JPH0351321Y2 - - Google Patents

Info

Publication number
JPH0351321Y2
JPH0351321Y2 JP9245986U JP9245986U JPH0351321Y2 JP H0351321 Y2 JPH0351321 Y2 JP H0351321Y2 JP 9245986 U JP9245986 U JP 9245986U JP 9245986 U JP9245986 U JP 9245986U JP H0351321 Y2 JPH0351321 Y2 JP H0351321Y2
Authority
JP
Japan
Prior art keywords
shaft
metal
intermediate sleeve
ceramic
metal intermediate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9245986U
Other languages
Japanese (ja)
Other versions
JPS632743U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9245986U priority Critical patent/JPH0351321Y2/ja
Publication of JPS632743U publication Critical patent/JPS632743U/ja
Application granted granted Critical
Publication of JPH0351321Y2 publication Critical patent/JPH0351321Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は金属軸とセラミツクス軸との結合構造
体に関し、特に排気ターボチヤージヤ、ガスター
ビン等の高温環境で使用されるセラミツクス回転
体と金属軸との結合構造体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a joint structure between a metal shaft and a ceramic shaft, and in particular, a structure for connecting a ceramic rotating body and a metal shaft used in high-temperature environments such as exhaust turbochargers and gas turbines. Concerning the associative structure of.

〔従来の技術〕[Conventional technology]

セラミツクス部材を回転体部品として用いる場
合、このセラミツクス部材と金属部材との結合構
造(継手構造)が問題となる。従来のこの両者の
結合手段としては、第5図に示す端面を接合する
方法および第6図に示す金属中間スリーブを介し
て接合する方法が知られている。第5図はセラミ
ツクス軸1と金属軸2とを突合せ、直接接合する
ものであり、また、第6図はセラミツクス軸1と
金属軸2とを突合せ、この突合せ部外周面に装着
した円筒状の金属中間スリーブ3を介して結合す
るものである。なお、第5図および第6図におい
てAは接合面を示す。
When a ceramic member is used as a rotating body part, a problem arises in the joint structure (joint structure) between the ceramic member and the metal member. As conventional means for connecting the two, there are known a method of joining the end faces as shown in FIG. 5 and a method of joining via a metal intermediate sleeve as shown in FIG. Fig. 5 shows a ceramic shaft 1 and a metal shaft 2 abutted and directly joined together, and Fig. 6 shows a ceramic shaft 1 and a metal shaft 2 abutted against each other, and a cylindrical shaft attached to the outer peripheral surface of the abutted part. They are connected via a metal intermediate sleeve 3. In addition, in FIG. 5 and FIG. 6, A indicates a joint surface.

その他、セラミツクス部材と金属部材との結合
ないしは継手構造としては従来から多数提案され
ており、例えば、Cu,Ni,Co,Al、ステンレス
鋼をセラミツクス部材と金属部材との間にはさん
で焼ばめ、ボルト締め、ホツトプレスで接合する
もの〔特願昭54−117279号(特開昭56−41879号
公報)〕、セラミツクス部材外周部に小孔を穿設
し、金属部材を摩擦圧接でこの小孔に押入させた
接続構造のもの〔実願昭57−81585(実開昭58−
185382号公報)〕、金属部材の端部に凹部を形成
し、この部分にテーパを持つたセラミツクス部材
を挿入し、ろう材を充填して固定した結合構造の
もの〔実願昭57−123641号(実開昭60−49130号
公報)〕、セラミツクス部材と金属部材との間に、
セラミツクス部材とほぼ同じ熱膨脹係数を有する
金属を介装して焼ばめしたもの〔実願昭57−
169789号(実開昭59−73502号報)〕、セラミツク
ス部材の一端に膨大部を形成させ、一方金属部材
にはセラミツクス部材と同程度の熱膨脹係数を有
する緩衝金属を接合させ、継手形状でろう材を充
填させてセラミツクス部材と金属部材とを接合さ
せた連結構造のもの〔実願昭58−132549号(実開
昭60−40443号公報)〕などが知られている。
In addition, many other joint or joint structures have been proposed for joining ceramic members and metal members. For example, Cu, Ni, Co, Al, or stainless steel is sandwiched between ceramic members and metal members and For joining by screwing, bolting, or hot pressing [Japanese Patent Application No. 54-117279 (Japanese Unexamined Patent Publication No. 56-41879]), a small hole is drilled on the outer periphery of the ceramic member, and the metal member is joined by friction welding. A connection structure that is pushed into a hole [Utility Application No. 57-81585
No. 185382)], a joint structure in which a recess is formed at the end of a metal member, a tapered ceramic member is inserted into this recess, and a brazing material is filled and fixed [Utility Application No. 57-123641] (Utility Model Application Publication No. 60-49130)], between the ceramic member and the metal member,
Shrink-fitted with a metal having almost the same coefficient of thermal expansion as the ceramic member [Utility Application 1983-
No. 169789 (Utility Model Application Publication No. 59-73502)], an enlarged portion is formed at one end of a ceramic member, and a buffer metal having a coefficient of thermal expansion comparable to that of the ceramic member is bonded to the metal member. A connection structure in which a ceramic member and a metal member are joined by filling them with a material [Utility Application No. 58-132549 (Japanese Utility Model Application No. 60-40443)] is known.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

ところで、前記第5図に示すセラミツクス軸1
と金属軸2との突合せ直接接合による場合、セラ
ミツクス軸1と金属軸2との熱膨脹係数の差が大
きいため、温度変化を受けることによつて、その
接合面Aには大きなせん断応力と曲げ応力(熱応
力)が作用し、セラミツクス軸1にクラツクが生
じ、接合機能を消失する欠点を有する。また、前
記第6図に示す金属中間スリーブ3を介して接合
させる場合も、温度変化を受けるとこの金属中間
スリーブ3とセラミツクス軸1との間で大きな熱
応力を発生し、上記と同様の欠点を有する。さら
に前記した種々の従来手段においても、いずれも
良好な結合構造体が得られず、例えば、セラミツ
クス部材と金属部材とを嵌合させた継手形状とし
たものでも、この嵌合面に〓間が生じゆるんでし
まい、たとえ嵌合面に接合剤を用いても剥離が生
じ結合が失なわれる。
By the way, the ceramic shaft 1 shown in FIG.
In the case of direct butt joining between the ceramic shaft 1 and the metal shaft 2, there is a large difference in coefficient of thermal expansion between the ceramic shaft 1 and the metal shaft 2, so the joint surface A receives large shear stress and bending stress due to temperature changes. (Thermal stress) acts on the ceramic shaft 1, causing cracks in the ceramic shaft 1, resulting in loss of bonding function. Furthermore, even in the case of joining via the metal intermediate sleeve 3 shown in FIG. 6, large thermal stress is generated between the metal intermediate sleeve 3 and the ceramic shaft 1 when subjected to temperature changes, resulting in the same drawback as above. has. Furthermore, none of the above-mentioned conventional means can provide a good joint structure. For example, even in a joint shape in which a ceramic member and a metal member are fitted, there is a gap between the fitting surfaces. This results in loosening, and even if a bonding agent is used on the mating surfaces, peeling occurs and the bond is lost.

〔目的〕〔the purpose〕

そこで、本考案は、温度変化を受けることによ
つて発生する両者の熱膨脹差に基づく接合面での
応力を軽減し、軸の破損を防止する金属軸とセラ
ミツクス軸との結合構造体を提供することを目的
とする。
Therefore, the present invention provides a joint structure between a metal shaft and a ceramic shaft that reduces the stress at the joint surface due to the difference in thermal expansion between the two caused by temperature changes and prevents damage to the shaft. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本考案は、金属軸とセラミツクス軸
とを突合せ、この突合せ部外周面に装着した円筒
状の金属中間スリーブを介して結合してなる金属
軸とセラミツクス軸との結合構造体において、金
属軸とセラミツクス軸とを微小〓間を設けて突合
せ、この突合せ部外周面に装着した金属中間スリ
ーブと一方の金属軸とを該突合せ位置から遠く離
れた個所で溶接結合し、かつ、この金属軸の突合
せ端部外周部を軸方向に長く切欠き、金属中間ス
リーブとの間に空〓を設けてなり、また、金属中
間スリーブと他方のセラミツクス軸とを接合し、
かつ、この金属中間スリーブのセラミツクス軸側
の端部を厚みが漸減するテーパーまたは曲率を設
けてなることを特徴とする金属軸とセラミツクス
軸との結合構造体である。
That is, the present invention provides a metal shaft-ceramics shaft coupling structure in which a metal shaft and a ceramic shaft are butted together and joined via a cylindrical metal intermediate sleeve attached to the outer circumferential surface of the abutting portion. and a ceramic shaft with a small gap, and the metal intermediate sleeve attached to the outer peripheral surface of this butt part and one of the metal shafts are welded together at a point far away from the butt position, and the metal shaft is The outer periphery of the abutting end is notched long in the axial direction, and a space is provided between it and the metal intermediate sleeve, and the metal intermediate sleeve and the other ceramic shaft are joined,
The metal intermediate sleeve is provided with a taper or curvature that gradually reduces the thickness at the end of the metal intermediate sleeve on the ceramic shaft side.

本考案は、前述した第6図に基づく従来の接合
手段、すなわち、金属軸とセラミツクス軸とを突
合せ、この突合せ部外周面に装着した円筒状の金
属中間スリーブを介して結合したもの、いわゆる
継手部にはめ合い継手を採用する点では同じであ
るが、本考案では、接合後(もしくは機械的結合
後)の冷却過程、組立溶接時および使用時に継手
部のセラミツクス軸に発生する応力を、金属軸な
らびにセラミツクス軸の継手部における幾何的形
状および組立溶接時の溶接位置によつて低下さ
せ、セラミツクス軸の破壊持性を大幅に向上させ
る結合構造体、いわゆる継手構造を提供する点
で、前述した第6図に基づく従来の接合構造体と
全く異なるものである。
The present invention is based on the conventional joining means based on the above-mentioned FIG. However, in the present invention, the stress generated in the ceramic shaft of the joint during the cooling process after joining (or after mechanical joining), during assembly and welding, and during use is reduced by using a metal fitting. The above-mentioned invention provides a joint structure, a so-called joint structure, which significantly improves the fracture resistance of a ceramic shaft by reducing the geometrical shape of the shaft and the joint of the ceramic shaft and the welding position during assembly welding. This is completely different from the conventional joint structure shown in FIG.

すなわち、本考案の結合構造体をその製造手段
に基づいて詳細に説明すると、まず、セラミツク
ス軸の金属軸と突合せする部分の外周面に円筒状
の金属中間スリーブを装着し、この金属中間スリ
ーブの一端内周面とセラミツクス軸の外周面とを
接合させる。この金属中間スリーブは、セラミツ
クス軸側の端部形状がテーパまたは曲率状となつ
ており、厚みが漸減するようになつている。
That is, to explain the joint structure of the present invention in detail based on its manufacturing method, first, a cylindrical metal intermediate sleeve is attached to the outer peripheral surface of the part of the ceramic shaft that abuts against the metal shaft, and the metal intermediate sleeve is The inner peripheral surface of one end and the outer peripheral surface of the ceramic shaft are joined. This metal intermediate sleeve has a tapered or curved end shape on the ceramic shaft side, and its thickness gradually decreases.

次いで、この金属中間スリーブの他端内周面に
金属軸を嵌合し、該金属中間スリーブの端部のみ
で金属軸と溶接(重ね溶接または重ね突合せ溶
接)して結合させる。金属中間スリーブの他端周
面に金属軸を嵌合する際、この金属軸の端面はセ
ラミツクス軸の端面と当接せず、微小〓間を設け
るようにする。また、金属中間スリーブと金属軸
との溶接結合位置は、セラミツクス軸との突合せ
部位置より遠く離れた個所であり、かつ、この金
属軸の突合せ端部外周部を軸方向に長く切欠き、
金属中間スリーブとの間に空〓を設ける。
Next, a metal shaft is fitted onto the inner circumferential surface of the other end of this metal intermediate sleeve, and only the end of the metal intermediate sleeve is welded (lap welding or lap butt welding) to the metal shaft to join. When fitting the metal shaft to the other end peripheral surface of the metal intermediate sleeve, the end surface of the metal shaft does not come into contact with the end surface of the ceramic shaft, but a slight gap is provided between the metal shaft and the ceramic shaft. In addition, the welding joint position of the metal intermediate sleeve and the metal shaft is located far away from the butt part position with the ceramic shaft, and the outer periphery of the butt end of the metal shaft is notched long in the axial direction,
A space is provided between the metal intermediate sleeve and the metal intermediate sleeve.

本考案において、金属軸としては、炭素鋼、合
金鋼(Ni−Cr−Mo鋼)、ステンレス鋼(13%Cr
鋼、18%Cr−18%Ni鋼等)等が、セラミツクス
軸としては、Si3N4,SiC,Al2O3,ZrO2等が使
用できる。また本考案において、金属中間スリー
ブとしては、剛性の小さい材質、例えば、炭素
鋼、合金鋼(Ni−Cr−Mo鋼)、ステンレス鋼
(13%Cr鋼、18%Cr−18%Ni鋼等)使用するもの
であり、そして、この金属中間スリーブとセラミ
ツクス軸との接合手段および金属軸との溶接結合
手段としては、従来の種々な手段が使用できる
が、特に本考案者等が既提案の焼嵌、冷嵌、固相
接合、ろう付等の手段が好適である。すなわち、
本考案者等は、これまで、セラミツクス軸と金属
管との間にセラミツクス十金属からなる複合イン
サートを挿入し、加熱接合した後、金属シヤフト
と金属管とを電子ビーム溶接等で溶接する方法
〔特願昭59−86152号(特開昭60−231473号公報)、
特願昭59−103728号、(特開昭60−251179号公
報)、特願昭59−103729号(特開昭60−251180号
公報)〕および、セラミツクスの内筒に、セラミ
ツクス十金属からなる複合インサート、軟質金属
(Cu,Ni,Al,Ti),AgまたはAg合金、Fe基ま
たはNi基材料の順に配設し、加熱してガス加圧、
熱膨脹差加圧法で接合せしめた後、Fe基または
Ni基材料リングとFe基またはNi基材料シヤフと
を電子ビーム溶接等で溶接する方法(特願昭61−
20238号)を提案しており、このような接合手段
を本考案の接合に用いるのが好ましい。
In this invention, the metal shaft is made of carbon steel, alloy steel (Ni-Cr-Mo steel), stainless steel (13%Cr
For the ceramic shaft, Si 3 N 4 , SiC, Al 2 O 3 , ZrO 2 , etc. can be used. In addition, in the present invention, the metal intermediate sleeve is made of a material with low rigidity, such as carbon steel, alloy steel (Ni-Cr-Mo steel), stainless steel (13% Cr steel, 18% Cr-18% Ni steel, etc.). Various conventional means can be used for joining the metal intermediate sleeve to the ceramic shaft and welding the metal shaft, but in particular, the sintering method proposed by the inventors and others can be used. Means such as fitting, cold fitting, solid phase joining, and brazing are suitable. That is,
[ Patent Application No. 59-86152 (Japanese Unexamined Patent Publication No. 60-231473),
Japanese Patent Application No. 59-103728, (Japanese Unexamined Patent Publication No. 60-251179), Japanese Patent Application No. 59-103729 (Japanese Unexamined Patent Application No. 60-251180)] and a ceramic inner cylinder made of ceramic ten metals. Composite insert, soft metal (Cu, Ni, Al, Ti), Ag or Ag alloy, Fe-based or Ni-based material are arranged in this order, heated and gas pressurized,
After bonding using thermal expansion differential pressure method, Fe-based or
A method of welding a Ni-based material ring and a Fe-based or Ni-based material shaft by electron beam welding, etc.
No. 20238), and it is preferable to use such a joining means in the joining of the present invention.

また、本考案において、好ましい実施態様とし
ては、金属中間スリーブとセラミツクス軸との接
合に際して、この両者の中間の熱膨脹係数を有
し、かつ、この両者と接合性のよい材質、例え
ば、セラミツクス軸がSi3N4,SiCで金属中間ス
リーブが鋼の場合は、コバール(Fe−30Ni−
17Co),Ni,Mo,Ti,Wc・Co、セラミツクス
軸がAl2O3,ZrO2で金属中間スリーブが鋼の場合
は、コバール(Fe−30Ni−17Co),Ni,Ti,
Wc・Coからなる中間円筒体を介して接合させる
ものである。
In addition, in a preferred embodiment of the present invention, when joining the metal intermediate sleeve and the ceramic shaft, a material having a coefficient of thermal expansion between the two and having good bonding properties with the two, such as a ceramic shaft, is used. If the metal intermediate sleeve is steel for Si 3 N 4 , SiC, Kovar (Fe−30Ni−
17Co), Ni, Mo, Ti, Wc/Co, if the ceramic shaft is Al 2 O 3 , ZrO 2 and the metal intermediate sleeve is steel, Kovar (Fe-30Ni-17Co), Ni, Ti,
They are joined via an intermediate cylindrical body made of Wc/Co.

また、本考案において、好ましい実施態様とし
て金属中間スリーブの金属軸側はセラミツクス軸
側に比較して肉厚/直径比を強度上できる限り小
さくするようにした結合構造体があげられる(後
記実施例3参照)。このような結合構造体とする
ことにより半径方向の剛性が小さくでき、これに
より金属中間スリーブとセラミツクス軸との半径
方向の熱膨脹差により発生する拘束力を小さくす
ることができる。
In addition, in the present invention, a preferred embodiment is a joint structure in which the metal shaft side of the metal intermediate sleeve has a wall thickness/diameter ratio as small as possible in terms of strength compared to the ceramic shaft side (examples described below). (See 3). By using such a joint structure, the rigidity in the radial direction can be reduced, and thereby the restraining force generated by the difference in thermal expansion in the radial direction between the metal intermediate sleeve and the ceramic shaft can be reduced.

すなわち、半径方向の剛性=半径方向力/半径
方向変形 であり、第4図A,B〔第4図Aの肉厚/直径比
は第4図Bの当該比に比べ小さい場合を示してい
る〕に示すように、半径方向力ρと半径方向変形
εとの比は、第4図Aの方が第4図Bより小さく
なつている。この半径方向の剛性を小さくするこ
とにより、金属中間スリーブとセラミツクス軸と
の半径方向の熱膨脹差(上記のεに相当)によつ
て発生する拘束力〔第4図C,Dの曲げモーメン
トM、せん断力N〕を小さくする。なお、第4図
A〜D中、Oは軸の中心線を示し、第4図Cは第
4図Aに、第4図Dは第4図Bにそれぞれ対応し
ている。
In other words, radial stiffness = radial force/radial deformation, and Figures 4A and B [Figure 4A shows a case in which the wall thickness/diameter ratio is smaller than the ratio in Figure 4B. ], the ratio of the radial force ρ to the radial deformation ε is smaller in FIG. 4A than in FIG. 4B. By reducing the rigidity in the radial direction, the restraining force generated by the difference in thermal expansion in the radial direction (corresponding to ε above) between the metal intermediate sleeve and the ceramic shaft [bending moment M in Fig. 4C and D, Shear force N] is reduced. In addition, in FIGS. 4A to 4D, O indicates the center line of the axis, FIG. 4C corresponds to FIG. 4A, and FIG. 4D corresponds to FIG. 4B, respectively.

〔実施例 1〕 第1図は本考案の実施例である結合構造体を示
す図である。セラミツクス軸1と金属軸2との突
合せ部外周に円筒状の金属中間スリーブ3を挿着
する。そして、セラミツクス軸1の外周面と金属
中間スリーブ3の内周面は、接合面Aで焼嵌め、
冷嵌め、固相接合、ろう付などにより接合し、一
方、金属軸2と金属中間スリーブ3とは重ね溶接
ないしは重ね突合せ溶接(この重ねないしは重ね
突合せ溶接法は一般の従来法を用いるが、特に電
子ビーム溶接やレーザビーム溶接法が好ましい。)
を行う。この溶接部アはセラミツクス軸1との突
合せ部から遠く離れた位置であり、これによつて
金属軸2側の金属中間スリーブ3の軸方向長さが
大きいので、セラミツクス軸1側への溶接の悪影
響は生じないものである。
[Embodiment 1] FIG. 1 is a diagram showing a bonded structure as an embodiment of the present invention. A cylindrical metal intermediate sleeve 3 is inserted around the outer periphery of the abutting portion between the ceramic shaft 1 and the metal shaft 2. Then, the outer peripheral surface of the ceramic shaft 1 and the inner peripheral surface of the metal intermediate sleeve 3 are shrink-fitted at the joint surface A.
The metal shaft 2 and the metal intermediate sleeve 3 are joined by cold fitting, solid state joining, brazing, etc., and the metal shaft 2 and the metal intermediate sleeve 3 are joined by lap welding or lap butt welding (this lap welding or lap butt welding method uses a general conventional method, but in particular Electron beam welding and laser beam welding methods are preferred.)
I do. This welding part A is located far away from the butt part with the ceramic shaft 1, and because the axial length of the metal intermediate sleeve 3 on the metal shaft 2 side is large, welding to the ceramic shaft 1 side is difficult. No adverse effects will occur.

また、金属中間スリーブ3のセラミツクス軸1
側端部は、肉厚が端面に向つて漸減する曲率3a
を設け、さらに、両軸の突合せ面には微小の〓間
hを設け、また、金属軸2の突合せ位置側の端部
外周部を軸方向に長く切欠いて切欠部2bを設
け、金属中間スリーブ3との間に空〓を設ける。
なお、この実施例においては、金属中間スリーブ
3の金属軸2側端部にもテーパ3bが設けられて
おり、また、第1図において2aは突起である。
In addition, the ceramic shaft 1 of the metal intermediate sleeve 3
The side end portion has a curvature 3a in which the wall thickness gradually decreases toward the end surface.
Furthermore, a minute gap h is provided between the abutting surfaces of both shafts, and a notch 2b is provided by cutting out the outer circumference of the end of the metal shaft 2 on the abutting position side long in the axial direction, and a metal intermediate sleeve is provided. Provide a space between 3 and 3.
In this embodiment, a taper 3b is also provided at the end of the metal intermediate sleeve 3 on the side of the metal shaft 2, and 2a in FIG. 1 is a projection.

この実施例の作用効果を説明すると、セラミツ
クス軸1と金属軸2との突合せ部は温度変化を受
けると、両者の熱膨脹係数の差により半径方向の
変位差を生ずるが、この実施例では、セラミツク
ス軸1と金属軸2とを、この両軸よりも剛性の小
さい金属中間スリーブ3を介して結合させたもの
であるから、上記変位差をこの金属中間スリーブ
3の変形によつて吸収することができ、両軸に作
用する応力を低減することができる。
To explain the effect of this embodiment, when the abutting portion of the ceramic shaft 1 and the metal shaft 2 is subjected to a temperature change, a difference in displacement in the radial direction occurs due to the difference in coefficient of thermal expansion between the two. Since the shaft 1 and the metal shaft 2 are connected via the metal intermediate sleeve 3 which is less rigid than both shafts, the above displacement difference can be absorbed by the deformation of the metal intermediate sleeve 3. The stress acting on both axes can be reduced.

また、金属軸2と金属中間スリーブ3との溶接
部アを突合せ部から遠く離れた位置に設け、さら
に、金属軸2の端部外周部に切欠部2bを設けて
金属中間スリーブ3との間に空〓を設けたもので
あるから、金属中間スリーブ3の剛性を金属軸2
よりもはるかに小さくすることができ、また、セ
ラミツクス軸1側の接合面Aへの溶接の悪影響も
ない。
In addition, the weld part A between the metal shaft 2 and the metal intermediate sleeve 3 is provided at a position far away from the abutting part, and a notch part 2b is provided on the outer periphery of the end of the metal shaft 2, so that the weld part A between the metal shaft 2 and the metal intermediate sleeve 3 is provided at a position far away from the butt part. Since the space is provided in the metal shaft 2, the rigidity of the metal intermediate sleeve 3 is
Furthermore, there is no adverse effect of welding on the joint surface A on the ceramic shaft 1 side.

さらに、金属中間スリーブ3とセラミツクス軸
1ならびに金属軸2との接合ならびに溶接結合
(これは前記したように、重ね溶接または重ね突
合せ溶接法によるものであり、特に電子ビーム溶
接やレーザビーム溶接が好ましい。)しているも
のであるから、回転トルクや振動にも十分に耐え
ることができる。
Further, the metal intermediate sleeve 3 and the ceramic shaft 1 and the metal shaft 2 are joined and welded together (as mentioned above, this is done by lap welding or lap butt welding, and electron beam welding or laser beam welding is particularly preferred). ), it can withstand rotational torque and vibration.

また、金属中間スリーブ3のセラミツクス軸1
側端部には、厚みが漸減する曲率3aを設けたこ
とにより、セラミツクス軸1の応力集中による破
損を防止することができ、かつ、この実施例で
は、剛性の小さい金属中間スリーブ3を使用し、
セラミツクス軸1と金属軸2との突合せ部に微小
〓間を設け、さらに、金属中間スリーブ3と金属
軸2との間に空〓を設けることにより、両軸の熱
膨脹係数差に基づく接合面での応力を軽減し、軸
の破損を防止することができる。
In addition, the ceramic shaft 1 of the metal intermediate sleeve 3
By providing the side end with a curvature 3a whose thickness gradually decreases, damage to the ceramic shaft 1 due to stress concentration can be prevented, and in this embodiment, a metal intermediate sleeve 3 with low rigidity is used. ,
By providing a small gap at the abutting portion of the ceramic shaft 1 and the metal shaft 2, and further providing a space between the metal intermediate sleeve 3 and the metal shaft 2, the joining surface based on the difference in the thermal expansion coefficients of the two shafts is This can reduce the stress on the shaft and prevent damage to the shaft.

〔実施例 2〕 第2図は本考案の他の実施例である結合構造体
を示す図であり、殆んど実施例1と同じである
が、さらに応力低減のために、両軸の突合せ位置
のセラミツクス軸1の端部外周部に切欠部1bを
設け、かつ、金属中間スリーブ3端面部からセラ
ミツクス軸1に曲率1aを設けたものである。こ
れ以外は実施例1と同一構造および作用効果を生
ずる。
[Example 2] Figure 2 is a diagram showing a combined structure that is another example of the present invention, and is almost the same as Example 1, but in order to further reduce stress, both axes are butted. A notch 1b is provided on the outer periphery of the end of the ceramic shaft 1 at the position, and a curvature 1a is provided in the ceramic shaft 1 from the end surface of the metal intermediate sleeve 3. Other than this, the structure and effects are the same as in the first embodiment.

〔実施例 3〕 第3図は本考案のその他別の実施例である結合
構造体を示す図であり、殆んど実施例1および2
と同じであるので、異なるところについて説明す
ると、この実施例では特に温度変化の大きな高温
状態で使用する場合の適用例で、セラミツクス軸
1と金属中間スリーブ3との間に、両者の中間の
熱膨脹係数を有し、かつ、両者と接合性のよい中
間円筒体4を介在させ、かつ、金属中間スリーブ
3の肉厚について、金属中間スリーブ3の金属軸
2側はセラミツクス軸1側に比較して肉厚/直径
比を強度上できる限り小さくしたものである。ま
た、中間円筒体4は、セラミツクス軸1の突合せ
部上部にテーパ状の切欠部4bを設け、さらに、
セラミツクス軸1側端部にテーパ4aを設けたも
のである。
[Example 3] FIG. 3 is a diagram showing a bonded structure which is another example of the present invention, and is mostly similar to Examples 1 and 2.
The difference is that this embodiment is used in a high-temperature state where temperature changes are particularly large, and a thermal expansion mechanism is provided between the ceramic shaft 1 and the metal intermediate sleeve 3. The intermediate cylindrical body 4 which has a coefficient and has good bondability with both is interposed, and the thickness of the metal intermediate sleeve 3 is smaller on the metal shaft 2 side than on the ceramic shaft 1 side. The thickness/diameter ratio is made as small as possible in terms of strength. Further, the intermediate cylindrical body 4 is provided with a tapered notch 4b at the upper part of the abutting part of the ceramic shaft 1, and further,
A taper 4a is provided at the end of the ceramic shaft 1.

この実施例では、金属中間スリーブ3の金属軸
2側において、肉厚/直径比を強度上できる限り
小さくし、金属軸2との溶接位置を突合せ部から
遠く離し、かつ、金属軸2の切欠部2bによる金
属中間スリーブ3との空〓を設けたこととあいま
つて、金属中間スリーブ3の剛性を金属軸2より
も、より一層小さくすることができる。
In this embodiment, on the metal shaft 2 side of the metal intermediate sleeve 3, the wall thickness/diameter ratio is made as small as possible in terms of strength, the welding position with the metal shaft 2 is placed far away from the butt part, and the notch in the metal shaft 2 is In combination with the provision of the space between the metal intermediate sleeve 3 and the metal intermediate sleeve 3 by the portion 2b, the rigidity of the metal intermediate sleeve 3 can be made even smaller than that of the metal shaft 2.

なお、第3図中、hは〓間で、セラミツクス軸
1、金属軸2、金属中間スリーブ3の軸方向の熱
膨脹により、セラミツクス軸1と金属軸2の端面
が接触して大きな拘束力が発生しないように設け
られる。sは、セラミツクス軸1の金属軸2側端
面から金属中間スリーブ3に設けられた段部まで
の距離で、金属中間スリーブ3と中間円筒体4と
の接合部に対応する位置は、接合上ある程度の肉
厚が必要であり、これに対し接合部から離れた位
置の肉厚は、熱膨脹差による拘束力を小さくする
ため、できる限り薄肉とすることが好ましく、こ
れらを満たすために設ける段部の寸法関係を示す
ものである。またテーパ4a、テーパ状切欠部4
bは、端面の応力集中(せん断応力)を低減する
ためのものである。lは、中間円筒体4端面から
金属中間スリーブ3端面までの距離で、テーパ4
aの軸方向長さより少し大きくする。
In Fig. 3, h indicates 〓, and due to thermal expansion in the axial direction of the ceramic shaft 1, metal shaft 2, and metal intermediate sleeve 3, the end surfaces of the ceramic shaft 1 and the metal shaft 2 come into contact and a large restraining force is generated. It is set up so that it does not occur. s is the distance from the end surface of the ceramic shaft 1 on the metal shaft 2 side to the step provided on the metal intermediate sleeve 3, and the position corresponding to the joint between the metal intermediate sleeve 3 and the intermediate cylindrical body 4 is a certain distance on the joint. In contrast, it is preferable to make the wall thickness at a position away from the joint as thin as possible in order to reduce the restraining force due to the difference in thermal expansion. It shows the dimensional relationship. Also, the taper 4a, the tapered notch 4
b is for reducing stress concentration (shear stress) on the end face. l is the distance from the end surface of the intermediate cylindrical body 4 to the end surface of the metal intermediate sleeve 3;
Make it slightly larger than the axial length of a.

〔効果〕〔effect〕

本考案は、以上詳記したように、剛性の小さい
金属中間スリーブを使用し、金属軸とセラミツク
ス軸とを微小〓間を設けて突合させ、また、金属
軸の突合せ端部外周部に切欠き部を設け、金属中
間スリーブとの間に空〓を設けたものであるか
ら、両軸の熱膨脹係数差に基づく接合面での応力
を軽減でき、軸の破損を防止できる効果を奏す
る。
As detailed above, the present invention uses a metal intermediate sleeve with low rigidity, abuts the metal shaft and the ceramic shaft with a small gap, and also has a notch on the outer periphery of the abutting end of the metal shaft. Since a space is provided between the shaft and the metal intermediate sleeve, stress at the joint surface due to the difference in coefficient of thermal expansion between the two shafts can be reduced, and damage to the shaft can be prevented.

また、本考案では、金属中間スリーブと金属軸
との溶接結合を、突合せ位置から遠く離れた個所
で行うものであるから、セラミツクス軸と金属中
間スリーブとの接合部へ悪影響を与えないもので
あり、その上、金属中間スリーブのセラミツクス
軸側の端部を厚みが漸減するテーパまたは曲率を
設けたものであり、また、必要に応じさらにセラ
ミツクス軸にも金属軸との突合せ部端部にテーパ
または曲率を設ける(第2図および第3図におけ
る曲率1a参照)ことにより、セラミツクス軸の
応力の集中による破損を防止することができる。
Furthermore, in the present invention, the welding between the metal intermediate sleeve and the metal shaft is performed at a location far away from the abutting position, so there is no adverse effect on the joint between the ceramic shaft and the metal intermediate sleeve. In addition, the end of the metal intermediate sleeve on the ceramic shaft side is provided with a taper or curvature that gradually reduces the thickness, and if necessary, the ceramic shaft is also provided with a taper or curvature at the end where it butts against the metal shaft. By providing a curvature (see curvature 1a in FIGS. 2 and 3), damage due to concentration of stress on the ceramic shaft can be prevented.

更に、本考案は、温度変化を大きく受けるとこ
ろに適用する場合、セラミツクス軸と金属中間ス
リーブとの間に中間円筒体を介在させ、しかも該
金属中間スリーブの金属軸側を、セラミツクス軸
側に比して肉厚/直径比を強度上できる限り小さ
くすることができ、これによつて、接合部の熱応
力がより軽減され、熱による接合面の破損を防止
することができるものである。
Furthermore, when the present invention is applied to a place subject to large temperature changes, an intermediate cylindrical body is interposed between the ceramic shaft and the metal intermediate sleeve, and the metal shaft side of the metal intermediate sleeve is made smaller than the ceramic shaft side. This allows the thickness/diameter ratio to be made as small as possible in terms of strength, thereby further reducing thermal stress at the joint and preventing damage to the joint surface due to heat.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例、第2図は同他の実施
例、第3図は同その他別の実施例をそれぞれ示す
結合構造体の要部断面図である。第4図A〜Dは
本考案の一実施態様例の作用効果を説明するため
の図である。第5図は従来のセラミツクス軸と金
属軸とを直接接合した構造体の要部断面図であ
り、第6図は同じく従来の金属中間スリーブを介
して接合した構造体の要部断面図である。 1……セラミツクス軸、1a……曲率、1b…
…切欠部、2……金属軸、2a……突起、2b…
…切欠部、3……金属中間スリーブ、3a……曲
率、3bテーパ、4……中間円筒体、4a……テ
ーパ、4b……切欠部、A……接合面、ア……溶
接部、h……〓間。
FIG. 1 is a sectional view of a main part of a coupling structure showing an embodiment of the present invention, FIG. 2 is a similar embodiment, and FIG. 3 is a similar and different embodiment. FIGS. 4A to 4D are diagrams for explaining the effects of one embodiment of the present invention. Fig. 5 is a sectional view of a main part of a structure in which a conventional ceramic shaft and a metal shaft are directly joined, and Fig. 6 is a sectional view of a main part of a structure in which a conventional ceramic shaft and a metal shaft are joined via a metal intermediate sleeve. . 1...Ceramics axis, 1a...Curvature, 1b...
...Notch, 2...Metal shaft, 2a...Protrusion, 2b...
...Notch, 3...Metal intermediate sleeve, 3a...Curvature, 3b taper, 4...Intermediate cylindrical body, 4a...Taper, 4b...Notch, A...Joint surface, A...Welded part, h ……〓A pause.

Claims (1)

【実用新案登録請求の範囲】 (1) 金属軸とセラミツクス軸とを突合せ、この突
合せ部外周面に装着した円筒状の金属中間スリ
ーブを介して結合してなる金属軸とセラミツク
ス軸との結合構造体において、金属軸とセラミ
ツクス軸とを微小〓間を設けて突合せ、この突
合せ部外周面に装着した金属中間スリーブと一
方の金属軸とを該突合せ位置から遠く離れた個
所で溶接結合し、かつ、この金属軸の突合せ端
部外周部を軸方向に長く切欠き、金属中間スリ
ーブとの間に空〓を設けてなり、また、金属中
間スリーブと他方のセラミツクス軸とを接合
し、かつ、この金属中間スリーブのセラミツク
ス軸側の端部を厚みが漸減するテーパーまたは
曲率を設けてなることを特徴とする金属軸とセ
ラミツクス軸との結合構造体。 (2) 金属中間スリーブと他方のセラミツクス軸と
の接合は、この両者の中間の熱膨脹係数を有
し、かつ、この両者と接合性のよい材質からな
る中間円筒体を介して接合してなり、また、金
属中間スリーブの金属軸側を、セラミツクス軸
側に比して肉厚/直径比を強度上できる限り小
さくしてなる上記実用新案登録請求の範囲第1
項記載の金属軸とセラミツクス軸との結合構造
体。
[Claims for Utility Model Registration] (1) A joint structure between a metal shaft and a ceramic shaft, which is formed by abutting a metal shaft and a ceramic shaft and joining them via a cylindrical metal intermediate sleeve attached to the outer circumferential surface of this abutting portion. In the body, a metal shaft and a ceramic shaft are abutted with a minute gap, and a metal intermediate sleeve attached to the outer peripheral surface of this abutting portion and one metal shaft are welded together at a location far away from the abutment position, and , the outer periphery of the abutting end of this metal shaft is notched long in the axial direction, and a space is provided between it and the metal intermediate sleeve, and the metal intermediate sleeve and the other ceramic shaft are joined, and this 1. A joint structure of a metal shaft and a ceramic shaft, characterized in that the end of the metal intermediate sleeve on the ceramic shaft side is tapered or curved so that the thickness gradually decreases. (2) The metal intermediate sleeve and the other ceramic shaft are joined through an intermediate cylindrical body made of a material that has a coefficient of thermal expansion between the two and has good bondability with both, In addition, the metal shaft side of the metal intermediate sleeve has a wall thickness/diameter ratio as small as possible in terms of strength compared to the ceramic shaft side.
A bonded structure of a metal shaft and a ceramic shaft as described in 2.
JP9245986U 1986-06-19 1986-06-19 Expired JPH0351321Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9245986U JPH0351321Y2 (en) 1986-06-19 1986-06-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9245986U JPH0351321Y2 (en) 1986-06-19 1986-06-19

Publications (2)

Publication Number Publication Date
JPS632743U JPS632743U (en) 1988-01-09
JPH0351321Y2 true JPH0351321Y2 (en) 1991-11-01

Family

ID=30954185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9245986U Expired JPH0351321Y2 (en) 1986-06-19 1986-06-19

Country Status (1)

Country Link
JP (1) JPH0351321Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2572800B2 (en) * 1988-02-29 1997-01-16 日本碍子株式会社 Metal / ceramic joints

Also Published As

Publication number Publication date
JPS632743U (en) 1988-01-09

Similar Documents

Publication Publication Date Title
JPH0438715B2 (en)
JPH0477129B2 (en)
JPH0415361B2 (en)
JPH043129Y2 (en)
JP2752768B2 (en) Joint structure of turbine rotor
JPH05155668A (en) Combination of ceramic with metal
US4959258A (en) Joined metal-ceramic assembly method of preparing the same
JPH0444631B2 (en)
JPH0351321Y2 (en)
JPH0240031B2 (en)
JPS61169164A (en) Joint structure of rotary shaft
JPH0352962Y2 (en)
JP2822405B2 (en) Method of joining ceramic rotor and metal shaft
JPH0351319Y2 (en)
JPS6092025A (en) Coupled structure of ceramics shaft and metallic shaft
JPH037368Y2 (en)
JPS61219766A (en) Joint structure of ceramic shaft and metal shaft
JPS6278402A (en) Ceramic turbo rotor
JPH0322489Y2 (en)
JPH061701U (en) Joining structure of metal rotating shaft and ceramic rotating body
JPS60231473A (en) Method of bonding ceramic member and metal member
JPS585513A (en) Thrust collar of rotor made of chrome steel
JPS60251179A (en) Method of bonding ceramic member and metal member
JPS6325281Y2 (en)
JPH0550471B2 (en)