら設定された摩擦寄り代(U1)が達成される(設定された寄り代(U1)が0になる)まで相対的に回転させる摩擦過程と、摩擦過程終了後、アプセット圧力(P2)を負荷しながら回転にブレーキをかけ回転を停止させるアプセット過程からなる接合方法である。アプセット過程ではアプセット寄り代(U2)が生じ、摩擦寄り代とアプセット寄り代との合計寄り代、全寄り代(U)の結果としてバリを発生させ、接合界面に生成した金属間化合物や酸化物がバリとして排除される。図1は摩擦圧接前に材料A、Bを突き合わせた状態、図2は摩擦過程終了後の状態で摩擦過程でのバリ発生を示す図である。 As shown in FIGS. 1 and 2, the friction welding is performed by abutting two materials A and B to be joined together and achieving a set friction margin (U1) while applying the friction pressure (P1). A friction process in which rotation is relatively performed until the offset margin (U1 becomes 0), and an upset process in which the rotation is stopped by applying a brake to the rotation while applying the upset pressure (P2) after the completion of the friction process. It is. In the upset process, an upset margin (U2) is generated, and as a result of the total margin of the friction margin and the upset margin, and as a result of the total margin (U), burrs are generated, and intermetallic compounds and oxides formed at the joint interface. Is excluded as a burr. FIG. 1 is a view showing the occurrence of burrs in the friction process in a state where the materials A and B are abutted before friction welding, and FIG. 2 is a state after the friction process is finished.
鋼材とアルミニウム合金材とくにAl−Mg合金材を摩擦圧接すると、Al−Fe化合物などの金属間化合物および酸化物が生成し易く接合が阻害される。界面の金属間化合物や酸化物を排除して金属結合を確保するために、従来はアプセット圧力P2をできるだけ高くすることが必要と考えられていたが、高いP2で圧接しても鋼材が変形しないため、接合界面にアルミニウム合金の渋滞領域(デッドメタルゾーン)が形成され、金属間化合物や酸化物をバリとして排除することが容易ではなく、また、管同士、とくに直径50mm以上、肉厚5mm未満の大寸法の薄肉管同士を圧接する場合には、P2が材料の耐力以下であっても、アルミニウム合金管の界面近傍が半径方向に変形して、アルミニウム合金のバリの流れが内径側と外径側で不均一となり界面にせん断力が発生するため良好な継ぎ手を得ることが困難である。 When a steel material and an aluminum alloy material, particularly an Al—Mg alloy material, are friction welded, intermetallic compounds such as an Al—Fe compound and oxides are likely to be formed, and bonding is hindered. Previously, it was considered necessary to increase the upset pressure P2 as much as possible in order to eliminate the intermetallic compounds and oxides at the interface, and to secure the metal bond. However, the steel material does not deform even when pressed at a high P2. Therefore, a congested region (dead metal zone) of an aluminum alloy is formed at the joining interface, and it is not easy to exclude intermetallic compounds and oxides as burrs. Also, pipes, particularly, a diameter of 50 mm or more and a wall thickness of less than 5 mm When the large-sized thin tubes are pressed against each other, even if P2 is less than the proof stress of the material, the vicinity of the interface of the aluminum alloy tube is deformed in the radial direction, and the burr flow of the aluminum alloy is It becomes difficult to obtain a good joint because it becomes uneven on the diameter side and shear force is generated at the interface.
発明者らは、鋼管とアルミニウム管の摩擦圧接における上記従来の問題点を解消するために、脆いAl−Fe化合物が生成し易いMg含有アルミニウム合金のMg含有量、摩擦圧力、摩擦過程での摩擦寄り代、アプセット圧力などの摩擦圧接条件と接合特性の関係について多角的に検討を加えた結果として、金属間化合物の生成を抑制し、P2の低い領域で改善された接合強度を得ることができる圧接条件を見出した。 In order to eliminate the above-mentioned conventional problems in the friction welding of a steel pipe and an aluminum pipe, the inventors have developed the Mg content, friction pressure, friction in the friction process of the Mg-containing aluminum alloy in which a brittle Al—Fe compound is easily generated. As a result of diversified investigations on the relationship between friction welding conditions such as offset and upset pressure and bonding characteristics, it is possible to suppress the formation of intermetallic compounds and obtain improved bonding strength in a low P2 region. The pressure welding conditions were found.
また、摩擦圧接時のアルミニウム合金管の変形は、摩擦過程終了後、アプセット圧力P2を負荷しながら回転にブレーキをかけ回転を停止させるまでの短時間の間においてアプセット寄り代が生じるときに生じるもので、変形はアプセット寄り代が大きいほど増大すること、摩擦過程での摩擦寄り代が大きくなると、アプセット寄り代が生じるときの変形が大きくなることを見出した。 In addition, deformation of the aluminum alloy tube during friction welding occurs when the upset shift margin occurs after a friction process is completed, during a short period of time from when the upset pressure P2 is applied to when the rotation is braked and the rotation is stopped. Thus, it has been found that the deformation increases as the upset shift margin increases, and that the deformation when the upset shift margin occurs increases as the friction shift margin increases in the friction process.
本発明は、上記の知見に基づき、さらに検討を重ねた結果としてなされたものであり、その目的は、金属間化合物や酸化物の生成が抑えられ、低い領域のP2の負荷で高い接合強度が得られ、接合時におけるアルミニウム合金管の変形も抑制でき、とくに、直径50mm以上、肉厚5mm未満の炭素鋼管または合金鋼管とアルミニウム合金中空部材の摩擦圧接に好適な鋼管とアルミニウム合金中空部材の摩擦圧接方法を提供することにある。 The present invention has been made as a result of further studies based on the above knowledge, and its purpose is to suppress the formation of intermetallic compounds and oxides, and to achieve high bonding strength with a low P2 load. It is also possible to suppress deformation of the aluminum alloy tube at the time of joining. In particular, the friction between the steel tube and the aluminum alloy hollow member suitable for friction welding of a carbon steel pipe or alloy steel tube having a diameter of 50 mm or more and a wall thickness of less than 5 mm and the aluminum alloy hollow member. It is to provide a pressure welding method.
上記の目的を達成するための請求項1による鋼管とアルミニウム合金中空部材の摩擦圧接方法は、直径50mm以上、肉厚5mm未満の炭素鋼管または合金鋼管とアルミニウム合金中空部材を摩擦圧接する方法であって、これら2つの部材を突き合わせ、0.1〜2.0mmの摩擦寄り代(U1)が達成されるまで摩擦圧力(P1)10〜80MPaで相対的回転摩擦を行う摩擦過程と、アプセット圧力(P2)を60〜130MPa(但しP1≦P2)とするアプセット過程からなることを特徴とする。
The friction welding method of the steel pipe and the aluminum alloy hollow member according to
請求項2による鋼管とアルミニウム合金中空部材の摩擦圧接方法は、請求項1において、前記アルミニウム合金中空部材が2.0%未満のMgを含有するものであることを特徴とする。
A friction welding method for a steel pipe and an aluminum alloy hollow member according to claim 2 is characterized in that, in
請求項3による鋼管とアルミニウム合金中空部材の摩擦圧接方法は、請求項1において、前記アルミニウム合金中空部材がMgを主要合金成分とするAl−Mg系合金でMg2.0%以上を含有し、且つ加工硬化により耐力が150MPa以上に調整されたものであり、P1を30〜60MPa、U1を0.1〜1.5mm、P2を60〜110MPa(但しP1≦P2)とすることを特徴とする。
The method of friction welding of a steel pipe and an aluminum alloy hollow member according to claim 3 is characterized in that, in
請求項4による鋼管とアルミニウム合金中空部材の摩擦圧接方法は、請求項1において、P1を20〜80MPa、U1を0.1〜1.5mmとし、U1とアプセット過程におけるアプセット寄り代(U2)からなる全寄り代(U)を15mm以下に制御することを特徴とする。
The friction welding method of the steel pipe and the aluminum alloy hollow member according to claim 4 is the method according to
請求項5による鋼管とアルミニウム合金中空部材の摩擦圧接方法は、請求項4において、前記相対的回転摩擦における一方の部材の周速(V)が0.8〜3m/sであることを特徴とする。 The friction welding method for a steel pipe and an aluminum alloy hollow member according to claim 5 is characterized in that, in claim 4, the peripheral speed (V) of one member in the relative rotational friction is 0.8 to 3 m / s. To do.
請求項6による鋼管とアルミニウム合金中空部材の摩擦圧接方法は、請求項4において、摩擦過程終了後に回転ブレーキをかけるとともに、圧力をP1からP2に切り換える際、回転ブレーキをかけた後、0.04秒以上0.4秒未満の時間経過後にP1をP2に切り換えることを特徴とする。 According to a sixth aspect of the present invention, there is provided a friction welding method for a steel pipe and an aluminum alloy hollow member according to the fourth aspect, wherein the rotary brake is applied after completion of the friction process, and when the pressure is switched from P1 to P2, the rotational brake is applied. P1 is switched to P2 after the elapse of time of at least 2 seconds and less than 0.4 seconds.
本発明によれば、金属間化合物や酸化物の生成が抑えられ、低い領域のP2の負荷で高い接合強度が得られ、接合時におけるアルミニウム合金管の変形も抑制でき、とくに、直径50mm以上、肉厚5mm未満の炭素鋼管または合金鋼管とアルミニウム合金中空部材の摩擦圧接に好適な鋼管とアルミニウム合金中空部材の摩擦圧接方法が提供される。当該摩擦圧接方法は、従来は鋼製中空部材で構成されていた部材、例えば、自動車のプロペラシャフト、アクスルハウジング、トーションバーなどの部材を部分的にアルミニウム合金に置換した構造とする場合に好適に適用することができる。 According to the present invention, generation of intermetallic compounds and oxides is suppressed, high joint strength is obtained with a load of P2 in a low region, and deformation of the aluminum alloy tube at the time of joining can be suppressed. A friction welding method for a steel pipe and an aluminum alloy hollow member suitable for friction welding of a carbon steel pipe or alloy steel pipe having a thickness of less than 5 mm and an aluminum alloy hollow member is provided. The friction welding method is suitable for a structure in which a member that has conventionally been formed of a steel hollow member, for example, a member such as an automobile propeller shaft, axle housing, or torsion bar is partially replaced with an aluminum alloy. Can be applied.
本発明は、直径50mm以上、肉厚5mm未満の炭素鋼管または合金鋼管(ステンレス鋼管を除く)とアルミニウム合金中空部材を摩擦圧接する方法であり、これら2つの部材を接触させて、設定された0.1〜2.0mmの摩擦寄り代(U1)が達成されるまで(U1が0となるまで)摩擦圧力(P1)10〜80MPaで相対的回転摩擦を行う摩擦過程と、アプセット圧力(P2)を60〜130MPa(但しP1≦P2)とするアプセット過程からなる。 The present invention is a method of friction welding a carbon steel pipe or alloy steel pipe (excluding a stainless steel pipe) having a diameter of 50 mm or more and a wall thickness of less than 5 mm and an aluminum alloy hollow member, and is set by contacting these two members. .Friction process in which relative rotational friction is performed at a friction pressure (P1) of 10 to 80 MPa, and an upset pressure (P2) until a frictional margin (U1) of 1 to 2.0 mm is achieved (until U1 becomes 0). It consists of the upset process which makes 60-130 MPa (however, P1 <= P2).
摩擦過程の終了時間は摩擦寄り代(U1)の大きさで制御され、負荷される摩擦圧力は10〜80MPaの範囲とするのが好ましい。10MPa未満では金属結合に必要な加熱を得るために時間を要し、接合界面のアルミニウム合金が酸化して接合強度が低下する。80MPaを越えると界面が高温となって金属間化合物が生成し易くなり、また、アプセット圧力(P2)をP1より大きくしなければならないため(P1≦P2)、P2の適用幅が限定されてしまい実用的でない。P1のより好ましい下限値は20MPa、さらに好ましい下限値は30MPaであり、P1のより好ましい上限値は60MPa、さらに好ましい上限値は45MPaである。 The end time of the friction process is controlled by the magnitude of the frictional margin (U1), and the applied friction pressure is preferably in the range of 10 to 80 MPa. If it is less than 10 MPa, it takes time to obtain the heating necessary for the metal bonding, and the aluminum alloy at the bonding interface is oxidized and the bonding strength decreases. If it exceeds 80 MPa, the interface becomes high temperature and intermetallic compounds are likely to be formed, and the upset pressure (P2) must be larger than P1 (P1 ≦ P2), so the applicable range of P2 is limited. Not practical. A more preferable lower limit value of P1 is 20 MPa, and a more preferable lower limit value is 30 MPa. A more preferable upper limit value of P1 is 60 MPa, and a more preferable upper limit value is 45 MPa.
摩擦寄り代(U1)は、金属結合を確保するに必要な加熱を行うために設定され、設定されたU1が0となるまで摩擦圧力(P1)を負荷して回転摩擦を続けるから、U1は摩擦過程の時間を決定することとなる。必要な界面部の加熱を得るために設定されるU1の好ましい範囲は0.1〜2.0mmであり、2.0mmを越える過剰なU1を設定すると、界面に酸化層を生成させ、U1により発生するバリが直後のアプセット時のバリ発生において不均一なメタルフローが生じる原因となる。U1のより好ましい範囲は0.2〜1.5mm、さらに好ましい範囲は0.3〜1.0mmである。 The friction margin (U1) is set to perform heating necessary to secure the metal bond, and the frictional pressure (P1) is applied until the set U1 becomes 0, so that the rotational friction is continued. The time of the friction process will be determined. The preferable range of U1 set in order to obtain the necessary heating at the interface is 0.1 to 2.0 mm. When excessive U1 exceeding 2.0 mm is set, an oxide layer is generated at the interface, The generated burrs cause a non-uniform metal flow when burring occurs immediately after upsetting. A more preferable range of U1 is 0.2 to 1.5 mm, and a more preferable range is 0.3 to 1.0 mm.
アプセット圧力(P2)は、鋼管とアルミニウム合金中空部材の間の金属結合の強さを最終的に決定するものであり、60〜130MPaの範囲とするのが好ましい。P2が60MPa未満では接合強度が十分でなく、130MPaを越えると、摩擦寄り代(U1)とアプセット寄り代(U2)を合計した全寄り代(U)が大きくなり、アルミニウム合金中空部材の内側および外側、アルミニウム合金管の場合には内径側および外径側に生じるバリの流れの不均一性が増加する結果、界面にせん断力が発生して接合強度が低下する。とくに、アルミニウム合金管の場合、鋼管もアルミニウム合金管も工業製品である限り、真円度、肉厚、材質のバラツキが避けられず、P2がアルミニウム合金管の耐力以下であってもアプセット過程でアルミニウム合金管に微小な変形が生じ、バリの流れが不均一となるから、P2の上限は130MPaに限定することが望ましい。P2のより好ましい範囲は60〜115MPa、さらに好ましい範囲は60〜110MPaである。 The upset pressure (P2) finally determines the strength of the metal bond between the steel pipe and the aluminum alloy hollow member, and is preferably in the range of 60 to 130 MPa. If P2 is less than 60 MPa, the bonding strength is not sufficient, and if it exceeds 130 MPa, the total margin (U), which is the sum of the friction margin (U1) and the upset margin (U2), increases, and the inside of the aluminum alloy hollow member and In the case of an aluminum alloy tube on the outside, the non-uniformity of the flow of burrs generated on the inner diameter side and the outer diameter side increases, and as a result, a shearing force is generated at the interface and the bonding strength decreases. In particular, in the case of aluminum alloy pipes, as long as steel pipes and aluminum alloy pipes are industrial products, roundness, wall thickness, and material variations cannot be avoided. It is desirable that the upper limit of P2 be limited to 130 MPa because minute deformation occurs in the aluminum alloy tube and the flow of burrs becomes uneven. A more preferable range of P2 is 60 to 115 MPa, and a more preferable range is 60 to 110 MPa.
その他、摩擦圧接の作業条件における機械的因子として、回転数N、ブレーキタイミング、アプセット時間T2があるが、ブレーキタイミング、アプセット時間T2については、鋼あるいは鋳鉄同士、アルミニウム合金同士の摩擦圧接において通常実施されている範囲、例えば、ブレーキタイミングは、回転ブレーキをかけた後、0〜0.5秒経過後にP1をP2に切り換え、アプセット時間T2は2〜30秒が適用される。回転数Nについては、通常800〜3000rpmの範囲が適用されるが、本発明においては、U2を小さくしてバリの流れを均一にするために、上限値を1260rpm(4.0m/s)、より好ましくは1200rpm(3.8m/s)に限定するのがよい。 Other mechanical factors in the friction welding work conditions include the rotational speed N, brake timing, and upset time T2, and the brake timing and upset time T2 are usually implemented in friction welding between steel or cast iron and between aluminum alloys. The applied range, for example, the brake timing is changed from P1 to P2 after 0 to 0.5 seconds have elapsed after the rotary brake is applied, and 2 to 30 seconds is applied as the upset time T2. As for the rotational speed N, a range of 800 to 3000 rpm is usually applied. In the present invention, in order to make U2 small and make the flow of burrs uniform, the upper limit is 1260 rpm (4.0 m / s), More preferably, it should be limited to 1200 rpm (3.8 m / s).
本発明の好ましい実施形態について説明すると、第1の実施形態は、上記の基本的条件に加え、アルミニウム合金中空部材として2.0%未満のMgを含有するものを用いる態様である。Mg含有量を2%未満とすることにより、接合性に有害なFe−Al金属間化合物の生成が抑えられる。なお、この場合において、P1のより好ましい範囲は20〜60MPa、さらに好ましい範囲は20〜45MPaであり、U1のより好ましい範囲は0.2〜1.0mmである。また、P2のより好ましい範囲は60〜115MPaである。 A preferred embodiment of the present invention will be described. In the first embodiment, in addition to the above basic conditions, an aluminum alloy hollow member containing less than 2.0% Mg is used. By setting the Mg content to less than 2%, the generation of Fe—Al intermetallic compounds that are detrimental to bondability can be suppressed. In this case, a more preferable range of P1 is 20 to 60 MPa, a further preferable range is 20 to 45 MPa, and a more preferable range of U1 is 0.2 to 1.0 mm. A more preferable range of P2 is 60 to 115 MPa.
好ましい第2の実施形態は、アルミニウム合金中空部材がMgを主要合金成分とするAl−Mg系合金でMg2.0%以上を含有し、且つ加工硬化により耐力が150MPa以上に調整されたものであり、P1を30〜60MPa、U1を0.1〜1.5mm、P2を60〜110MPa(但しP1≦P2)とする態様である。 In a second preferred embodiment, the aluminum alloy hollow member is an Al—Mg-based alloy containing Mg as a main alloy component, and contains 2.0% or more of Mg, and the yield strength is adjusted to 150 MPa or more by work hardening. , P1 is 30 to 60 MPa, U1 is 0.1 to 1.5 mm, and P2 is 60 to 110 MPa (where P1 ≦ P2).
Mgはアルミニウム中に固溶して強度を高め、加工性や耐食性を向上させる。好ましいMg含有量が2%以上の範囲である。加工硬化によりさらに強度を高めて耐力を150MPa以上とし、摩擦圧接におけるアプセット圧力を負荷した場合、アルミニウム合金管が接合部近傍で半径方向にラッパ状に拡がる変形を抑制する。Mg量の上限はとくに限定されないが、熱間押出性、熱間圧延性の観点から6.0%以下程度とするのが好ましく、また、加工硬化による耐力の上限は300MPa程度である。 Mg dissolves in aluminum to increase the strength and improve workability and corrosion resistance. A preferable Mg content is in the range of 2% or more. When the strength is further increased by work hardening so that the proof stress is 150 MPa or more and an upset pressure is applied in the friction welding, the aluminum alloy tube is prevented from deforming in a trumpet shape in the radial direction in the vicinity of the joint. The upper limit of the amount of Mg is not particularly limited, but is preferably about 6.0% or less from the viewpoint of hot extrudability and hot rollability, and the upper limit of yield strength by work hardening is about 300 MPa.
上記のMg2.0%以上を含有するAl−Mg系合金において、摩擦圧接の摩擦過程で脆弱なAl−Fe金属間化合物の生成を抑制して高い接合強度を達成するためには、P1を30〜60MPa、より好ましくは30〜45MPa、U1を0.1〜1.5mm、より好ましくは0.2〜1.0mmとする。P2を60〜110MPa(但しP1≦P2)とすることが必要であり、P2が110MPaを越えると、P2がアルミニウム合金管の耐力以下であっても、アプセット過程でアルミニウム合金管の微変形が生じるとバリの流れが不均一となり、とくに、Al−Mg合金の場合には高温の変形抵抗が高いので、バリとしてメタルが流れはじめるときの圧力が高く微変形が生じ易く、一度微変形が生じると変形はますます増長される。 In the Al—Mg-based alloy containing Mg of 2.0% or more, in order to suppress the formation of brittle Al—Fe intermetallic compounds in the friction process of friction welding, P1 is set to 30. -60 MPa, more preferably 30-45 MPa, and U1 is 0.1-1.5 mm, more preferably 0.2-1.0 mm. It is necessary to set P2 to 60 to 110 MPa (where P1 ≦ P2). When P2 exceeds 110 MPa, even if P2 is less than the yield strength of the aluminum alloy tube, slight deformation of the aluminum alloy tube occurs during the upset process. The flow of burrs becomes uneven, especially in the case of an Al-Mg alloy, since the deformation resistance at high temperature is high, the pressure when the metal begins to flow as burrs is high and is likely to cause fine deformation. The deformation is increasingly increased.
本発明における好ましい第3の実施形態は、P1を20〜80MPa、U1を0.1〜1.5mmとし、P2を60〜130MPa、より好ましくは60〜115MPa、U1とアプセット過程におけるアプセット寄り代(U2)からなる全寄り代(U)を15mm以下に制御する態様である。 In the third preferred embodiment of the present invention, P1 is set to 20 to 80 MPa, U1 is set to 0.1 to 1.5 mm, P2 is set to 60 to 130 MPa, more preferably 60 to 115 MPa, and U1 and the upset offset in the upset process ( This is a mode in which the total margin (U) consisting of U2) is controlled to 15 mm or less.
Uは、摩擦過程で設定されるU1とアプセット圧力により必然的に生じるアプセット寄り代(U2)の合計であるが、U2の発生時にアルミニウム合金中空部材の変形が生じるので、所定のP2の下ではU2はできるだけ小さいほうが望ましい。U1による小さなバリもアプセット時の変形を誘発するので、U(=U1+U2)を小さくするのが好ましく、Uを15mm以下とすることによって、アルミニウム合金中空部材の変形とバリの流れの不均一性を抑えて接合強度を上げることができる。 U is the sum of U1 set in the friction process and the upset shift margin (U2) inevitably generated by the upset pressure, but since the deformation of the aluminum alloy hollow member occurs when U2 occurs, U2 is preferably as small as possible. Since small burrs caused by U1 also induce deformation at the time of upsetting, it is preferable to reduce U (= U1 + U2). By setting U to 15 mm or less, deformation of the aluminum alloy hollow member and non-uniformity of the flow of burrs are reduced. It can suppress and can raise joint strength.
第3の実施形態において、回転摩擦時に回転する部材の周速は、摩擦過程における発熱速度とU2の大きさに大きく影響する。相対的回転摩擦における一方の部材の周速(V)を0.8〜3m/sとすることがより望ましい。周速(V)が0.8m/s未満では、金属結合に必要な加熱を得るために時間を要し、界面部近傍の加熱域が拡がって、続くアプセット過程において不均一な変形が生じ易くなる。U2は、摩擦過程が終了し、回転ブレーキがかかってから停止するまでの微小時間に発生し、この間において、接触している部材同士が接触部で互いに滑った長さに比例して大きくなるので、U2を小さくするためにはVを小さくすることが必要であり3m/s以下に限定するのが好ましい。一般的にVが3m/sを越えるとU2が大きくなってUが15mmを越え、接合強度が低下する。 In the third embodiment, the peripheral speed of a member that rotates during rotational friction greatly affects the heat generation speed and the magnitude of U2 in the friction process. It is more desirable that the peripheral speed (V) of one member in relative rotational friction is 0.8 to 3 m / s. When the peripheral speed (V) is less than 0.8 m / s, it takes time to obtain the heating necessary for metal bonding, and the heating area near the interface is expanded, and uneven deformation is likely to occur in the subsequent upset process. Become. U2 occurs in a very short time from the end of the friction process to when the rotary brake is applied until it stops, and during this time, the contacting members increase in proportion to the length at which the contacting parts slide against each other. In order to reduce U2, it is necessary to reduce V, and it is preferable to limit it to 3 m / s or less. In general, when V exceeds 3 m / s, U2 increases, U exceeds 15 mm, and the bonding strength decreases.
第3の実施形態においてはまた、摩擦過程終了後に回転ブレーキをかけるとともに、圧力をP1からP2に切り換える際、回転ブレーキをかけると同時にP1からP2への切替えを行わずにP2負荷の開始時刻を遅らせるブレーキタイミングの遅れ(P2L)を0.04秒以上0.4秒未満とし、回転ブレーキをかけた後、0.04秒以上0.4秒未満の時間経過後にP1をP2に切り換える態様とするのが望ましく、P2が負荷される時間を短くすることによりU2を小さくすることができる。P2Lが0.04秒未満ではその効果が十分ではなく、0.4秒以上では、界面に金属間化合物や酸化物が成長するとともに、回転停止の間際で初めてP2が負荷されるため、界面で十分な金属結合を得ることができない。 In the third embodiment, when the rotation brake is applied after the friction process is completed and the pressure is switched from P1 to P2, the start time of the P2 load is set without applying the rotation brake and simultaneously switching from P1 to P2. The brake timing delay (P2L) to be delayed is set to 0.04 seconds or more and less than 0.4 seconds, and after applying the rotation brake, P1 is switched to P2 after the elapse of time of 0.04 seconds or more and less than 0.4 seconds. It is desirable to reduce U2 by reducing the time during which P2 is loaded. If P2L is less than 0.04 seconds, the effect is not sufficient. If 0.42 seconds or more, intermetallic compounds and oxides grow on the interface, and P2 is loaded only before the rotation stops. A sufficient metal bond cannot be obtained.
以下、本発明の実施例を比較例と対比して説明し、本発明の効果を実証する。これらの実施例は、本発明の一実施態様であり、本発明はこれに限定されるものではない。 Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects of the present invention. These examples are one embodiment of the present invention, and the present invention is not limited thereto.
鋼管(STKM13A、外径60mm、厚さ3mm)と、Si:0.61%、Fe:0.11%、Cu:0.27%、Mn:0.02%、Mg:1.07%、Cr:0.06%、Ti:0.03%、残部Alおよび不純物からなる組成を有する6061アルミニウム合金管(調質:T6、外径60mm、厚さ3mm)の端部同士を接触させて、ブレーキ式回転摩擦圧接機を使用し、鋼管を回転させて摩擦圧接した。圧接条件を表1に示す。接合後、外径側のバリを旋削除去し縦に切断して短冊形の引張試験片を成形し、継ぎ手部の引張試験を行った。試験結果を表1に示す。なお、表1において、本発明(請求項1)の条件を外れたものには下線を付した。 Steel pipe (STKM13A, outer diameter 60 mm, thickness 3 mm), Si: 0.61%, Fe: 0.11%, Cu: 0.27%, Mn: 0.02%, Mg: 1.07%, Cr : 0.06%, Ti: 0.03%, the ends of 6061 aluminum alloy pipe (tempered: T6, outer diameter 60 mm, thickness 3 mm) having a composition consisting of the balance Al and impurities are brought into contact with each other to produce a brake. Using a rotary friction welding machine, the steel pipe was rotated and friction welded. Table 1 shows the pressure contact conditions. After joining, the burr on the outer diameter side was removed and cut longitudinally to form a strip-shaped tensile test piece, and the joint portion was subjected to a tensile test. The test results are shown in Table 1. In Table 1, those outside the conditions of the present invention (Claim 1) are underlined.
表1に示すように、請求項1に従う試験材No.1〜4はいずれも190MPaを越える高い引張強さを示している。一方、試験材No.5はP1が低いため、金属結合に必要な加熱を得るために時間を要し界面のアルミニウム合金が酸化して接合強度が低くなっている。試験材No.8はU1が小さいため金属結合を確保するために必要な高温を得ることができず、試験材No.9はU1が大きいため過昇温して金属間化合物が生成し、ともに接合強度が低くなった。試験材No.6はP2が低いため金属結合が十分でなく接合強度が低くなり、試験材No.7はP2が高いため、全寄り代(U)が大きくなってバリの流れが不均一となる結果、界面にせん断力が発生して接合強度が低下している。
As shown in Table 1, the test material No. 1 according to
本発明に従う摩擦圧接プロセスの代表例として、試験材No.3の摩擦圧接のプロセスチャートを図3に示す。図3に示すように、1200rpmで回転する鋼管にアルミニウム合金管を突き合わせて摩擦を開始し(時刻0.2秒)、摩擦圧力(P1)を40MPaに保持し、摩擦寄り代(U1)が約1mmに達した時点で摩擦過程を終了する(時刻0.68秒)。続いてアプセット過程に移行し、回転ブレーキをかけて回転を停止させ、アプセット圧力(P2)を80MPaとして、この圧力を8秒保持し摩擦圧接を終了した。回転ブレーキをかけてから停止まで約0.7秒を要し(停止時刻1.45秒)、この間に大きな寄り代が生じている。摩擦を開始してから回転が停止するまでの実質摩擦時間は本図の場合1.25秒かかっている。 As a representative example of the friction welding process according to the present invention, the test material No. 3 shows a process chart of friction welding of No. 3. As shown in FIG. 3, the aluminum alloy pipe is brought into contact with the steel pipe rotating at 1200 rpm to start friction (time 0.2 seconds), the friction pressure (P1) is kept at 40 MPa, and the friction margin (U1) is about When it reaches 1 mm, the friction process is terminated (time 0.68 seconds). Subsequently, the process proceeded to the upset process, the rotation was stopped by applying a rotation brake, the upset pressure (P2) was set to 80 MPa, this pressure was maintained for 8 seconds, and the friction welding was finished. It takes about 0.7 seconds from applying the rotary brake to stopping (stop time 1.45 seconds), and a large margin is generated during this time. In this figure, the actual friction time from the start of the friction until the rotation stops takes 1.25 seconds.
鋼管(STKM15A、外径50mm、厚さ2.4mm)を回転側とし、該鋼管と端面が同形状の中空部位を有する6082鍛造材(組成:Si1.0%、Mn0.75%、Mg0.9%、断面:図4)を摩擦圧接した。条件は、P1:25MPa、P2:110MPa、U1:0.5mm、回転数(N):1000rpm、ブレーキタイミングの遅れ(P2L):0.2s、T2:10sとした。圧接後、ねじり試験を行ったところ、5000N・mのトルク負荷でも接合部は破断せず、また、接合部から引張試験片を採取して引張試験を行ったところ、引張強さは252MPaと優れた値を示した。
A steel pipe (STKM15A,
鋼管(STKM13A、外径60mm、厚さ3.1mm)と、加工硬化度を調整した表2に示すAl−Mg合金管(外径60mm、厚さ3.1mm)の端部同士を接触させて,ブレーキ式回転摩擦圧接機を使用し、鋼管を回転させて摩擦圧接した。圧接条件は、摩擦圧力(P1):40MPa、摩擦寄り代(U1):0.5mm、アプセット圧力(U2):80MPa、回転速度(回転数):1000rpm、ブレーキタイミングの遅れ(P2L):0.2秒、アプセット時間:8秒とした。 The steel pipe (STKM13A, outer diameter 60 mm, thickness 3.1 mm) and the ends of the Al-Mg alloy pipe (outer diameter 60 mm, thickness 3.1 mm) shown in Table 2 with adjusted work hardening degree are brought into contact with each other. Using a brake type rotary friction welding machine, the steel pipe was rotated and friction welding was performed. The pressure contact conditions were: friction pressure (P1): 40 MPa, friction margin (U1): 0.5 mm, upset pressure (U2): 80 MPa, rotational speed (number of revolutions): 1000 rpm, brake timing delay (P2L): 0. 2 seconds, upset time: 8 seconds.
接合後、外径側のバリを旋削除去し縦に切断して短冊形の引張試験片を成形し、継ぎ手部の引張試験を行った。結果を表2に示す。表2に示すように、冷間加工により耐力を150MPa以上に調整した試験材No.10〜13は良好な接合強度をそなえているが、冷間加工を施していない試験材No.14〜15、耐力が150MPa以上であっても冷間加工を施していない試験材No.16は、いずれも接合強度が劣っている。なお、表2において、本発明(請求項3)の条件を外れたものには下線を付した。 After joining, the burr on the outer diameter side was removed and cut longitudinally to form a strip-shaped tensile test piece, and the joint portion was subjected to a tensile test. The results are shown in Table 2. As shown in Table 2, the test materials No. 1 and B were adjusted to 150 MPa or more by cold working. Nos. 10 to 13 have good bonding strength, but test materials No. 14-15, test material No. which is not cold-worked even if the proof stress is 150 MPa or more. No. 16 has inferior bonding strength. In Table 2, those outside the conditions of the present invention (Claim 3) are underlined.
鋼管(STKM13A、外径60mm、厚さ3.1mm)と、Si:0.05%、Fe:0.16%、Cu:0.04%、Mn:0.05%、Mg:3.6%、Cr:0.21%、Ti:0.03%、残部Alおよび不純物からなる組成を有する5154アルミニウム合金管(調質:H32,外径60mm、厚さ3.1mm)の端部同士を接触させて、ブレーキ式回転摩擦圧接機を使用し、鋼管を回転させて摩擦圧接した。圧接条件を表3に示す。接合後、外径側のバリを旋削除去し縦に切断して短冊形の引張試験片を成形し、継ぎ手部の引張試験を行った。試験結果を表3に示す。なお、表3において、本発明(請求項3)の条件を外れたものには下線を付した。 Steel pipe (STKM13A, outer diameter 60 mm, thickness 3.1 mm), Si: 0.05%, Fe: 0.16%, Cu: 0.04%, Mn: 0.05%, Mg: 3.6% , Cr: 0.21%, Ti: 0.03%, the ends of a 5154 aluminum alloy tube having a composition consisting of the balance Al and impurities (tempered: H32, outer diameter 60 mm, thickness 3.1 mm) are in contact with each other The steel pipe was rotated and friction welded using a brake type rotary friction welding machine. Table 3 shows the pressure contact conditions. After joining, the burr on the outer diameter side was removed and cut longitudinally to form a strip-shaped tensile test piece, and the joint portion was subjected to a tensile test. The test results are shown in Table 3. In Table 3, those outside the conditions of the present invention (Claim 3) are underlined.
表3に示すように、本発明に従う試験材No.17〜22はいずれも130MPaを越える高い接合強度をそなえている。これに対して、P1、P2、U1のいずれかが本発明の条件を外れた試験材No.23〜28は接合強度が劣っている。 As shown in Table 3, the test material No. 17-22 all have high joint strength exceeding 130 MPa. In contrast, any one of P1, P2, and U1 is a test material No. 23-28 are inferior in joint strength.
鋼管(STKM15A、外径80mm、厚さ2.4mm)を回転側とし、該鋼管と端面が同形状の中空部位を有する5052冷間プレス材(組成:Mg2.5%、Cr0.23%、耐力:176MPa、断面:図5)を摩擦圧接した。条件は、P1:35MPa、P2:100MPa、U1:0.5mm、回転数(N):1000rpm、ブレーキタイミングの遅れ(P2L):0.2s、T2:8sとした。圧接後、ねじり試験を行ったところ、5000N・mのトルク負荷でも接合部は破断せず、また、接合部から引張試験片を採取して引張試験を行ったところ、引張強さは142MPaと高い値を示した。 5052 cold-pressed material (composition: Mg2.5%, Cr0.23%, proof stress) with a steel pipe (STKM15A, outer diameter 80mm, thickness 2.4mm) as the rotation side and a hollow part whose end face is the same shape as the steel pipe 176 MPa, cross section: FIG. 5) was friction welded. The conditions were P1: 35 MPa, P2: 100 MPa, U1: 0.5 mm, rotation speed (N): 1000 rpm, brake timing delay (P2L): 0.2 s, T2: 8 s. When the torsion test was performed after the pressure welding, the joint did not break even under a torque load of 5000 N · m. When a tensile test piece was taken from the joint and a tensile test was performed, the tensile strength was as high as 142 MPa. The value is shown.
鋼管(STKM13A、外径60.5mm、厚さ3.1mm)と、Si:0.62%、Fe:0.13%、Cu:0.26%、Mn:0.03%、Mg:1.05%、Cr:0.06%、Ti:0.03%、残部Alおよび不純物からなる組成を有する6061アルミニウム合金管(調質:T6、外径60.5mm、厚さ3.1mm)、Si:0.06%、Fe:0.17%、Cu:0.03%、Mn:0.05%、Mg:3.8%、Cr:0.19%、Ti:0.03%、残部Alおよび不純物からなる組成を有する5154アルミニウム合金管(調質:H34、外径60.5mm、厚さ3.1mm)およびSi:0.08%、Fe:0.08%、Cu:4.32%、Mn:0.65%、Mg:1.65%、Ti:0.02%、残部Alおよび不純物からなる組成を有する2124アルミニウム合金管(調質:T6、外径60.5mm、厚さ3.1mm)の端部同士を接触させて、ブレーキ式回転摩擦圧接機を使用し、鋼管を回転させて摩擦圧接した。圧接条件を表4に示す。接合後、外径側のバリを旋削除去し縦に切断して短冊形の引張試験片を成形し、継ぎ手部の引張試験を行った。試験結果を表4に示す。なお、表4において、本発明(請求項4〜6)の条件を外れたものには下線を付した。 Steel pipe (STKM13A, outer diameter 60.5 mm, thickness 3.1 mm), Si: 0.62%, Fe: 0.13%, Cu: 0.26%, Mn: 0.03%, Mg: 1. 0561, Cr: 0.06%, Ti: 0.03%, 6061 aluminum alloy tube having a composition consisting of the balance Al and impurities (tempered: T6, outer diameter 60.5 mm, thickness 3.1 mm), Si : 0.06%, Fe: 0.17%, Cu: 0.03%, Mn: 0.05%, Mg: 3.8%, Cr: 0.19%, Ti: 0.03%, balance Al And 5154 aluminum alloy tube having a composition comprising impurities (tempering: H34, outer diameter 60.5 mm, thickness 3.1 mm) and Si: 0.08%, Fe: 0.08%, Cu: 4.32% , Mn: 0.65%, Mg: 1.65%, Ti: 0.02%, balance Al The ends of 2124 aluminum alloy pipes (tempered: T6, outer diameter: 60.5 mm, thickness: 3.1 mm) having a composition composed of impurities and using a brake-type rotary friction welding machine, Rotating and friction welding. Table 4 shows the pressure contact conditions. After joining, the burr on the outer diameter side was removed and cut longitudinally to form a strip-shaped tensile test piece, and the joint portion was subjected to a tensile test. The test results are shown in Table 4. In Table 4, those outside the conditions of the present invention (Claims 4 to 6) are underlined.
表4に示すように、本発明に従う試験材No.29〜39は各アルミニウム合金材との組み合わせにおいていずれも優れた接合強度をそなえている。試験材No.40は周速が大きいため、全寄り代が大きくなってバリの流れが不均一となる結果、界面にせん断力が発生し接合強度が低下している。試験材No.41は摩擦寄り代を大きくしたため、過昇温して金属間化合物が生成し接合強度が劣るものとなった。 As shown in Table 4, the test material No. Nos. 29 to 39 have excellent bonding strength in combination with each aluminum alloy material. Test material No. Since No. 40 has a high peripheral speed, the total shift margin becomes large and the flow of burrs becomes non-uniform. As a result, a shearing force is generated at the interface and the bonding strength is reduced. Test material No. Since No. 41 had a large friction margin, it was overheated to produce an intermetallic compound, resulting in poor joint strength.
鋼管(STKM15A、外径50mm、厚さ2.4mm)を回転側とし、該鋼管と端面が同形状の中空部位を有する6082鍛造材(組成:Si1.1%、Mn0.55%、Mg0.90%、調質:T6、断面:図4)を摩擦圧接した。条件は、P1:25MPa、P2:110MPa、U1:0.5mm、U:12.6mm、周速:2.09m/s(回転数(N):800rpm)、ブレーキタイミングの遅れ(P2L):0.2s、T2:10sとした。圧接後、ねじり試験を行ったところ、5000N・mのトルク負荷でも接合部は破断せず、また、接合部から引張試験片を採取して引張試験を行ったところ、引張強さは282MPaと高い値を示した。
6082 forging (composition: Si 1.1%, Mn 0.55%, Mg 0.90) having a steel pipe (STKM15A,
Claims (6)
When the rotation brake is applied after the friction process is completed and the pressure is switched from P1 to P2, after the rotation brake is applied, P1 is switched to P2 after a lapse of 0.04 seconds or more and less than 0.4 seconds. A friction welding method for a steel pipe according to claim 4 and an aluminum alloy hollow member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004086064A JP2005271015A (en) | 2004-03-24 | 2004-03-24 | Friction welding method of steel tube and aluminum alloy hollow member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004086064A JP2005271015A (en) | 2004-03-24 | 2004-03-24 | Friction welding method of steel tube and aluminum alloy hollow member |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005271015A true JP2005271015A (en) | 2005-10-06 |
Family
ID=35171209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004086064A Pending JP2005271015A (en) | 2004-03-24 | 2004-03-24 | Friction welding method of steel tube and aluminum alloy hollow member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005271015A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008000983A1 (en) * | 2006-06-28 | 2008-01-03 | Renault S.A.S. | Structure part obtained via butt-joining for motor vehicle |
JP2010197150A (en) * | 2009-02-24 | 2010-09-09 | Ihi Corp | Device and method for evaluating damage |
US7988032B2 (en) * | 2009-02-25 | 2011-08-02 | Rolls-Royce Plc | Method of welding tubular components |
CN103537791A (en) * | 2012-07-12 | 2014-01-29 | 日立汽车系统九州株式会社 | Aluminum Alloy Propeller Shaft and Friction Welding Process Thereof |
CN115026409A (en) * | 2022-07-06 | 2022-09-09 | 中国兵器装备集团西南技术工程研究所 | High-strength and high-toughness radial friction welding method for steel/aluminum heterogeneous difficult-to-weld alloy |
-
2004
- 2004-03-24 JP JP2004086064A patent/JP2005271015A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008000983A1 (en) * | 2006-06-28 | 2008-01-03 | Renault S.A.S. | Structure part obtained via butt-joining for motor vehicle |
FR2903070A1 (en) * | 2006-06-28 | 2008-01-04 | Renault Sas | STRUCTURE PIECE OBTAINED BY RABOUTING FOR A MOTOR VEHICLE |
JP2010197150A (en) * | 2009-02-24 | 2010-09-09 | Ihi Corp | Device and method for evaluating damage |
US7988032B2 (en) * | 2009-02-25 | 2011-08-02 | Rolls-Royce Plc | Method of welding tubular components |
CN103537791A (en) * | 2012-07-12 | 2014-01-29 | 日立汽车系统九州株式会社 | Aluminum Alloy Propeller Shaft and Friction Welding Process Thereof |
JP2014019190A (en) * | 2012-07-12 | 2014-02-03 | Hitachi Automotive Systems Kyushu Ltd | Aluminum alloy propeller shaft and friction pressure welding method of the same |
US9364918B2 (en) | 2012-07-12 | 2016-06-14 | Hitachi Automotive Systems Kyushu, Ltd. | Aluminum alloy propeller shaft and friction welding process thereof |
CN103537791B (en) * | 2012-07-12 | 2016-06-15 | 日立汽车系统九州株式会社 | The friction welded method of aluminium alloy power transmission shaft |
CN115026409A (en) * | 2022-07-06 | 2022-09-09 | 中国兵器装备集团西南技术工程研究所 | High-strength and high-toughness radial friction welding method for steel/aluminum heterogeneous difficult-to-weld alloy |
CN115026409B (en) * | 2022-07-06 | 2024-02-13 | 中国兵器装备集团西南技术工程研究所 | High-strength and high-toughness radial friction welding method for steel/aluminum heterogeneous refractory alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3209170B2 (en) | Friction welding method and joint for aluminum alloy hollow member | |
US7156282B1 (en) | Titanium-aluminide turbine wheel and shaft assembly, and method for making same | |
JP6739854B2 (en) | Friction welding method | |
US20140102164A1 (en) | Method and apparatus related to joining dissimilar metal | |
WO2017154658A1 (en) | Method for low-temperature joining of metal materials, and joint structure | |
EP0816007A2 (en) | Method of friction-welding a shaft to a titanium aluminide turbine rotor | |
Senthil Murugan et al. | Experimental study on the effect of silver, nickel and chromium interlayers and upset pressure in joining SS304L-AA6063 alloys through direct drive friction welding process | |
Faes et al. | Parameter optimisation for automatic pipeline girth welding using a new friction welding method | |
JP2005271015A (en) | Friction welding method of steel tube and aluminum alloy hollow member | |
Purwanto | Interface Structure in Friction Welded Joints between Stainless Steel 304 and Mild Carbon Steel | |
JP3132602B2 (en) | Manufacturing method of friction welding valve | |
JPH02160188A (en) | Method for joining intermetallic compound of ti-al system and ti-based alloy | |
JP3187274B2 (en) | High strength drive shaft for power transmission and method of manufacturing the same | |
JP2005271016A (en) | Friction welding method of steel tube and aluminum alloy hollow member | |
JP2001090655A (en) | Swash plate for swash plate type compressor, and manufacture thereof | |
JP4753430B2 (en) | Friction welding method of steel and aluminum alloy | |
JP2007296564A (en) | Friction welding method for steel tube and aluminum alloy hollow member | |
JP3437005B2 (en) | Friction welding method for dissimilar metal materials and dissimilar metal joining material | |
JP2003048079A (en) | Friction welding method for aluminum alloy member and steel member | |
JP3132603B2 (en) | Method for manufacturing friction-welded hollow valve | |
JPS59225806A (en) | Rolling roll having tough neck-part and manufacture thereof | |
JP2756238B2 (en) | Friction welding between tungsten-based metal and copper-based metal | |
JPH108924A (en) | Manufacture of valve for large diesel engine | |
JP2000246466A (en) | Friction agitation welding of graphite cast iron | |
JP2001287051A (en) | Friction pressure welding joint of high tensile steel |