JPS6278402A - Ceramic turbo rotor - Google Patents
Ceramic turbo rotorInfo
- Publication number
- JPS6278402A JPS6278402A JP21872885A JP21872885A JPS6278402A JP S6278402 A JPS6278402 A JP S6278402A JP 21872885 A JP21872885 A JP 21872885A JP 21872885 A JP21872885 A JP 21872885A JP S6278402 A JPS6278402 A JP S6278402A
- Authority
- JP
- Japan
- Prior art keywords
- shaft
- ceramic
- connecting shaft
- outer diameter
- rotating body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はセラミック製回転体を備えた内燃機関等に搭載
する排気ターボチャージャーを構成するセラミックター
ボロータに関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ceramic turbo rotor constituting an exhaust turbocharger installed in an internal combustion engine or the like equipped with a ceramic rotating body.
各種用途に用し:られる内燃機関には、出力の向上や燃
料消費量の低減の他に、更に熱効率を向上させ、回転応
答性を改善するため、高温が作用する回転体を機械的強
度、耐熱性、1IliJ I’i’:耗性に優れ、比重
の小さいセラミック剤、とりわけ、窒化珪素サイアロン
、炭化珪素等の焼結体でターボロータを構成し、高荷重
が作用する回転軸を高強度で加工性の優れた金属材料と
し、これらを組み合わせてセラミックターボロータとす
ることが研究され提案されてきた。In addition to increasing output and reducing fuel consumption, internal combustion engines used for a variety of applications also require improvements in the mechanical strength and mechanical strength of rotating bodies that are exposed to high temperatures, in order to further improve thermal efficiency and rotational response. Heat resistance, 1IliJ I'i': The turbo rotor is made of a ceramic material with excellent wear resistance and low specific gravity, especially sintered bodies such as silicon nitride sialon and silicon carbide, which provides high strength to the rotating shaft where high loads are applied. It has been researched and proposed to use metal materials with excellent workability and to combine them to create a ceramic turbo rotor.
上記の如き形式のセラミックターボロータにおいてはコ
バール、インバー、アンバー、鉄−ニッケル合金等の熱
膨張率が1.3 Xl0−’/ ’C乃至5.510−
’/ ’Cと比較的小さい金属部材を、セラミック製回
転体の軸芯部に一体的に突設した連結軸を受入れる凹部
を有した接合用金属部材とし、該連結軸にロウ付または
締り嵌合により接合した後、該金属部材に機械構造用炭
素鋼等からなる金属製回転軸を圧接、溶接等の手段によ
り接合することが行われていた。In the ceramic turbo rotor of the above type, the coefficient of thermal expansion of Kovar, Invar, Amber, iron-nickel alloy, etc. is 1.3 Xl0-'/'C to 5.510-
' / 'C and a relatively small metal member are used as a joining metal member having a recess for receiving a connecting shaft that is integrally protruded from the shaft core of the ceramic rotating body, and the connecting shaft is brazed or tightly fitted. After joining by bonding, a metal rotating shaft made of mechanical structural carbon steel or the like is joined to the metal member by means such as pressure welding or welding.
しかしながら、前記接合用金属部材は高温での強度が低
く、前記連結軸を受入れ接合した該接合用金属部材の凹
部は、高温高速回転中に該開開目端が拡大し、前記セラ
ミック製回転体と接合用金属部材との接合がWit I
IQしてしまう恐れが大であった。そこで上記欠点を解
消するために、第2図に示す様に、前記接合用金属部材
3をインコネル、ハステロイ等の高温での強度が高い耐
熱合金を用いることが提供されている。However, the strength of the joining metal member is low at high temperatures, and the opening end of the recessed part of the joining metal member that has received and joined the connecting shaft expands during high-temperature and high-speed rotation, and the ceramic rotating member Wit I
There was a big fear that IQ would be affected. In order to eliminate the above-mentioned drawbacks, as shown in FIG. 2, it has been proposed to use a heat-resistant alloy with high strength at high temperatures, such as Inconel or Hastelloy, as the joining metal member 3.
しかしながら、インコネル、ハステロイ等の熱膨張率は
11.3 x 10−’/ ”c乃至16.0xlO−
6/ ℃であることから、窒化珪素が3.2 xlO−
67”c、サイアロンが3.Oxlo−6/℃、炭化珪
素が4.2 Xl0−’/℃程度と接合用金属部材3と
セラミック製回転体lの軸芯部に一体的に突設した連結
軸2との熱膨張差が大きいため、ロウ付又は締り嵌合す
るに際し、該連結軸2と接合用金属部材3との熱収縮の
差により発生する応力が高い靭性を有する接合用金属部
材3よりも脆性材料である前記連結軸2に集中し、該応
力に抗し切れず該連結軸2より破壊を起こしていた。However, the thermal expansion coefficient of Inconel, Hastelloy, etc. is 11.3 x 10-'/''c to 16.0xlO-
6/°C, silicon nitride is 3.2xlO-
67"c, sialon is 3.Oxlo-6/℃, silicon carbide is about 4.2 Since the difference in thermal expansion between the connecting shaft 2 and the joining metal member 3 is large, the stress generated due to the difference in thermal contraction between the connecting shaft 2 and the joining metal member 3 during brazing or tight fitting is caused by the joining metal member 3 having high toughness. The stress was concentrated on the connecting shaft 2, which is a more brittle material, and was unable to withstand the stress, causing the connecting shaft 2 to break.
更に前記欠点を解消するために、第3図に示す様に、セ
ラミ、7り製連結軸2の長さを、その最大外径の少なく
とも3倍として嵌着することや、第4図に示す様に、金
属製回転軸4に穿設された凹部5とセラミック製連結軸
2との締り嵌合領域りが軸受ハウジング内を流れる排気
ガスの熱影響を受け■い箇所に設けることが提案されて
いる。Furthermore, in order to eliminate the above-mentioned drawbacks, as shown in FIG. 3, the length of the connecting shaft 2 made of ceramic or porcelain is at least three times its maximum outer diameter. Similarly, it has been proposed that the tight fitting area between the recess 5 bored in the metal rotating shaft 4 and the ceramic connecting shaft 2 be provided at a location where it is likely to be affected by the heat of the exhaust gas flowing inside the bearing housing. ing.
しかしながら、上記提案はセラミック部材と金属部材の
接合部の要求耐熱特性のみに注目したものであって、セ
ラミック製連結軸の複雑かつ長軸の研削に係るコストア
ンプ及び該連結軸の嵌合領域全域にわたる均一な締り嵌
合が困難なことから、常温から高温までの広い温度範囲
での変化の激しい高速回転により生ずる極めて大きな偏
芯応力が、該連結軸の不均一な締り嵌合部分に集中する
ことにより、低速回転域で該連結軸2より破壊を起こす
ことが避けられず、セラミックターボロータとして十分
満足できるものではなかった。However, the above proposal focuses only on the required heat resistance characteristics of the joint between the ceramic member and the metal member, and the cost increase associated with the complex and long-axis grinding of the ceramic connecting shaft and the entire mating area of the connecting shaft. Because it is difficult to achieve a uniform tight fit over a wide temperature range from room temperature to high temperatures, the extremely large eccentric stress generated by rapidly changing high-speed rotation is concentrated on the uneven tight fit portion of the connecting shaft. As a result, it was inevitable that the connecting shaft 2 would break in the low-speed rotation range, and the ceramic turbo rotor was not fully satisfactory.
c問題点を解決するための手段〕
本発明は前記現状に鑑み鋭意研究の結果、金属製回転軸
の諸物性に基づくセラミック製回転耐の最大外径とセラ
ミック製回転外径およびセラミック製連結軸外径と金属
製軸受用軸部外径との間の相関を見出し、この相関を満
足した上で、該連結軸の長さが連結軸の最大外径の3倍
未満でかつシールリングを装着する溝を有する金属製回
転軸部の凹部では該連結軸は非接触で、オイルにより冷
却された軸受用軸部の凹部にて嵌着するに十分な長さと
することを特徴とするものである。Means for Solving Problems c] The present invention has been made as a result of intensive research in view of the above-mentioned current situation, and has been developed to provide a maximum outer diameter of a ceramic rotating shaft, a ceramic rotating outer diameter, and a ceramic connecting shaft based on various physical properties of a metallic rotating shaft. After finding a correlation between the outer diameter and the outer diameter of the metal bearing shaft, and satisfying this correlation, the length of the connecting shaft is less than three times the maximum outer diameter of the connecting shaft, and a seal ring is attached. The connecting shaft is not in contact with the recess of the metal rotating shaft having a groove, and has a length sufficient to fit in the recess of the oil-cooled bearing shaft. .
以下、本発明を実施例によって具体的に詳述する。 Hereinafter, the present invention will be specifically explained in detail with reference to Examples.
第1図において、11はセラミック製回転体で、該回転
体11の軸芯部には連結軸12が一体成形しである。ま
た上記回転体11の連結軸12は、金属製回転軸13の
凹部15に嵌接されている。この場合、連結軸12と金
属回転軸13とは凹部15のシールリング装着用の環状
の溝16を有して成る対応部では非接触で、凹部15の
軸受用軸部14の月応部にて、焼嵌め、ロウ付などの手
段により接合される。In FIG. 1, reference numeral 11 denotes a ceramic rotating body, and a connecting shaft 12 is integrally molded on the shaft core of the rotating body 11. Further, the connecting shaft 12 of the rotating body 11 is fitted into the recess 15 of the metal rotating shaft 13. In this case, the connecting shaft 12 and the metal rotating shaft 13 are not in contact with each other in the corresponding part having the annular groove 16 for mounting the seal ring in the recess 15, but in the contact part of the bearing shaft part 14 in the recess 15. Then, they are joined by means such as shrink fitting or brazing.
本実施例ではセラミック製回転体11から切り出した試
験片のJISa点曲げ強度が平均69.0Kg/ mm
2を示す窒化珪素製回転体と熱膨張率はコバール、イン
バー等より大きいが、金属部材の熱収縮により生じる締
め付は応力を緩和すべくセラミック部材に嵌合する金属
部材を薄肉化しても雰囲気温度が500゛C〜800°
Cで周速度が600m/secにも及ぶ高温高速回転に
耐え得る物性を有するものとして、常温から600℃の
温度範囲における熱膨張率が5゜0×10−6/℃〜1
4.0xlO−6/ ”cと従来例のインコネル、ハス
テロイより低く常温から650℃の温度範囲における0
、2z耐力が90Kg/mm”以上と従来例のインコネ
ル、ハステロイより高いインコロイを用い第1表に示す
各部寸法にそれぞれ加工し、同一条件のもとで連結軸1
2を金属製回転軸13の凹部15の軸受用軸部14の対
応部にてロウ付接合し、各4本づつセラミックターボロ
ータを製作した。In this example, the JISa point bending strength of the test piece cut out from the ceramic rotating body 11 was 69.0 kg/mm on average.
Although the silicon nitride rotating body exhibits a coefficient of thermal expansion of 2 and has a higher coefficient of thermal expansion than Kovar, Invar, etc., the tightening caused by thermal contraction of the metal member does not affect the atmosphere even if the metal member that fits into the ceramic member is made thinner to relieve stress. Temperature is 500°C ~ 800°
C has physical properties that can withstand high-temperature, high-speed rotation at circumferential speeds of up to 600 m/sec, and has a coefficient of thermal expansion of 5°0 x 10-6/°C to 1 in the temperature range from room temperature to 600°C.
4.0xlO-6/''c, which is lower than conventional Inconel and Hastelloy in the temperature range from room temperature to 650℃.
, Incoloy, which has a 2z yield strength of 90 kg/mm" or more, which is higher than the conventional Inconel and Hastelloy, was processed to the dimensions shown in Table 1, and the connecting shaft 1 was manufactured under the same conditions.
2 were joined by brazing at the corresponding part of the bearing shaft part 14 of the concave part 15 of the metal rotating shaft 13, and four ceramic turbo rotors were manufactured.
なお、金属製回転軸13にSCM435を用いたものを
比較例とし、同しくインコネルを用い、第2し1、第3
図及び第4図の如く作製したものを従来例とした。但し
、比較例、従来例はいずれも連結軸と金属回転軸との接
合をロウ付接合とした。In addition, as a comparative example, the metal rotating shaft 13 is made of SCM435, and the second, first and third cases are made of Inconel.
The conventional example was manufactured as shown in FIG. 4 and FIG. However, in both the comparative example and the conventional example, the connecting shaft and the metal rotating shaft were joined by brazing.
/′
/′
また、第2図の従来例ではインコネルの接合用金属部材
3に連結軸2をロウ付接合後、該接合用金属部材3に機
械構造用炭素鋼SCM435を電子ビーム溶接法により
接合部Sにて接合した。/'/' In addition, in the conventional example shown in Fig. 2, after the connecting shaft 2 is brazed and joined to the Inconel joining metal member 3, carbon steel SCM435 for mechanical structure is joined to the joining metal member 3 by electron beam welding. It was joined at part S.
上記の如くして製作したセラミソクターホロータは釣合
試験機を用いて不釣合量を0.02 g −Cm未満に
修正し、供給ガス温度950℃の高温高速回転面1久テ
ストを行い第2表の結果を得た。第2表の結果に基づく
セラミック製回転体最大外径とセラミック製回転体連結
軸外径の関係及び高温高速回転耐久テストの結果を第5
図に示す。The unbalance of the ceramic soctor horotor manufactured as described above was corrected to less than 0.02 g-Cm using a balance tester, and a 1-year test was conducted on a high-temperature, high-speed rotating surface at a supply gas temperature of 950°C. Obtained the results in the table. The relationship between the maximum outer diameter of the ceramic rotating body and the outer diameter of the connecting shaft of the ceramic rotating body based on the results in Table 2 and the results of the high-temperature, high-speed rotation durability test are shown in Table 5.
As shown in the figure.
第1表及び第2表から明らかな様に、金属製回転軸の軸
受用軸部外径に対するセラミック製回転体の連結軸外径
の比率が80χ未満の場合(試料番号1,9.17,2
5.33は、不釣合量が0.02g −c+n来満て
あっても高速回転により生ずる偏芯応力に耐え切れず、
毎秒500m台の周速で該連結軸より破壊し、上記比率
が90χを超える場合(試料番号5,13,2L29.
37)は該連結軸を受入れ接合する前記軸受用軸部の肉
厚が薄くなり、前記偏芯応力による繰り返し変形を受け
、凹部最奥の角部より破断し、いずれも耐久性に問題が
ある。As is clear from Tables 1 and 2, when the ratio of the outer diameter of the connecting shaft of the ceramic rotating body to the outer diameter of the bearing shaft of the metal rotating shaft is less than 80χ (sample numbers 1, 9.17, 2
5.33 cannot withstand the eccentric stress caused by high-speed rotation even if the unbalance amount is 0.02g -c+n,
When the connecting shaft breaks at a circumferential speed of 500 m/s and the above ratio exceeds 90χ (sample numbers 5, 13, 2L29.
In 37), the wall thickness of the bearing shaft that receives and joins the connecting shaft becomes thin, and as a result of repeated deformation due to the eccentric stress, it breaks from the innermost corner of the recess, and both have durability problems. .
また、セラミック製回転体の連結最大径に対する該連結
軸の長さの比が3倍以上の場合(試料番号7.15,3
1.39)は毎秒600m台以下の周速で該連結軸より
破壊し、これは前記偏芯応力が不均一な蹄り嵌合部に集
中したものと考えられる。In addition, when the ratio of the length of the connecting shaft to the maximum connecting diameter of the ceramic rotating body is 3 times or more (sample numbers 7.15, 3
1.39) broke from the connecting shaft at a circumferential speed of 600 m/s or less, and this is thought to be because the eccentric stress was concentrated on the uneven hoof fitting portion.
一方金属製回転軸に機械構造用炭素fiscM435を
使用した比較例(試料番号8.16,24,32.40
)では、毎秒500m前後の周速で、連結軸を受入れ接
合する凹部最奥の角部より、前記偏芯応力による繰り返
し変形を受は破断し、金属製回転軸にインコネルを使用
した従来例(試料番号4]、42.43)では、試料番
号41の場合、毎秒400m台の周速で連結軸より破壊
しており、連結軸を連結軸最大径の3倍以上とし、接合
部の要求耐熱特性を下げた試’a:’、+1番号42の
場合、連結軸を受入れる金属製回転軸の凹部開口部より
毎秒500m台の周速で破壊し、同じく試料番号43の
場合、毎秒500m台の周速で、連結軸の締り嵌合領域
のセラミック製回転体の側端部より破壊した。それに対
し本発明の場合(試料番号2,3゜4、10.11.1
2.18.19,20,26,27,28,34,35
.36)いずれも周速で毎秒600m台の高温高速回転
耐久テストも耐え、しかもセラミック製回転体より破壊
しており、接合に係るセラミック製回転体の連結軸及び
金属製回転軸の軸受用軸部には何んら以上は認められな
かった。On the other hand, a comparative example (sample number 8.16, 24, 32.40
), the receiver breaks due to repeated deformation due to the eccentric stress from the innermost corner of the recess where the connecting shaft is received and joined at a circumferential speed of around 500 m/s, and the conventional example ( In sample number 4], 42.43), in the case of sample number 41, the fracture occurred from the connecting shaft at a circumferential speed of 400 m/s, and the connecting shaft was made more than three times the maximum diameter of the connecting shaft, and the required heat resistance of the joint was In the case of sample 'a:' with lower characteristics, +1 No. 42, the fracture occurred at a circumferential speed of 500 m/s from the recessed opening of the metal rotary shaft that receives the connecting shaft, and in the case of sample number 43, the failure occurred at a circumferential speed of 500 m/s. At circumferential speed, the ceramic rotating body broke at the side end in the tight fit area of the connecting shaft. On the other hand, in the case of the present invention (sample numbers 2, 3゜4, 10.11.1
2.18.19, 20, 26, 27, 28, 34, 35
.. 36) Both of them withstood high-temperature, high-speed rotation durability tests at circumferential speeds of 600 m/s, and moreover, were more broken than ceramic rotating bodies. Nothing more was allowed.
なお、セラミック製回転体の最大外径とセラミック製回
転体の連結軸外径の関係を示した第5図から(連結の外
径+mm ) ≧0.07X(セラミック製回転体の
最大外径:mm)+4.2 (但し40mm≦(セラ
ミック製回転体の最大外径)5150mm 〕で表され
る線上を境として「セラミック製回転体より破壊」の領
域と[セラミック製連結軸より破壊」の領域に明確に区
分され、第2表の高温高速回転耐久テストの結果からも
「セラミック製回転体より破壊」の領域が望ましいこと
がわかる。Furthermore, from Fig. 5, which shows the relationship between the maximum outer diameter of the ceramic rotating body and the outer diameter of the connecting shaft of the ceramic rotating body (outer diameter of the connection + mm) ≧0.07X (maximum outer diameter of the ceramic rotating body: mm)+4.2 (However, 40 mm ≦ (maximum outer diameter of ceramic rotating body) 5150 mm) The area of ``fractured by the ceramic rotating body'' and the area of ``fractured by the ceramic connecting shaft'' are the boundaries. It can be seen from the results of the high-temperature, high-speed rotation durability test shown in Table 2 that the area of "destruction than ceramic rotating bodies" is more desirable.
以上の様に、本発明によれば、金属製回転軸の諸物性に
基づくセラミック製回転体の最大外径及びセラミック製
連結軸外径と金属製軸受用軸部外径の相関を満足した主
で、該連結軸の長さを連結軸の最大径の3倍とし、シー
ルリングを装着する溝を有する金属製回転軸部の凹部で
は該連結軸は非接触とし、オイルにより冷却された軸受
用軸部の凹部にて嵌着することにより、セラミック部材
と金属部材の接合部の要求耐熱特性を下げ、高温高速回
転により生ずる大きな偏芯応力が、セラミック製連結軸
を受入れ接合する金属製回転軸の凹部の破断を引起こし
たり、セラミック製回転体の連結軸を破壊することがな
い、耐久性及び信φn性に優れたセラミ、クターボロー
タが得られる。As described above, according to the present invention, a main body that satisfies the maximum outer diameter of the ceramic rotating body based on the physical properties of the metal rotating shaft and the correlation between the outer diameter of the ceramic connecting shaft and the outer diameter of the metal bearing shaft is provided. The length of the connecting shaft is three times the maximum diameter of the connecting shaft, and the connecting shaft is not in contact with the recessed part of the metal rotating shaft that has a groove for mounting the seal ring. By fitting in the concave part of the shaft, the required heat resistance properties of the joint between the ceramic member and the metal member are reduced, and the large eccentric stress caused by high-temperature and high-speed rotation is avoided. A ceramic rotor rotor with excellent durability and reliability, which does not cause breakage of the recessed portion or destroy the connecting shaft of the ceramic rotating body, can be obtained.
第1図は本発明の実施例によるセラミックターボロータ
を示す一部破断面図、第2図、第3図及び第4図はセラ
ミックターボロータの従来例を示す一部破断面図、第5
図はセラミック製回転体最大外径とセラミック製回転体
連結軸外径の関係を示す図である。
11: セラミック製回転体
12:連結軸
13:金属製回転軸
14:軸受用軸部
15:四部
16:溝
17:根元部円弧起点
し、:セラミ・7り製団転体最大外径
L2:連結軸長
11:連結軸外径
7!2:軸受用軸部外径FIG. 1 is a partially cutaway cross-sectional view showing a ceramic turbo rotor according to an embodiment of the present invention, FIGS. 2, 3, and 4 are partially cutaway cross-sectional views showing a conventional example of a ceramic turbo rotor, and FIG.
The figure is a diagram showing the relationship between the maximum outer diameter of the ceramic rotor and the outer diameter of the ceramic rotor connecting shaft. 11: Ceramic rotating body 12: Connecting shaft 13: Metal rotating shaft 14: Bearing shaft 15: Four parts 16: Groove 17: Root arc starting point: Maximum outer diameter L2 of ceramic/7-piece grouping body: Connection shaft length 11: Connection shaft outer diameter 7! 2: Bearing shaft outer diameter
Claims (1)
るセラミックターボロータにおいてセラミック製回転体
の軸芯部に一体的に突設した連結軸の外径が、セラミッ
ク製回転体の最大外径に対して、(連結軸の外径:mm
)≧0.07×(セラミック製回転体の最大外径:mm
)+4.2〔但し40mm≦(セラミック製回転体の最
大外径)≦150mm〕を満足し、かつ金属製回転軸の
軸受ハウジングにより軸受支持される軸受用軸部外径の
80〜90%であることを満足するとともに、該金属製
回転軸の一旦に穿設された凹部の上記回転体に近接した
外周面には、シールリングを装着するための環状の溝を
有し、該溝を有してなる回転軸部の凹部では、上記連結
軸は非接触であり、上記軸受用軸部の凹部でのみ該連結
軸を嵌着したことを特徴とするセラミックターボロータ
。 2、セラミック製回転体の軸芯部に一体的に突設した連
結軸の根元部円弧の起点からの長さが、該連結軸の最大
外径の3倍未満である特許請求の範囲第1項記載のセラ
ミックターボロータ。 3、金属製回転軸は、熱膨張率が室温から600℃の温
度範囲において、5.0×10^−^6/℃乃至14.
0×10^−^6/℃の耐熱合金からなる特許請求の範
囲第1項記載のセラミックターボロータ。 4、金属製回転軸はヤング率が15,000〜20,0
00Kg/mm^2の耐熱合金からなる特許請求の範囲
第1項記載のセラミックターボロータ。 5、金属製回転軸は、0.2%耐力が室温から650℃
の温度範囲において90Kg/mm^2以上である耐熱
合金からなる特許請求の範囲第1項記載のセラミックタ
ーボロータ。[Claims] 1. In a ceramic turbo rotor formed by joining a ceramic rotating body and a metal rotating shaft, the outer diameter of the connecting shaft integrally protruding from the shaft core of the ceramic rotating body is (outer diameter of connecting shaft: mm)
)≧0.07×(Maximum outer diameter of ceramic rotating body: mm
)+4.2 [However, 40mm≦(maximum outer diameter of ceramic rotating body)≦150mm] and is 80 to 90% of the outer diameter of the bearing shaft supported by the bearing housing of the metal rotating shaft. In addition, the metal rotating shaft has an annular groove for mounting a seal ring on the outer circumferential surface of the concave portion adjacent to the rotating body, and the groove is provided with the groove. A ceramic turbo rotor characterized in that the connecting shaft is not in contact with the recess of the rotating shaft, and the connecting shaft is fitted only in the recess of the bearing shaft. 2. Claim 1, wherein the length from the starting point of the root arc of the connecting shaft integrally protruding from the shaft core of the ceramic rotating body is less than three times the maximum outer diameter of the connecting shaft. Ceramic turbo rotor as described in section. 3. The metal rotating shaft has a thermal expansion coefficient of 5.0×10^-^6/℃ to 14.0℃ in the temperature range from room temperature to 600℃.
The ceramic turbo rotor according to claim 1, which is made of a heat-resistant alloy of 0x10^-^6/°C. 4. The Young's modulus of the metal rotating shaft is 15,000 to 20,0.
The ceramic turbo rotor according to claim 1, which is made of a heat-resistant alloy of 00 kg/mm^2. 5. The metal rotating shaft has a 0.2% proof stress of room temperature to 650℃.
2. The ceramic turbo rotor according to claim 1, which is made of a heat-resistant alloy having a resistance of 90 Kg/mm^2 or more in the temperature range of .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60218728A JPH0646001B2 (en) | 1985-09-30 | 1985-09-30 | Ceramic rotor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60218728A JPH0646001B2 (en) | 1985-09-30 | 1985-09-30 | Ceramic rotor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6278402A true JPS6278402A (en) | 1987-04-10 |
JPH0646001B2 JPH0646001B2 (en) | 1994-06-15 |
Family
ID=16724503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60218728A Expired - Fee Related JPH0646001B2 (en) | 1985-09-30 | 1985-09-30 | Ceramic rotor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0646001B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63212213A (en) * | 1987-02-27 | 1988-09-05 | Clarion Co Ltd | Control voltage generating circuit for tuning |
JPS63154701U (en) * | 1987-03-30 | 1988-10-11 | ||
WO2006048379A1 (en) * | 2004-11-04 | 2006-05-11 | Oerlikon Leybold Vacuum Gmbh | Vacuum pump impeller |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6982440B2 (en) * | 2017-09-11 | 2021-12-17 | 三菱重工コンプレッサ株式会社 | Rotating machine, impeller |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59186430U (en) * | 1983-05-30 | 1984-12-11 | トヨタ自動車株式会社 | Connection structure between turbine wheel and drive shaft of turbocharger |
JPS613901U (en) * | 1984-06-13 | 1986-01-11 | トヨタ自動車株式会社 | Turbine wheel structure of turbocharger |
JPS6195902U (en) * | 1984-11-30 | 1986-06-20 | ||
JPS61135902A (en) * | 1984-12-06 | 1986-06-23 | ザ ギヤレツト コ−ポレ−シヨン | Rotar shaft assembly |
-
1985
- 1985-09-30 JP JP60218728A patent/JPH0646001B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59186430U (en) * | 1983-05-30 | 1984-12-11 | トヨタ自動車株式会社 | Connection structure between turbine wheel and drive shaft of turbocharger |
JPS613901U (en) * | 1984-06-13 | 1986-01-11 | トヨタ自動車株式会社 | Turbine wheel structure of turbocharger |
JPS6195902U (en) * | 1984-11-30 | 1986-06-20 | ||
JPS61135902A (en) * | 1984-12-06 | 1986-06-23 | ザ ギヤレツト コ−ポレ−シヨン | Rotar shaft assembly |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63212213A (en) * | 1987-02-27 | 1988-09-05 | Clarion Co Ltd | Control voltage generating circuit for tuning |
JPS63154701U (en) * | 1987-03-30 | 1988-10-11 | ||
WO2006048379A1 (en) * | 2004-11-04 | 2006-05-11 | Oerlikon Leybold Vacuum Gmbh | Vacuum pump impeller |
Also Published As
Publication number | Publication date |
---|---|
JPH0646001B2 (en) | 1994-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4557704A (en) | Junction structure of turbine shaft | |
US4614453A (en) | Metal-ceramic composite body and a method of manufacturing the same | |
US4984927A (en) | Ceramic and metal joining structure | |
JPS6253684B2 (en) | ||
US6431781B1 (en) | Ceramic to metal joint assembly | |
JPH0329032B2 (en) | ||
JPH043129Y2 (en) | ||
JPS6278402A (en) | Ceramic turbo rotor | |
US4959258A (en) | Joined metal-ceramic assembly method of preparing the same | |
JPH0352962Y2 (en) | ||
JPS6267201A (en) | Ceramic turbo rotor | |
JPH0410198Y2 (en) | ||
JPS6278403A (en) | Ceramic turbo rotor | |
JPH0351319Y2 (en) | ||
JPH0744722Y2 (en) | Coupling shaft structure of ceramic turbine rotor and metal shaft | |
JPH061701U (en) | Joining structure of metal rotating shaft and ceramic rotating body | |
JPH0415921Y2 (en) | ||
JPS6325281Y2 (en) | ||
JPH037368Y2 (en) | ||
JPH0351321Y2 (en) | ||
JPS59128901A (en) | Jointed rotary shaft | |
JPH0220190Y2 (en) | ||
JPS6019915A (en) | Turbine assembly for turbo-supercharger | |
JP2619216B2 (en) | Combined ceramic and metal | |
JPS61123701A (en) | Ceramic turbine rotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |