JPH02160187A - Method for joining intermetallic compound of ti-al system - Google Patents

Method for joining intermetallic compound of ti-al system

Info

Publication number
JPH02160187A
JPH02160187A JP31186388A JP31186388A JPH02160187A JP H02160187 A JPH02160187 A JP H02160187A JP 31186388 A JP31186388 A JP 31186388A JP 31186388 A JP31186388 A JP 31186388A JP H02160187 A JPH02160187 A JP H02160187A
Authority
JP
Japan
Prior art keywords
pressure
friction
joining
time
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31186388A
Other languages
Japanese (ja)
Inventor
Misao Ishikawa
操 石川
Shinji Mitao
三田尾 真司
Aoshi Tsuyama
青史 津山
Hiroyoshi Suenaga
末永 博義
Kuninori Minagawa
邦典 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP31186388A priority Critical patent/JPH02160187A/en
Publication of JPH02160187A publication Critical patent/JPH02160187A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To allow easy joining of intermetallic compds. of a Ti-Al system to each other without generating the deterioration in the joint part by executing the conditions of a specific friction stress, specific friction stress imparting time, and specific upsetting pressure at the time of joining the above-mentioned compds. to each other by friction pressure welding. CONSTITUTION:The conditions of 3 to 18kgf/mm<2> friction pressure P1, 5 to 24 seconds time t1 for impartation the friction pressure, and <=24kgf/mm<2> upset pressure P2 are satisfied at the time of joining the intermetallic compds. of the Ti-Al system to each other by friction pressure welding. The pressure P1 is applied to a material 1 to be rolled and a material 2 to be rolled is rotated by a motor and is supported by bearings 3, 4. The material 1 is held static during this time. Joining is not executed when the friction pressure P1 is lower than the specific range. The materials are burred or cracked if the pressure exceeds the range. The burred part is cracked if the upset pressure P2 exceeds the specific value. The coupling by the friction pressure welding is enabled in this way and the excellent characteristics of the intermetallic compds. are effectively utilized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、Ti−Al1系金属間化合物とTt−Ajl
系金属間化合物同士とを摩擦圧接して接合する方法に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a Ti-Al1-based intermetallic compound and a Tt-Ajl
The present invention relates to a method of joining intermetallic compounds by friction welding.

[従来の技術] T 1−Al7系金属間化合物は、低比重で優れた高温
強度、耐クリープ特性、耐酸化性をもつ物質として有望
な材料である゛。
[Prior Art] T1-Al7-based intermetallic compounds are promising materials with low specific gravity, excellent high-temperature strength, creep resistance, and oxidation resistance.

しかし塑性変形能が小さいために、塑性加工により複雑
形状部品に成形加工することは困難である。そこで切削
加工、精密鋳造、恒温鍛造等の方法により、複雑形状部
品を製造する方法が検討されている。
However, because of its low plastic deformability, it is difficult to form parts into complex-shaped parts by plastic working. Therefore, methods of manufacturing complex-shaped parts using methods such as cutting, precision casting, constant temperature forging, etc. are being considered.

しかしながら、T L−AN系金属間化合物は難削材で
あり、切削加工にて複雑形状部品を製造することは、製
造コストが高くつき、素材から製品になるまでの歩留ま
りが悪いため不利な点が多い。
However, T L-AN intermetallic compounds are difficult-to-cut materials, and manufacturing complex-shaped parts by cutting is disadvantageous because the manufacturing cost is high and the yield from material to product is low. There are many.

精密鋳造は、塑性変形能が小さい場合の有効な成形方法
であるが、異物の混入や収縮孔の発生。
Precision casting is an effective molding method when the plastic deformability is small, but it is prone to foreign matter inclusion and shrinkage pores.

溶解時の炉壁からの不純物の汚染等の問題があり、形状
の複雑化、大型化により難度が増すものである。
There are problems such as contamination with impurities from the furnace wall during melting, and the difficulty increases as the shape becomes more complex and larger.

恒温鍛造は、素材歩留りの面で有利と考えられるが、T
i−Al系金属間化合物の高温での変形抵抗が高く、変
形能が小さいことから大きな変形を与えることが難しく
、複雑形状部品の成形には恒温鍛造用金型や離型剤等を
含めた技術的問題点が多い。
Isothermal forging is considered to be advantageous in terms of material yield, but T
Due to the high deformation resistance and low deformability of i-Al intermetallic compounds at high temperatures, it is difficult to apply large deformations, so it is necessary to use isothermal forging dies, mold release agents, etc. to form parts with complex shapes. There are many technical problems.

これらの問題に対し、複雑形状部品の各部をそれぞれ製
造して摩擦圧接法により接合し一体化する方法は、成形
加工する困難さを軽減するための有効な方法である。
To solve these problems, a method of manufacturing each part of a complex-shaped part and joining and integrating them by friction welding is an effective method for reducing the difficulty of molding.

しかし、TL−Al系金属間化合物同士の摩擦圧接法に
関する検討は行われていないのが現状である。
However, at present, no study has been conducted regarding the friction welding method between TL-Al based intermetallic compounds.

[発明が解決しようとする課題] 摩擦圧接は、主に耐熱鋼や工具鋼などの鋼の接合に用い
られる簡便な接合方法である。
[Problems to be Solved by the Invention] Friction welding is a simple joining method mainly used for joining steels such as heat-resistant steel and tool steel.

この摩擦圧接とは、機械的エネルギーを利用する溶接法
の1つであり、被溶接部材を突合わせて相対回転運動を
させ、その接触面に発生する摩擦熱を利用して圧接する
方法である。
Friction welding is one of the welding methods that uses mechanical energy, and is a method in which parts to be welded are butted against each other and subjected to relative rotational motion, and the frictional heat generated on the contact surfaces is used to perform pressure welding. .

摩擦の際、開先面の凹凸や酸化膜が破壊され、パリとし
て面外に排出されるため、開先面の前処理は必要としな
いという利点もある。
During friction, the unevenness and oxide film on the groove surface are destroyed and discharged outside the surface as debris, so there is also the advantage that no pretreatment of the groove surface is required.

第3図(a) (b) (c)は上述の摩擦圧接法の説
明図である。
FIGS. 3(a), 3(b), and 3(c) are explanatory diagrams of the above-mentioned friction welding method.

第3図(a)において、摩擦圧力P1の付与時間、1は
被圧接材で、図の矢印の方向に摩擦圧力P1を例えば油
圧シリンダー(図示なし)により付与され、2は別の被
圧接材でモーター(図示なし)により回転を付与される
。3,4は軸受である。
In FIG. 3(a), the application time of the friction pressure P1, 1 is a material to be welded, the friction pressure P1 is applied in the direction of the arrow in the figure, for example, by a hydraulic cylinder (not shown), and 2 is another material to be welded. Rotation is applied by a motor (not shown). 3 and 4 are bearings.

この間被圧接材1は回転防止装置(図示なし)により回
転静止している。
During this time, the pressurized material 1 is held stationary by a rotation prevention device (not shown).

第3図(b)において、アプセット圧力P2付与時間、
例えば油圧シリンダー(図示なし)により、被圧接材1
は、図の矢印の方向にアプセット圧力P2が、モーター
(図示なし)により付与される。
In FIG. 3(b), the upset pressure P2 application time,
For example, by a hydraulic cylinder (not shown), the pressure welded material 1 is
An upset pressure P2 is applied by a motor (not shown) in the direction of the arrow in the figure.

この間被圧接材2はブレーキ装置(図示なし)により、
回転静止している。
During this time, the material to be welded 2 is pressed by a brake device (not shown).
Rotating and stationary.

第3図(C)は、摩擦圧力P1及びその付与時間t1.
及びアプセット圧力P2及びその付与時間t2を示した
図である。
FIG. 3(C) shows the friction pressure P1 and its application time t1.
FIG. 3 is a diagram showing the upset pressure P2 and its application time t2.

しかし、Ti−Al系金属間化合物のような脆い素材を
摩擦圧接法により接合するときには、接合部付近に大き
なせん断応力や圧縮応力が負荷されるため、素材が割れ
る可能性が大きい。
However, when brittle materials such as Ti-Al intermetallic compounds are joined by friction welding, large shear stress and compressive stress are applied near the joint, so there is a high possibility that the materials will crack.

また、T 1−Al系金属間化合物は、高温強度が高く
変形能が小さいため、摩擦圧接時に加熱され、接合部か
ら吐き出されるように変形しながら形成されるパリに割
れが発生し、その亀裂が素材内部まで入ってしまう等の
問題があった。
In addition, T1-Al intermetallic compounds have high high-temperature strength and low deformability, so they are heated during friction welding, and cracks occur in the formed part as it deforms as if expelled from the joint. There were problems such as the material getting inside the material.

即ち、本発明は上述のような問題点を解決するためのT
i−Al系金属間化合物の摩擦圧接法による接合方法を
提供することを目的とするものである。
That is, the present invention aims to solve the above-mentioned problems.
The object of the present invention is to provide a method for joining i-Al based intermetallic compounds by friction welding.

[課題を解決するための手段] 本発明に係る接合方法は、T L−Al系金属間化合物
の優れた特性を生かした複雑形状部品を製造する場合に
、TL−Al系金属間化合物の製造上の問題点を軽減す
るため、部品の各部を摩擦圧接にて接合するものであり
、接合するに当たっての条件を、 摩擦圧力     P  : 3〜18kgf/mm2
摩擦圧力の付与時間t :5〜24 secアプセット
圧力  P  :24kzrl龍2以下の範囲とするこ
とにより良好な接合状態が得られる摩擦圧接法による接
合方法である。
[Means for Solving the Problems] The joining method according to the present invention is suitable for manufacturing complex-shaped parts that take advantage of the excellent properties of TL-Al intermetallic compounds. In order to alleviate the above problem, each part is joined by friction welding, and the conditions for joining are as follows: Friction pressure P: 3 to 18 kgf/mm2
This is a welding method using friction welding, in which a good welding state can be obtained by setting the friction pressure application time t: 5 to 24 sec, and the upset pressure P: 24kzrl or less.

尚、本願発明で対象とするTi−Aj7系金属間化合物
は、具体的にはT i Al 、 T i 3Ajl 
In addition, the Ti-Aj7-based intermetallic compounds targeted by the present invention are specifically T i Al , T i 3Ajl
.

An  Ti、Ti   TIAN  (TiAj!の
化学3           rlch 組成よりもTi量が多く、その主体はT i AJから
成るもの)、Aff   TIAN  (TIANの化
lch 学組成よりもAg量が多く、その主体はT L ANか
ら成るもの)、Ti   Ti  Aj)(Ti3r1
ch   3 Apの化学組成よりもTi量が多く、その主体はTi 
 AIから成るもの)、AN   Ti  A13  
            rlch   3(T ia
 Aj!の化学組成よりもAfi量が多く、その主体は
T ia A flから成゛るもの)1等のTiとAI
を主要組成元素とする化合物である。
An Ti, Ti TIAN (has a higher amount of Ti than the chemical composition of TiAj! and is mainly composed of Ti AJ), Aff TIAN (has a higher amount of Ag than the chemical composition of TIAN and is mainly composed of T L AN), Ti Ti Aj) (Ti3r1
The amount of Ti is higher than the chemical composition of ch 3 Ap, and the main component is Ti.
consisting of AI), AN Ti A13
rlch 3(Tia
Aj! The amount of Afi is larger than the chemical composition of
It is a compound whose main compositional element is

[作用] 本発明におけるTi−Al系金属間化合物とTi−Al
系金属間化合物の摩擦圧接は、Ti−Ajl系金属間化
合物の優れた特性を生かした複雑形状部品を製造する場
合に、Ti−Ajl系金属間化合物の加工性が悪いこと
、溶解、鋳造に関する技術的問題が多いことから、その
部品の各部を摩擦圧接法にて接合して一体化することに
より、技術的問題点を解決し更に製造コストの軽減をも
たらすものである。
[Function] Ti-Al intermetallic compound and Ti-Al in the present invention
Friction welding of Ti-Ajl-based intermetallic compounds is used to manufacture complex-shaped parts that take advantage of the excellent properties of Ti-Ajl-based intermetallic compounds. Since there are many technical problems, the various parts of the parts are joined and integrated by friction welding, which solves the technical problems and further reduces the manufacturing cost.

本発明のTi−/l系金属間化合物とTi−AN系金属
間化合物の良好な接合状態が得られる、摩擦圧接条件の
範囲を定めた理由を以下に述べる。
The reason why the range of friction welding conditions was determined so that a good bonding state between the Ti-/l-based intermetallic compound and the Ti-AN-based intermetallic compound of the present invention can be obtained will be described below.

摩擦圧力P は3kgf/1lI2よりも小さいと摩擦
面の温度が上昇しないため接合せず、18kgf’/u
i2を越えて大きくなると、パリが大量に発生し過ぎて
、パリ部に大きな割れが発生するか、摩擦圧力P が強
すぎるために、摩擦面付近に割れが発生する。
If the friction pressure P is less than 3 kgf/1lI2, the temperature of the friction surface will not rise, so no welding will occur, and the pressure will be 18 kgf'/u.
If it becomes larger than i2, too much paris will be generated and large cracks will occur at the paris, or the friction pressure P will be too strong and cracks will occur near the friction surface.

このため摩擦圧力P1の範囲を、3〜18kgf’/魁
−とした。
Therefore, the range of the friction pressure P1 was set to 3 to 18 kgf'/kai-.

アプセット圧力P は、原則的に摩擦圧力P1より大き
な値をとるが、24kgf/am2を越えるとパリ部に
大きな割れを発生する。
In principle, the upset pressure P takes a value greater than the friction pressure P1, but if it exceeds 24 kgf/am2, large cracks will occur in the paring section.

このためアプセット圧力P2を24)cgf/m鵬 以
下とした。
For this reason, the upset pressure P2 was set to 24) cgf/m or less.

尚アプセット圧力P の下限については、摩擦圧力P 
の下限値と同じ3kgf/am”とすることが■ 望ましい。
Regarding the lower limit of the upset pressure P, the friction pressure P
■ It is desirable to set the value to 3 kgf/am, which is the same as the lower limit of .

また摩擦圧力P の付与時間tlが5 secより少な
いと、摩擦面の加熱が十分でないため接合せず、24 
secを越えると、発熱量が大きくなりすぎパリが大量
に発生しすぎるため割れが発生しやすい。
In addition, if the application time tl of the friction pressure P is less than 5 seconds, the friction surfaces will not be heated enough and will not be joined.
If it exceeds sec, the amount of heat generated becomes too large and a large amount of debris is generated, which tends to cause cracks.

このため摩擦圧力の付与時間t1を5〜248ecとし
た◎ 次に本発明の実施例を述べる。
Therefore, the time t1 for applying the friction pressure was set to 5 to 248 ec. Next, examples of the present invention will be described.

[実施例] (実施例1) Ti−Ajl系金属間化合物の一つであるTiA9を鋳
造し、これより直径10關φ丸棒を準備した。
[Example] (Example 1) TiA9, which is one of the Ti-Ajl-based intermetallic compounds, was cast, and a round bar with a diameter of 10 mm was prepared.

これをブレーキ法摩擦圧接機に装着し、摩擦圧接条件と
して摩擦圧力P 、アプセット圧力P 2 。
This was attached to a brake method friction welding machine, and the friction welding conditions were friction pressure P and upset pressure P 2 .

摩擦圧力の付与時間t1を夫々変化させて、TiAl対
TiA1の摩擦圧接による接合試験を行った。
A joining test by friction welding between TiAl and TiA1 was conducted while varying the application time t1 of friction pressure.

回転数は1200.3050.380Orpmの3条件
とし、アプセット時間t2は5 secとした。
Three conditions were used for the rotation speed: 1200, 3050, and 380 rpm, and the upset time t2 was 5 sec.

接合状態の評価として、パリ部の割れの有無。To evaluate the joint condition, check for cracks in the paris.

接合部断面の光学顕微鏡観察による割れの有無。The presence or absence of cracks by optical microscopic observation of the cross section of the joint.

及び接合部の引張強度を調査した。And the tensile strength of the joint was investigated.

第1表に各摩擦圧接条件と接合状態との関係を示した。Table 1 shows the relationship between each friction welding condition and the welding state.

本実施例では、いずれもパリ部の大きな割れや接合部断
面の割れは観察されていない。
In this example, no large cracks in the paris or cracks in the cross section of the joints were observed.

接合部の引張強度も、母材と同程度の38)cgr/龍
2であるため、接合部の劣化は認められず良好な接合状
態を示している。
The tensile strength of the joint is also 38) cgr/2, which is the same as that of the base material, so no deterioration of the joint is observed, indicating a good joint condition.

しかし比較例で示したように、摩擦圧力P1が3kg1
’/龍2より小さい場合、または摩擦圧力の付与時間1
1が5 secより小さい場合には接合しない。
However, as shown in the comparative example, the friction pressure P1 is 3 kg1
'/If smaller than 2, or friction pressure application time 1
If 1 is smaller than 5 sec, no bonding is performed.

場合、またはアプセット圧力P2が24kgr/鰭より
大きい場合には、パリ部に大きな割れが発生し、接合部
までその割れが及んでいることや接合部断面に割れが発
生していることが観察された。
or when the upset pressure P2 is greater than 24 kgr/fin, it is observed that a large crack occurs in the paris part, that the crack extends to the joint part, and that cracks occur in the cross section of the joint part. Ta.

(実施例2) 鋳造したT i Al 、恒温鋳造したT i Al 
、鋳造したT ia A IIの直径10+mφ丸棒の
接合面を凸型、凹型に加工して摩擦圧接を行うため、夫
々の素材の高温強度を、高温引張試験にて測定した。
(Example 2) Cast T i Al, isothermal cast T i Al
In order to perform friction welding by processing the joining surfaces of cast Tia A II round bars with a diameter of 10+mφ into convex and concave shapes, the high-temperature strength of each material was measured by a high-temperature tensile test.

鋳造T i AjJ 、恒温鋳造T i AN 、鋳造
Ti3Al(D引張強サバ、夫k 64 kgrhvr
  、  56 kgr/n+2.41 kzr/關2
であり、高温強度は鋳造したT L ANが最も強く、
次に恒温鋳造したT L AN 。
Casting T i AjJ, constant temperature casting T i AN, casting Ti3Al (D tensile strength mackerel, husband k 64 kgrhvr
, 56 kgr/n+2.41 kzr/2
The high-temperature strength is the highest for cast T LAN,
Next, T LAN was constant temperature cast.

鋳造したT is A J?の順であった。Cast T is A J? The order was

鋳造したT i ANと恒温鋳造したTiAl3の摩擦
圧接は、第2表に示すような組合わせで行った。
Friction welding of cast T i AN and constant temperature cast TiAl3 was performed using the combinations shown in Table 2.

尚接合面の形状を第1図(a)、(b)、及び第2図(
a)、(b)に示す寸法及び形状で行った。
The shape of the joint surface is shown in Fig. 1 (a), (b), and Fig. 2 (
The measurements were carried out using the dimensions and shapes shown in a) and (b).

摩擦圧接条件は、回転数を305Orpm 、摩擦圧力
P を6kgf/n+2.摩擦圧力の付与時間t を1
2See 、アプセット圧力P を12kgf/+n 
 、アブセット時間t2は4secである。
The friction welding conditions were a rotation speed of 305 rpm and a friction pressure P of 6 kgf/n+2. The application time t of friction pressure is 1
2See, upset pressure P to 12kgf/+n
, the abset time t2 is 4 seconds.

第  2 表 接合面を凹面または凸面の形状に加工したことにより、
パリの形状が改善され、割れ等は観察されず、第2表に
示したように良好な接合強度が得られた。
By processing the second surface joint surface into a concave or convex shape,
The shape of the cracks was improved, no cracks were observed, and good bonding strength was obtained as shown in Table 2.

(実施例3) 鋳造したT i Aflと鋳造したT ia A Iの
直径10es丸棒の摩擦圧接を第3表に示すような組合
せで行った。
(Example 3) Friction welding of cast T i Afl and cast T ia A I round bars with a diameter of 10 es was performed using the combinations shown in Table 3.

摩擦圧接条件は、回転数を305Orpm +摩擦圧力
P を4kgf/sl、摩擦圧力の付与時間t1をlO
sec、アプセット圧力P を12kgr/mm  、
アブセット時間t2は3secである。
The friction welding conditions are: rotation speed 305 Orpm + friction pressure P 4 kgf/sl, friction pressure application time t1 1O
sec, upset pressure P 12 kgr/mm,
Abset time t2 is 3 seconds.

第  3 表 この場合にも、接合面の形状を第1図(a)。Part 3 table In this case as well, the shape of the joint surface is shown in FIG. 1(a).

(b)、及び第2図(a)、(b)に示すように、凹面
または凸面の形状に加工したことにより、パリの形状が
改善がみられ、割れ等は発生せず、第3表に示したよう
に良好な接合強度が得られた。
As shown in (b) and Figures 2 (a) and (b), the shape of the paris was improved by machining it into a concave or convex shape, and no cracks occurred, as shown in Table 3. As shown in Figure 2, good bonding strength was obtained.

以上のように、異なるTi−AN系金属間化合物同士や
、製造条件の相違による高温強度の異なるT 1−Aj
l系金属間化合物同士も、本発明の摩擦圧接法により接
合し、接合面の形状を高温強度に応じて、凸型または凹
型に加工することにより、パリ形状が改善された優れた
接合状態が得られる。
As described above, different Ti-AN intermetallic compounds have different high-temperature strengths due to differences in manufacturing conditions.
L-based intermetallic compounds are also bonded using the friction welding method of the present invention, and by processing the shape of the bonded surface into a convex or concave shape depending on the high-temperature strength, an excellent bonded state with improved Paris shape can be achieved. can get.

(比較例) 比較例として、鋳造したTiAjJの直径10111φ
丸棒の円断面同士を真空ろう付して接合し、その後の接
合面の引張強度を求めた。
(Comparative example) As a comparative example, a cast TiAjJ with a diameter of 10111φ
The circular sections of the round bars were vacuum-brazed to each other and the tensile strength of the joint surfaces was determined.

ろう材及びろう付温度、ろう付時間と接合面の引張強度
の関係を第4表に示す。
Table 4 shows the relationship between the brazing filler metal, brazing temperature, brazing time, and tensile strength of the joint surface.

TiAgはろう付により接合するが、その接合強度は本
発明の摩擦圧接による接合方法に比べ、1/2以下の低
いレベルである。
TiAg is joined by brazing, but the joining strength is at a low level, less than half that of the joining method using friction welding of the present invention.

以上の接合面は機械加工にて仕上げたが、研磨。The above joint surfaces were finished by machining and polishing.

ショツトブラスト、酸洗1表面処理等によって接合面を
仕上げても、本発明によって接合できる。
Even if the bonding surfaces are finished by shot blasting, pickling, surface treatment, etc., bonding can be achieved according to the present invention.

[発明の効果] 本発明のTi−AΩ系金属間化合物の接合方法によれば
、T i−A、Q系金属間化合物とTi−Al1系金属
間化合物の摩擦圧接による接合が、接合部の劣化を生ず
ることなく容易に可能となり、T 1−Al1系金属間
化合物の優れた特性を生がした複雑形状部品を製造する
場合に、摩擦圧接法により、部品の各部を接合して一体
化することにより、製造上の問題点を軽減し、製造コス
トを下げる等の効果を奏するものである。
[Effects of the Invention] According to the method for joining Ti-AΩ-based intermetallic compounds of the present invention, joining by friction welding of the Ti-A, Q-based intermetallic compound and the Ti-Al1-based intermetallic compound can be performed at the joint portion. When manufacturing complex-shaped parts that take advantage of the excellent properties of T1-Al1 intermetallic compounds, it is possible to easily join and integrate each part of the parts without causing deterioration using friction welding. This has the effect of alleviating manufacturing problems and lowering manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) (b)は本発明の一実施例である実施例
2及び実施例3の供試材の接合面(凸面A、B)の模式
図、第2図(a)(b)は同じ〈実施例2及び実施例3
の供試材の接合面(凹面A、B)の模式図。 第3図(a) (b)(c)は摩擦圧接法の説明図であ
る。 図において、1.2は被圧接材、3,4は軸受。 Plは摩擦圧力、P2はアップセット圧力、11は摩擦
圧力付与時間、t2はアップセット圧力付与時間である
Figures 1(a) and (b) are schematic diagrams of the bonding surfaces (convex surfaces A and B) of the test materials of Example 2 and Example 3, which are examples of the present invention; ) are the same <Example 2 and Example 3
A schematic diagram of the bonding surfaces (concave surfaces A and B) of the sample materials. FIGS. 3(a), 3(b), and 3(c) are explanatory diagrams of the friction welding method. In the figure, 1 and 2 are materials to be welded under pressure, and 3 and 4 are bearings. Pl is friction pressure, P2 is upset pressure, 11 is friction pressure application time, and t2 is upset pressure application time.

Claims (1)

【特許請求の範囲】 Ti−Al系金属間化合物同士を摩擦圧接 して接合するに際し、 摩擦圧力P_1:3〜18kgf/mm^2摩擦圧力の
付与時間t_1:5〜24secアプセット圧力P_2
:24kgf/mm^2以下の条件を施すことを特徴と
するTi−Al系金属間化合物の接合方法。
[Claims] When joining Ti-Al based intermetallic compounds by friction welding, friction pressure P_1: 3 to 18 kgf/mm^2 Friction pressure application time t_1: 5 to 24 sec Upset pressure P_2
: A method for joining Ti-Al based intermetallic compounds, characterized by applying a condition of 24 kgf/mm^2 or less.
JP31186388A 1988-12-12 1988-12-12 Method for joining intermetallic compound of ti-al system Pending JPH02160187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31186388A JPH02160187A (en) 1988-12-12 1988-12-12 Method for joining intermetallic compound of ti-al system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31186388A JPH02160187A (en) 1988-12-12 1988-12-12 Method for joining intermetallic compound of ti-al system

Publications (1)

Publication Number Publication Date
JPH02160187A true JPH02160187A (en) 1990-06-20

Family

ID=18022328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31186388A Pending JPH02160187A (en) 1988-12-12 1988-12-12 Method for joining intermetallic compound of ti-al system

Country Status (1)

Country Link
JP (1) JPH02160187A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5431752A (en) * 1993-11-12 1995-07-11 Asea Brown Boveri Ltd. Friction welding of γ titanium aluminide to steel body with nickel alloy connecting piece there between
EP0686455A1 (en) * 1994-06-06 1995-12-13 Heraeus Elektrochemie Gmbh Method for joining an electrode for electrolytical purposes and a current conducting stud, and joint assembly
US5908516A (en) * 1996-08-28 1999-06-01 Nguyen-Dinh; Xuan Titanium Aluminide alloys containing Boron, Chromium, Silicon and Tungsten
US6691910B2 (en) * 2000-12-08 2004-02-17 Fuji Oozx, Inc. Method of joining different metal materials by friction welding
WO2008123402A1 (en) * 2007-03-29 2008-10-16 Fukui Prefectural Government Dissimilar metal joint product and joining method therefor
US7967182B2 (en) 2007-03-29 2011-06-28 Fukui Prefectural Government Dissimilar metal joint product and joining method therefor
CN105057881A (en) * 2015-09-18 2015-11-18 哈尔滨工业大学 Method for overlap joint of special-shaped titanium aluminum metal through friction stir welding by utilizing pre-stacking aluminum layer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6087986A (en) * 1983-10-20 1985-05-17 Hiyougoken Method and device for frictional press-welding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6087986A (en) * 1983-10-20 1985-05-17 Hiyougoken Method and device for frictional press-welding

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5431752A (en) * 1993-11-12 1995-07-11 Asea Brown Boveri Ltd. Friction welding of γ titanium aluminide to steel body with nickel alloy connecting piece there between
EP0686455A1 (en) * 1994-06-06 1995-12-13 Heraeus Elektrochemie Gmbh Method for joining an electrode for electrolytical purposes and a current conducting stud, and joint assembly
US5908516A (en) * 1996-08-28 1999-06-01 Nguyen-Dinh; Xuan Titanium Aluminide alloys containing Boron, Chromium, Silicon and Tungsten
US6691910B2 (en) * 2000-12-08 2004-02-17 Fuji Oozx, Inc. Method of joining different metal materials by friction welding
WO2008123402A1 (en) * 2007-03-29 2008-10-16 Fukui Prefectural Government Dissimilar metal joint product and joining method therefor
US7967182B2 (en) 2007-03-29 2011-06-28 Fukui Prefectural Government Dissimilar metal joint product and joining method therefor
CN105057881A (en) * 2015-09-18 2015-11-18 哈尔滨工业大学 Method for overlap joint of special-shaped titanium aluminum metal through friction stir welding by utilizing pre-stacking aluminum layer

Similar Documents

Publication Publication Date Title
Wen et al. Numerical simulation and experimental investigation of band patterns in bobbin tool friction stir welding of aluminum alloy
Muthukumaran et al. Multi-layered metal flow and formation of onion rings in friction stir welds
Song et al. Effect of welding parameters on weld formation and mechanical properties in dissimilar Al alloy joints by FSW
Alves et al. Experimental determination of temperature during rotary friction welding of AA1050 aluminum with AISI 304 stainless steel
TW201515750A (en) Friction welding method
KR20180119636A (en) Method and apparatus for friction stir welding of structural steel
CN103071912A (en) Vertical friction stud welding method
Uygur Influence of shoulder diameter on mechanical response and microstructure of FSW welded 1050 Al-alloy
JPH02160187A (en) Method for joining intermetallic compound of ti-al system
KR20180119635A (en) Method and apparatus for friction stir welding of structural steel
Alves et al. Experimental determination of temperature during rotary friction welding of dissimilar materials
JPH02160188A (en) Method for joining intermetallic compound of ti-al system and ti-based alloy
Shinde et al. Review of experimental investigations in friction welding technique
Shaik et al. Parameters of microstructural investigations for novel materials
Kosturek et al. Research on the friction stir welding of Titanium Grade 1
Fuji et al. EFFECT OF FRICTION WELDING ON CHARACTERISTICS OF PURE TITANIUM/A5083 ALUMINUM ALLOY JOINT Report 1: Joint Mechanical Properties
Yokoyama et al. Tensile properties and constitutive modeling of friction stir welded AA6061-T6 butt joints
Derazkola et al. Effects of friction stir welding tool plunge depth on microstructure and texture evolution of AA1100 to A441 AISI joint
Abdulla et al. Tensile strength and macro-microstructures of A6061 CDFW weld joint influenced by pressure and holding time in the upset stage
Mekri et al. Influence of the coupling between the mechanical characteristics and the welding conditions by the FSSW process: case of the bi-material aluminum-steel
KR20160086465A (en) Metalic bonding using servo motor friction welding and the bonding method thereof
Chen et al. Diffusion bonding between AZ31 magnesium alloy and 7075 aluminum alloy
Dheenadayalan et al. Effect of diffusion bonding temperature on mechanical and microstructure characteristics of Cp titanium and high strength aluminium dissimilar joints
Arun et al. To design and construct a friction welding attachment on lathe, conduct experiment and to study about mechanical behavior of friction welded joints of aluminum rods
Basheer Friction Welding of 6061 Aluminium Alloy with YSZ-alumina Composite for Improved Mechanical and Thermal Properties