JPH02160188A - Method for joining intermetallic compound of ti-al system and ti-based alloy - Google Patents

Method for joining intermetallic compound of ti-al system and ti-based alloy

Info

Publication number
JPH02160188A
JPH02160188A JP31186488A JP31186488A JPH02160188A JP H02160188 A JPH02160188 A JP H02160188A JP 31186488 A JP31186488 A JP 31186488A JP 31186488 A JP31186488 A JP 31186488A JP H02160188 A JPH02160188 A JP H02160188A
Authority
JP
Japan
Prior art keywords
pressure
friction
joining
based alloy
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31186488A
Other languages
Japanese (ja)
Inventor
Misao Ishikawa
操 石川
Shinji Mitao
三田尾 真司
Aoshi Tsuyama
青史 津山
Hiroyoshi Suenaga
末永 博義
Kuninori Minagawa
邦典 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP31186488A priority Critical patent/JPH02160188A/en
Publication of JPH02160188A publication Critical patent/JPH02160188A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To allow easy joining of an intermetallic compd. of a Ti-Al system and a Ti-based alloy without generating the deterioration in the joint part by executing the conditions of a specific friction stress, specific friction stress imparting time, and specific upsetting pressure at the time of joining the above- mentioned compds. to each other by friction pressure welding. CONSTITUTION:The conditions of 1 to 6kgf/mm<2> friction pressure P1, 1 to 4 seconds time t1 for impartation the friction pressure, and <=10kgf/mm<2> upset pressure P2 are satisfied at the time of joining the intermetallic compds. of the Ti-Al system and the Ti-based alloy to each other by friction pressure welding. The pressure P1 is applied to a material 1 to be rolled and a material 2 to be rolled is rotated by a motor and is supported by bearings 3, 4. The material 1 is held static during this time. Joining is not executed when the friction pressure P1 is lower than the specific range. The materials are burred or cracked if the pressure exceeds the range. The burred part is cracked if the upset pressure P2 exceeds the specific value. The coupling by the friction pressure welding is enable in this way and the excellent characteristics of the intermetallic compd. are effectively utilized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、Ti−Al系金属間化合物とTi基合金を摩
擦圧接して接合する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of joining a Ti-Al intermetallic compound and a Ti-based alloy by friction welding.

[従来の技術] T 1−Al系金属間化合物は、低比重で優れた高温強
度、耐クリープ特性、耐酸化性をもつ物質として存望な
材料である。
[Prior Art] T1-Al-based intermetallic compounds are promising materials as having low specific gravity, excellent high-temperature strength, creep resistance, and oxidation resistance.

しかし塑性変形能が小さいために、塑性加工により複雑
形状部品に成形加工することは非常に困難である。
However, because of its low plastic deformability, it is extremely difficult to form parts into complex-shaped parts by plastic working.

そこで、切削加工、精密鋳造、恒温鍛造等の方法により
、複雑形状部品を製造する方法が検討されている。
Therefore, methods of manufacturing complex-shaped parts using methods such as cutting, precision casting, constant temperature forging, etc. are being considered.

しかしながら、T 1−Al系金属間化合物は難削材で
あり、切削加工にて複雑形状部品を製造することは製造
コストが高くつき、素材から製品になるまでの歩留まり
が悪いため不利な点が多い。
However, T1-Al intermetallic compounds are difficult-to-cut materials, and manufacturing complex-shaped parts by cutting increases manufacturing costs and has disadvantages because the yield from material to product is low. many.

精密鋳造は、塑性変形能が小さい場合の有効な成形方法
であるが、異物の混入や収縮孔の発生。
Precision casting is an effective molding method when the plastic deformability is small, but it is prone to foreign matter inclusion and shrinkage pores.

溶解時の炉壁からの不純物の汚染等の問題があり、形状
の複雑化、大型化により難度が増すものである。
There are problems such as contamination with impurities from the furnace wall during melting, and the difficulty increases as the shape becomes more complex and larger.

恒温鍛造は、素材歩留りの面で有利と考えられるが、T
i−AJJ系金属間化合物の高温での変形抵抗が高く、
変形能が小さいことから大きな変形を与えることが難し
く、複雑形状部品の成形には恒温鍛造用金型や離型剤等
を含めた技術的問題点が多い。
Isothermal forging is considered to be advantageous in terms of material yield, but T
i-AJJ intermetallic compounds have high deformation resistance at high temperatures;
Due to its low deformability, it is difficult to apply large deformations, and there are many technical problems involved in molding complex-shaped parts, including constant temperature forging dies and mold release agents.

これらの問題に対し、複雑形状部品の各部をそれぞれ製
造して摩擦圧接法で接合することにより一体化する方法
が、成形加工する困難さを軽減するための有効な方法で
あり、被接合材の一部をTi基合金とすることによって
、部品に要求される特性を満足する場合には、Ti−A
l1系金属間化合物とTi基合金を接合することにより
、複雑形状部品を製造することが製造コストの面で有利
な方法である。
To solve these problems, manufacturing each part of complex-shaped parts individually and joining them together using friction welding is an effective method to reduce the difficulty of forming and processing, and to reduce the difficulty of forming parts. If the properties required for the part are satisfied by partially using Ti-based alloy, Ti-A
It is an advantageous method in terms of manufacturing cost to manufacture complex-shaped parts by joining an 11-based intermetallic compound and a Ti-based alloy.

しかし、最近Ti−Afi系金属間化合物の開発研究が
盛んに行われるようになったが、Ti−Al系金属間化
合物とTi基合金の摩擦圧接に関する検討は行われてい
ないのが現状である。
However, although research and development of Ti-Afi intermetallic compounds has recently become active, there is currently no study on friction welding of Ti-Al intermetallic compounds and Ti-based alloys. .

[発明が解決しようとする課題] 摩擦圧接は、主に耐熱鋼や工具鋼などの鋼の接合に用い
られる簡便な接合方法である。
[Problems to be Solved by the Invention] Friction welding is a simple joining method mainly used for joining steels such as heat-resistant steel and tool steel.

この摩擦圧接とは、機械的エネルギーを利用する溶接法
の1つであり、被溶接部材を突合わせて相対回転運動を
させ、その接触面に発生する摩擦熱を利用して圧接する
方法である。
Friction welding is one of the welding methods that uses mechanical energy, and is a method in which parts to be welded are butted against each other and subjected to relative rotational motion, and the frictional heat generated on the contact surfaces is used to perform pressure welding. .

摩擦の際、開先面の凹凸や酸化膜が破壊され、パリとし
て面外に排出されるため、開先面の前処理は必要としな
いという利点もある。
During friction, the unevenness and oxide film on the groove surface are destroyed and discharged outside the surface as debris, so there is also the advantage that no pretreatment of the groove surface is required.

第3図(a) (b) (e)は上述の摩擦圧接法の説
明図である。
FIGS. 3(a), 3(b), and 3(e) are explanatory diagrams of the above-mentioned friction welding method.

第3図(a)において、摩擦圧力P1の付与時間、1は
被圧接材で、図の矢印の方向に摩擦圧力P1を例えば油
圧シリンダー(図示なし)により付与され、2は別の被
圧接材でモーター(図示なし)により回転を付与される
。3.4は軸受である。
In FIG. 3(a), the application time of the friction pressure P1, 1 is a material to be welded, the friction pressure P1 is applied in the direction of the arrow in the figure, for example, by a hydraulic cylinder (not shown), and 2 is another material to be welded. Rotation is applied by a motor (not shown). 3.4 is a bearing.

この間被圧接材1は回転防止装置(図示なし)により回
転静止している。
During this time, the pressurized material 1 is held stationary by a rotation prevention device (not shown).

第3図(b)において、アプセット圧力P2付与時間、
例えば油圧シリンダー(図示なし)により、被圧接材1
は、図の矢印の方向にアプセット圧力P2が、モーター
(図示なし)により付与される。
In FIG. 3(b), the upset pressure P2 application time,
For example, by a hydraulic cylinder (not shown), the pressure welded material 1 is
An upset pressure P2 is applied by a motor (not shown) in the direction of the arrow in the figure.

この間被圧接材2はブレーキ装置(図示なし)により、
回転静止している。
During this time, the material to be welded 2 is pressed by a brake device (not shown).
Rotating and stationary.

第3図(e)は、摩擦圧力P1及びその付与時間11、
及びアプセット圧力P2及びその付与時間t2を示した
図である。
FIG. 3(e) shows the friction pressure P1 and its application time 11,
FIG. 3 is a diagram showing the upset pressure P2 and its application time t2.

しかし、Ti−Al)系金属間化合物のような脆い素材
を摩擦圧接法により接合するときには、接合部付近に大
きなせん断応力や圧縮応力が負荷されるため、素材が割
れる可能性が大きい。
However, when brittle materials such as Ti-Al) based intermetallic compounds are joined by friction welding, large shear stress and compressive stress are applied near the joint, so there is a high possibility that the materials will crack.

また、Ti−Al系金属間化合物は、高温強度が高く変
形能が小さいため、摩擦圧接時に加熱され、接合部から
吐き出されるように変形しながら形成されるパリに割れ
が発生し、その亀裂が素材内部まで入ってしまう等の問
題があった。
In addition, Ti-Al intermetallic compounds have high high-temperature strength and low deformability, so they are heated during friction welding and deformed as if expelled from the joint, causing cracks to form. There were problems such as penetrating inside the material.

即ち、本発明は上述のような問題点を解決するためのT
i−Al1系金属間化合物とTi基合金を摩擦圧接法に
よる接合方法を提供することを目的とするものである。
That is, the present invention aims to solve the above-mentioned problems.
The object of the present invention is to provide a method for joining an i-Al1-based intermetallic compound and a Ti-based alloy by friction welding.

[課題を解決するための手段] 本発明に係る接合方法は、Ti−Al系金属間化合物の
優れた特性を生かした複雑形状部品をTi基合金との接
合により、製造コスト低減、製造上の問題点を解決する
ため、部品の各部を摩擦圧接にて接合するものであり、
接合するに当たりての条件を、 摩擦圧力     P l: 1〜6 kgf/me2
摩擦圧力の付与時間t1 :1〜4 secアプセット
圧力  P  : 10 kgf/s+a2以下の範囲
とすることにより良好な接合状態が得られる摩擦圧接法
による接合方法である。
[Means for Solving the Problems] The joining method according to the present invention reduces manufacturing costs and improves manufacturing efficiency by joining complex-shaped parts with Ti-based alloys that take advantage of the excellent properties of Ti-Al intermetallic compounds. In order to solve the problem, parts of each part are joined using friction welding.
The conditions for joining are: Friction pressure Pl: 1 to 6 kgf/me2
This is a welding method using friction welding, in which a good welding state can be obtained by setting the friction pressure application time t1: 1 to 4 sec, and the upset pressure P: 10 kgf/s+a2 or less.

また必要により、その後の組織安定化熱処理により、熱
影響部の劣化が防止され良好な接合状態が得られる接合
方法である。
Furthermore, if necessary, the bonding method is capable of preventing deterioration of the heat-affected zone and obtaining a good bonding state by performing a subsequent structure stabilizing heat treatment.

尚、本願発明で対象とするT 1−Al系金属間化合物
及びTi基合金である。
Incidentally, these are T 1-Al intermetallic compounds and Ti-based alloys that are targeted in the present invention.

Ti−Al1系金属間化合物については、具体的にはT
iA1.TL  AI、Al3Ti、Ti、。
Regarding Ti-Al1-based intermetallic compounds, specifically T
iA1. TL AI, Al3Ti, Ti.

chT iA R(T t A IIの化学組成よりも
Ti量が多く、その主体はT i Alから成るもの)
、1、1c h T iA I  (T iA Dの化
学組成よりもAl量が多く、その主体はTiAjlから
成るもの)、TirichTi  AD  (Ti3A
IIの化学組成よりもTijlが多く、その主体はT 
ia A 1から成るもの)、AM   Ti  An
  (Ti3Alの化学組rich     3 成よりもl量が多く、その主体はT ia A Rから
成るもの)1等のTiとAflを主要な組成元素とする
化合物である。
chT iA R (The amount of Ti is higher than the chemical composition of T t A II, and its main component is Ti Al)
, 1, 1c h T iA I (the amount of Al is higher than the chemical composition of T iA D, mainly composed of TiAjl), TirichTi AD (Ti3A
There is more Tijl than in the chemical composition of II, and the main component is T.
ia A 1), AM Ti An
(It has a larger amount of 1 than the chemical composition rich 3 of Ti3Al, and is mainly composed of T ia AR). It is a compound whose main compositional elements are Ti and Afl.

またTi基合金については、既存のTi基合金テアリ、
具体的ニハ、Ti−6Ail−4V合金。
Regarding Ti-based alloys, existing Ti-based alloys such as
Specifically, Ti-6Ail-4V alloy.

TiTi−6Al−2Sn−42r−2合金。TiTi-6Al-2Sn-42r-2 alloy.

T 1−6Af!−2Sn−4Z r−6Mo合金。T1-6Af! -2Sn-4Z r-6Mo alloy.

T t−6Aj−6V−2Sn合金、Ti−8Ag−I
 M o −I V合金、Ti−5Al−2,5Sn合
金、Ti−3AjJ−2,5V合金、Ti−10V−2
Fe−3Al合金、Ti−5A、77−2Sn77−2
Sn−2Zr−4合金、Ti−15V3Cr−3Sn−
3Aj1合金等を対象とする合金である。
T t-6Aj-6V-2Sn alloy, Ti-8Ag-I
M o -IV alloy, Ti-5Al-2,5Sn alloy, Ti-3AjJ-2,5V alloy, Ti-10V-2
Fe-3Al alloy, Ti-5A, 77-2Sn77-2
Sn-2Zr-4 alloy, Ti-15V3Cr-3Sn-
This is an alloy targeted for 3Aj1 alloy, etc.

[作用] 本発明におけるTi−Al7系金属間化合物とTi基合
金の摩擦圧接は、TL−Al系金属間化合物の優れた特
性を生かした複雑形状部品を製造する場合に、T 1−
Al系金属間化合物の加工性が悪いこと、溶解、鋳造に
関する技術的問題が多いことから、一部をTi基合金と
して摩擦圧接法にて接合して一体化することにより、技
術的問題点を解決し更に製造コストの軽減をもたらすも
のである。
[Function] The friction welding of the Ti-Al7-based intermetallic compound and the Ti-based alloy in the present invention can achieve T 1-
Since Al-based intermetallic compounds have poor workability and many technical problems related to melting and casting, we have solved these technical problems by joining a part of them into a Ti-based alloy using friction welding. This solves the problem and further reduces manufacturing costs.

本発明のT 1−Al1系金属間化合物とTi基合金の
良好な接合状態が得られる、摩擦圧接条件の範囲を定め
た理由を以下に述べる。
The reason why the range of friction welding conditions was determined so that a good bonding state between the T1-Al1-based intermetallic compound and the Ti-based alloy of the present invention can be obtained will be described below.

摩擦圧力P が1kgf/鶴2よりも小さいと摩擦面の
温度が上昇しないために接合せず、6kgf/龍2を越
えると、摩擦圧力P が強すぎるために、■ 主にTi−Afi系金属間化合物の接合部に割れが発生
する。このため摩擦圧力P1の範囲を、1〜6 kg 
f7.12とした。
If the friction pressure P is less than 1 kgf/Tsuru2, the temperature of the friction surface will not rise and no bonding will occur; if it exceeds 6 kgf/Tsuru2, the friction pressure P will be too strong and Cracks occur at the joints between the intermediate compounds. Therefore, the range of friction pressure P1 is set to 1 to 6 kg.
It was set to f7.12.

アプセット圧力P2は、原則的に摩擦圧力P1より大き
な値をとるが、10 kg rims 2を越えると”
rt1合金側及びTi−Al系金属間化合物に割れが発
生する。このためアプセット圧力P2を10kgr/m
膳2以下とした。
In principle, the upset pressure P2 takes a larger value than the friction pressure P1, but if it exceeds 10 kg rims 2.
Cracks occur on the rt1 alloy side and the Ti-Al intermetallic compound. For this reason, the upset pressure P2 is set to 10 kgr/m.
It was set to be less than 2 servings.

尚アプセット圧力P2の下限については、摩擦圧力P 
の下限値と同じ1kgf/關2とすることが■ 望ましい。
Regarding the lower limit of the upset pressure P2, the friction pressure P
■ It is desirable to set the value to 1 kgf/2, which is the same as the lower limit of .

また摩擦圧力P の付与時間11が1 secより少な
いと、摩擦面の加熱が十分でないため接合せず、4 s
ecを越えると、熱影響部が劣化するため強度が低下す
る。
Furthermore, if the application time 11 of the frictional pressure P is less than 1 sec, the friction surfaces will not be heated enough and will not be joined, and the 4 s
If it exceeds ec, the heat affected zone deteriorates and the strength decreases.

このため摩擦圧力の付与時間t1を1〜4 secとし
た。
For this reason, the application time t1 of friction pressure was set to 1 to 4 seconds.

また必要に応じて、接合部及びその近傍の熱影響部の組
織安定化のため、熱処理を施すことにより、熱影響部に
よる劣化が防止され、良好な接合強度が得られる。
Furthermore, if necessary, heat treatment is performed to stabilize the structure of the joint and the heat-affected zone in its vicinity, thereby preventing deterioration due to the heat-affected zone and providing good joint strength.

次に本発明の実施例を述べる。Next, examples of the present invention will be described.

[実施例] (実施例1) T 1−Al系金属間化合物の一つであるTiAlを鋳
造し、これより直径10關φ丸棒を準備し、この丸棒と
T 1−6Al −4V合金の直径10mmφ丸棒をブ
レーキ法摩擦圧接機に装着し、平面同士を突合わせ、摩
擦圧接条件として摩擦圧力P 、摩擦圧力の付与時間t
 、アプセット圧1           [ 力P2を夫々変化させて、T i A、17対Ti−6
1−4V合金の摩擦圧接による接合試験を行った。
[Example] (Example 1) TiAl, which is one of the T1-Al based intermetallic compounds, was cast, and a round bar with a diameter of 10 mm was prepared from it, and this round bar and the T1-6Al-4V alloy were cast. A round bar with a diameter of 10 mmφ is attached to a brake method friction welding machine, the planes are butted together, and the friction welding conditions are friction pressure P and friction pressure application time t.
, upset pressure 1 [by varying the force P2, respectively, T i A, 17 vs. Ti-6
A joining test was conducted using friction welding of 1-4V alloy.

この時の回転数は1200.3050.3600rpm
の3条件とし、アプセット時間t2は5 secとした
The rotation speed at this time is 1200.3050.3600 rpm
The three conditions were as follows, and the upset time t2 was 5 seconds.

その後一部を組織安定化のため、950℃加熱10分間
保持後空冷する熱処理を施した。
Thereafter, a portion of the sample was heat-treated to stabilize the structure by heating at 950°C and holding for 10 minutes, followed by air cooling.

これらの接合部断面の光学顕微鏡観察、及び接合部の引
張試験を行い、接合状態を評価した。
The cross-sections of these joints were observed with an optical microscope and the joints were subjected to a tensile test to evaluate the joint state.

第1表に各摩擦圧接条件と接合状態との関係を示した。Table 1 shows the relationship between each friction welding condition and the welding state.

本実施例では、いずれも良好な接合状態であり、接合部
断面の割れは観察されていなかった。
In this example, the bonded state was good in all cases, and no cracks were observed in the cross section of the bonded portion.

また接合部の引張強度も、40kgf/u+2以上あり
、接合部の劣化はない。
Furthermore, the tensile strength of the joint is 40 kgf/u+2 or more, and there is no deterioration of the joint.

しかし比較例で示したように、摩擦圧力P1が1kgf
lII112より小さい場合(魔13)や、または摩擦
圧力の付与時間t1が1 secより短い場合(魔14
)には接合しない。
However, as shown in the comparative example, the friction pressure P1 is 1 kgf.
lII is smaller than 112 (Magic 13), or when the friction pressure application time t1 is shorter than 1 sec (Magic 14).
) is not joined.

1部の接合面に最も近い部分であった。This was the part closest to the joint surface of part 1.

また、本発明の実施例での組織安定化熱処理を施したf
lJ(胤1O−12)では、引張強度が40kgr/m
m2以上の良好な接1合状態であるが、比較例で摩擦圧
力の付与時間t1が4 secを越えた場合(fill
lg)は、組織安定化熱処理を施しても引張強度は低い
状態のままである。
In addition, f subjected to structure stabilization heat treatment in the example of the present invention
lJ (seed 1O-12) has a tensile strength of 40kgr/m
m2 or more, but when the friction pressure application time t1 exceeded 4 sec in the comparative example (fill
1g), the tensile strength remains low even when subjected to structure stabilization heat treatment.

や、アプセット圧力P が10 kg rhm ”を越
える場合(NllL17)には、金属間化合物T i 
Alの接合部に割れが発生し、特にアプセット圧力P2
が10 kgr/am2’Ir越エル場合(k17) 
ニハ、Ti−6A1−4V合金側にも割れが発生した。
or when the upset pressure P exceeds 10 kg rhm (NlllL17), the intermetallic compound T i
Cracks occur in the Al joint, especially when the upset pressure P2
If it is 10 kgr/am2'Ir (k17)
Cracks also occurred on the Ti-6A1-4V alloy side.

また摩擦圧力の付与時間t1が4 secを越える場合
(klB、1B ’)は、発熱により温度が上昇し過ぎ
るため、接合部及び熱影響部のミクロ組織が変化し、特
にTi基合金側の熱影響部で結晶粒が粗大化し、引張強
度が低下した。
If the friction pressure application time t1 exceeds 4 seconds (klB, 1B'), the temperature will rise too much due to heat generation, and the microstructure of the joint and heat-affected zone will change, especially the heat on the Ti-based alloy side. The crystal grains became coarse in the affected zone and the tensile strength decreased.

引張試験時の破断位置は、Ti基合金側の熱形(実施例
2) 接合面を凸型、凹型に加工して、 11tM圧力P l: 2)tgi’/+n2摩擦圧力
の付与時間t  :4sec アプセット圧力  P2:4kgf/mm2の摩擦圧接
条件にて摩擦圧接した例を第2表に示す。
The fracture position during the tensile test was determined by processing the hot type (Example 2) on the Ti-based alloy side.The joint surface was processed into convex and concave shapes, and 11 tM pressure P l: 2) tgi'/+n2 Friction pressure application time t: Table 2 shows examples of friction welding under the friction welding conditions of 4 sec upset pressure P2: 4 kgf/mm2.

接合面の加工は、Ti −6AJ −4V合金に対して
は第1図(a)、(b)に示す凸面A、Bに加工し、T
 i Alに対しては第2図(a)、(b)に示す凹面
A、Bに加工した。
The joint surface is processed into convex surfaces A and B shown in Fig. 1(a) and (b) for Ti-6AJ-4V alloy, and T
i Al was processed into concave surfaces A and B shown in FIGS. 2(a) and 2(b).

これらの一部を組織安定化熱処理(950℃XIO■1
nAC)を施し、全ての接合例での引張強度を測定した
Some of these were subjected to structure stabilization heat treatment (950°C
nAC) was applied, and the tensile strength of all bonded examples was measured.

接合部の形状を変化させたため、パリ形状が改善され、
第2表に示すような組合わせで、いずれり場合も良好な
接合強度が得られた。
By changing the shape of the joint, the Paris shape has been improved,
Good bonding strength was obtained in all cases with the combinations shown in Table 2.

第2表 棒とT i −6Afi−4V合金の直径10mmφ丸
棒の円断面同士を真空ろう付して接合し、その後の接合
面の引張強度を求めた。
The table 2 bar and the circular cross section of a Ti-6Afi-4V alloy round bar with a diameter of 10 mm were vacuum-brazed and joined together, and the tensile strength of the joint surface after that was determined.

ろう材及びろう付温度、ろう付時間と接合面の引張強度
の関係を第3表に示す。
Table 3 shows the relationship between the brazing filler metal, brazing temperature, brazing time, and tensile strength of the joint surface.

T i AIIとT 1−6Al −4V合金ハロう付
により接合するが、その接合強度は本発明の摩擦圧接に
よる接合方法に比べ、1/2以下の低いレベルである。
T i AII and T 1-6Al -4V alloy are joined by halo welding, but the joining strength is at a low level of 1/2 or less compared to the joining method using friction welding of the present invention.

第  3  表 *印は組織安定化処理< 950℃x 10m1nAC
)を施したことを示す。
Table 3: * indicates tissue stabilization treatment < 950℃ x 10m1nAC
) has been applied.

(実施例3)                   
以上の実施例1,2の接合面は機械加工にて仕また比較
例として、T i AIIの直径10諷璽φ丸  上げ
たが、研磨、ショツトブラスト、酸洗、表面処理等によ
って接合面を仕上げても、本発明によって接合できる。
(Example 3)
The bonding surfaces of Examples 1 and 2 above were finished by machining, and as a comparative example, a Ti AII diameter of 10 mm was used. Even if finished, it can be joined by the present invention.

[発明の効果] 本発明のTi−Al系金属間化合物とTi基合金の接合
方法によれば、Ti−Al系金属間化合物とTi基合金
の接合が摩擦圧接を用いることにより容易に可能となり
、Ti−Al系金属間化合物の優れた特性を生かした複
雑形状部品を製造する場合に、摩擦圧接法により、部品
の各部を接合して一体化することにより、製造上の問題
点を軽減し、製造コストを下げる等の効果を奏するもの
である。
[Effects of the Invention] According to the method for joining a Ti-Al intermetallic compound and a Ti-based alloy of the present invention, the Ti-Al intermetallic compound and a Ti-based alloy can be easily joined by using friction welding. , when manufacturing complex-shaped parts that take advantage of the excellent properties of Ti-Al intermetallic compounds, friction welding can be used to join and integrate each part of the parts, reducing manufacturing problems. This has the effect of lowering manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)は本発明の一実施例である実施例2
におけるTi基合金の供試材の接合面(凸面A。 B)の模式図、第2図(a) (b)は同じ〈実施例2
におけるTi−Al1の供試材の接合面(凹面A、B)
の模式図、第3図(a) (b) (c)は摩擦圧接法
の説明図である。 図において、1,2は被圧接材、3,4は軸受。 P は摩擦圧力、P2はアップセット圧力、t1は摩擦
圧力付与時間、t2はアップセット圧力付与時間である
FIGS. 1(a) and 1(b) show Example 2, which is an embodiment of the present invention.
Schematic diagrams of the bonding surfaces (convex surfaces A and B) of the Ti-based alloy test material in Figure 2 (a) and (b) are the same <Example 2
Joint surfaces of Ti-Al1 specimens (concave surfaces A and B) in
The schematic diagrams of FIGS. 3(a), 3(b), and 3(c) are explanatory diagrams of the friction welding method. In the figure, 1 and 2 are materials to be welded under pressure, and 3 and 4 are bearings. P is the friction pressure, P2 is the upset pressure, t1 is the friction pressure application time, and t2 is the upset pressure application time.

Claims (1)

【特許請求の範囲】 Ti−Al系金属間化合物とTi基合金を 摩擦圧接して接合するに際し、 摩擦圧力P_1:1〜6kgf/mm^2 摩擦圧力の付与時間t_1:1〜4sec アプセット圧力P_2:10kgf/mm^2以下の条
件を施すことを特徴とするTi−Al系金属間化合物と
Ti基合金の接合方法。
[Claims] When joining a Ti-Al intermetallic compound and a Ti-based alloy by friction welding, friction pressure P_1: 1 to 6 kgf/mm^2 Friction pressure application time t_1: 1 to 4 seconds Upset pressure P_2 A method for joining a Ti-Al intermetallic compound and a Ti-based alloy, characterized by applying a condition of 10 kgf/mm^2 or less.
JP31186488A 1988-12-12 1988-12-12 Method for joining intermetallic compound of ti-al system and ti-based alloy Pending JPH02160188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31186488A JPH02160188A (en) 1988-12-12 1988-12-12 Method for joining intermetallic compound of ti-al system and ti-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31186488A JPH02160188A (en) 1988-12-12 1988-12-12 Method for joining intermetallic compound of ti-al system and ti-based alloy

Publications (1)

Publication Number Publication Date
JPH02160188A true JPH02160188A (en) 1990-06-20

Family

ID=18022340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31186488A Pending JPH02160188A (en) 1988-12-12 1988-12-12 Method for joining intermetallic compound of ti-al system and ti-based alloy

Country Status (1)

Country Link
JP (1) JPH02160188A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5431752A (en) * 1993-11-12 1995-07-11 Asea Brown Boveri Ltd. Friction welding of γ titanium aluminide to steel body with nickel alloy connecting piece there between
US5908516A (en) * 1996-08-28 1999-06-01 Nguyen-Dinh; Xuan Titanium Aluminide alloys containing Boron, Chromium, Silicon and Tungsten
EP1213087A2 (en) * 2000-12-08 2002-06-12 Fuji Oozx Inc. Method of joining different metal materials by friction welding
US6691910B2 (en) * 2000-12-08 2004-02-17 Fuji Oozx, Inc. Method of joining different metal materials by friction welding
WO2005056982A1 (en) * 2003-12-15 2005-06-23 Pratt & Whitney Canada Corp. Method for making compressor rotor
WO2008123402A1 (en) * 2007-03-29 2008-10-16 Fukui Prefectural Government Dissimilar metal joint product and joining method therefor
US7441690B2 (en) * 2001-08-06 2008-10-28 Honda Giken Kogyo Kabushiki Kaisha Joined structure of different metals and friction welding method thereof
US7967182B2 (en) 2007-03-29 2011-06-28 Fukui Prefectural Government Dissimilar metal joint product and joining method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961584A (en) * 1982-09-29 1984-04-07 Sumitomo Metal Ind Ltd Frictional press welding method of titanium alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961584A (en) * 1982-09-29 1984-04-07 Sumitomo Metal Ind Ltd Frictional press welding method of titanium alloy

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5431752A (en) * 1993-11-12 1995-07-11 Asea Brown Boveri Ltd. Friction welding of γ titanium aluminide to steel body with nickel alloy connecting piece there between
US5908516A (en) * 1996-08-28 1999-06-01 Nguyen-Dinh; Xuan Titanium Aluminide alloys containing Boron, Chromium, Silicon and Tungsten
EP1213087A2 (en) * 2000-12-08 2002-06-12 Fuji Oozx Inc. Method of joining different metal materials by friction welding
EP1213087A3 (en) * 2000-12-08 2002-10-23 Fuji Oozx Inc. Method of joining different metal materials by friction welding
US6691910B2 (en) * 2000-12-08 2004-02-17 Fuji Oozx, Inc. Method of joining different metal materials by friction welding
US7441690B2 (en) * 2001-08-06 2008-10-28 Honda Giken Kogyo Kabushiki Kaisha Joined structure of different metals and friction welding method thereof
WO2005056982A1 (en) * 2003-12-15 2005-06-23 Pratt & Whitney Canada Corp. Method for making compressor rotor
WO2008123402A1 (en) * 2007-03-29 2008-10-16 Fukui Prefectural Government Dissimilar metal joint product and joining method therefor
US7967182B2 (en) 2007-03-29 2011-06-28 Fukui Prefectural Government Dissimilar metal joint product and joining method therefor

Similar Documents

Publication Publication Date Title
US7156282B1 (en) Titanium-aluminide turbine wheel and shaft assembly, and method for making same
JP4277117B2 (en) Dissimilar metal joined body of nickel / titanium alloy material and pure titanium material and joining method thereof
Wen et al. Numerical simulation and experimental investigation of band patterns in bobbin tool friction stir welding of aluminum alloy
Ding et al. Microstructure and mechanical properties of inertia friction welded joints between alloy steel 42CrMo and cast Ni-based superalloy K418
Li et al. Solid-state dissimilar joining of stainless steel 316L and Inconel 718 alloys by electrically assisted pressure joining
Song et al. Effect of welding parameters on weld formation and mechanical properties in dissimilar Al alloy joints by FSW
Uzkut et al. Friction welding and its applications in today’s world
US11110542B2 (en) Friction pressure welding method
JP6819958B2 (en) Linear friction stir welding method
JPH106042A (en) Friction-pressure-welding method for titanium aluminide-made turbine rotor
KR20180119636A (en) Method and apparatus for friction stir welding of structural steel
EP0028763B1 (en) Method for pressure bonding metal members by utilizing eutectic reaction
JPH02160188A (en) Method for joining intermetallic compound of ti-al system and ti-based alloy
Harikrishna et al. Friction stir welding of magnesium alloy ZM21
KR20180119635A (en) Method and apparatus for friction stir welding of structural steel
Cao et al. Friction stir welding of dissimilar AA 2024-T3 to AZ31B-H24 alloys
Mercan Joining dissimilar material pairs by mechanical locking method (MLM)
Shinde et al. Review of experimental investigations in friction welding technique
JPH02160187A (en) Method for joining intermetallic compound of ti-al system
RU2610658C2 (en) Method of manufacturing composite workpieces of disc-disc and disc-shaft type out of heat-resistant titanium and nickel alloys
Fuji et al. EFFECT OF FRICTION WELDING ON CHARACTERISTICS OF PURE TITANIUM/A5083 ALUMINUM ALLOY JOINT Report 1: Joint Mechanical Properties
Singh et al. Optimization of process parameters of friction stir welded joint of AA6061 and AA6082 by response surface methodology (RSM)
Yasui et al. Characteristics of High Speed Welding between 6063 and S 45 C by Means of Friction Stirring-Study on Welding in Dissimilar Metals by Means of Friction Stirring(1 st Report)-
Mekri et al. Influence of the coupling between the mechanical characteristics and the welding conditions by the FSSW process: case of the bi-material aluminum-steel
Jaiganesh et al. Investigation on micro structural and mechanical properties of friction stir welded AZ91E Mg alloy