JPH0220190Y2 - - Google Patents

Info

Publication number
JPH0220190Y2
JPH0220190Y2 JP1984191479U JP19147984U JPH0220190Y2 JP H0220190 Y2 JPH0220190 Y2 JP H0220190Y2 JP 1984191479 U JP1984191479 U JP 1984191479U JP 19147984 U JP19147984 U JP 19147984U JP H0220190 Y2 JPH0220190 Y2 JP H0220190Y2
Authority
JP
Japan
Prior art keywords
cylindrical
impeller
cylindrical fitting
ceramic
shaft member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984191479U
Other languages
Japanese (ja)
Other versions
JPS61108329U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984191479U priority Critical patent/JPH0220190Y2/ja
Priority to GB08531265A priority patent/GB2169058B/en
Priority to US06/811,160 priority patent/US4747722A/en
Priority to DE19853545135 priority patent/DE3545135A1/en
Priority to FR858518882A priority patent/FR2574783B1/en
Publication of JPS61108329U publication Critical patent/JPS61108329U/ja
Priority to US07/181,839 priority patent/US4983064A/en
Application granted granted Critical
Publication of JPH0220190Y2 publication Critical patent/JPH0220190Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

産業上の利用分野 本考案は、内燃機関用ターボ過給機、ガスター
ビン等に使用される軸付きタービン翼車の構造に
係り、特にセラミツク製タービン翼車とこれを支
持する軸部材との相互嵌合構造に関するものであ
る。 従来技術 セラミツクスは、金属に比して耐熱性に優れ、
かつ金属並みの強さを有しており、例えば、近時
注目されている窒化けい素(Si3N4)セラミツク
スの曲げ強度は、常温で90Kgf/mm2であるが、
1000℃においてもなお、80Kgf/mm2の曲げ強度を
有している。この様に優れた耐熱性を有するセラ
ミツクスは、金属部材に代つて、使用条件の苛酷
な各種機械部品として採用されつつある。 その一例として、内燃機関のターボ過給機で使
用されるタービン翼車を挙げることができる。タ
ーボ過給機は、機関の排気エネルギーを利用して
排気タービンを回し、その動力でコンプレツサー
を駆動することにより、吸入空気または混合気を
予圧する装置であり、タービン翼車は、高温の排
気に晒される部材であるから、これを耐熱性が優
れ、かつ低比重のセラミツクスで形成するのは効
果的である。 解決しようとする問題点 ところが、低温から高温に到る温度変化の大き
な環境に置かれるセラミツク部材は、その熱膨脹
率(α)が金属に比して可なり小さいため、金属
部材との接続関係が問題となる。例えば、窒化け
い素(Si3N4)では、α=2.6〜4.5×10-6/℃、で
あるのに対し、Cr−Mo鋼では、α=11.7×
10-6/℃であり、結合状態のセラミツク部材およ
び金属部材が熱変化を受けた時に、両部材間の熱
膨張差によつて、金属部材内に嵌合させたセラミ
ツク部材が離脱ないし破損するおそれがある。 これを具体的に説明すると、第1図は、金属製
軸部材01の円筒状嵌合部02内に、セラミツク
製翼車03の円柱状嵌入部04を嵌挿し、その嵌
合面間に介在させた鑞材05をもつて両部材0
1,03を一体に結合させた状態を示したもので
あるが、前記両部材01,03を使用する鑞材0
5の溶融温度以上まで加熱することによつて嵌合
面間に鑞材を浸透供給せしめ、常温にまで放冷す
ると、鑞接された状態にある両部材は、A−B間
心線方向において、l(α1−α2)t(但し、α1,α2
はそれぞれ金属製軸部材、セラミツク製回転体の
熱膨張率を示し、tは鑞接温度と常温との温度差
を示す)に対応する内部応力が発生する。 このl(α1−α2)tに対応する応力は、A部に
おいて集中的に現れる。すなわち円筒状嵌合部0
2の大きな収縮によつて、A−B間における円柱
状嵌入部04の表面層に圧縮応力が生じ、その結
果A部に引張り応力が発生する。それ故、嵌合長
lが大き過ぎると、両部材01,03が回転する
際に翼車03の円柱状嵌入部04に生ずる曲げ応
力とも相俟つて、円柱状嵌入部04がA部におい
て破断することになる。 逆に、嵌合長lが円筒状嵌合部02の孔径Dに
比して短か過ぎると、鑞接による接合面が不足し
て、セラミツク製翼車03が、軸部材01から容
易に離脱して終うことになる。 また金属製軸部材01の円筒状嵌合部02の先
端内周面とセラミツク製翼車03の嵌入部04の
基部外周面との間に大きな間隙があつて、その間
に鑞材05が存在せず、円柱状嵌入部04に接す
る部位における円筒状嵌合部02の厚さは同一で
あるため、円柱状嵌入部04に対し略一定の中心
方向圧縮応力が働き、これよりも翼車03の本体
側には、その中心方向圧縮応力が全く働かず、そ
の境界部Aで中心方向圧縮応力の分布が急激に変
化し、その結果、セラミツク製翼車03に曲げ荷
重が加わつた場合に、円柱状嵌入部04がA部に
おいて破断し易い。 課題を解決するための手段および作用効果 本考案はこのような難点を克服したセラミツク
製翼車と金属製軸部材の相互嵌合構造の改良に係
り、金属製軸部材の円筒状嵌合孔内に、セラミツ
ク製翼車の円柱状嵌入部を嵌挿し、鑞材を用いて
両部材を一体に嵌着する構造において、前記円筒
状嵌合孔と円柱状嵌入部の軸心線方向の嵌合長
(l)、および該円筒状嵌合孔の径(D)が、 条件式:0.4≦l/D≦1.0 を満足し、前記セラミツク製翼車の本体と円柱状
嵌入部とは隣接し、該セラミツク製翼車の円柱状
嵌入基部は翼車本体に接近するにつれて漸次太く
なつて翼車本体内側端面に滑らかな曲面で接続
し、前記金属製軸部材の円筒状嵌合孔の内周面は
その先端開口縁に接近するにつれて漸次広くなつ
て前記セラミツク製翼車の円柱状嵌入基部の外周
面と略同一形状に形成され、前記金属製軸部材の
円筒部はその先端開口縁に接近するにつれて薄く
形成されたことを特徴とするものである。 本考案では、前記したように前記金属製軸部材
の円筒状嵌合孔内に、セラミツク製翼車の円柱状
嵌入部を嵌挿し、鑞材を用いて両部材を一体に嵌
着する構造において、前記円筒状嵌合孔と円柱状
嵌入部の軸心線方向の嵌合長(l)、および該円
筒状嵌合孔の径(D)が、0.4≦l/D≦1.0を満
たすように構成しており、金属製軸部材の嵌合部
長さが短く、温度変化に伴うその伸縮量が少ない
ため、セラミツク製翼車の円柱状嵌入部に過度の
引張り応力が作用することがなく、該セラミツク
製翼車の耐久性が向上する。 しかも、円筒状嵌合孔の径(D)を、嵌合長
(l)と同等、またはそれ以上にしたため、嵌合
長(l)を小さくしたにもかかわらず、嵌合面
(すなわち接合面)を十分大きく確保することが
でき、セラミツク製翼車の離脱が防止される。 また本考案においては、前記セラミツク製翼車
の本体と円柱状嵌入部とは隣接しているため、翼
車の回転時に首振り現象が起こりにくく、この首
振り現象による軸部の折損が未然に防止される。 さらに本考案においては、前記セラミツク製翼
車の円柱状嵌入基部は翼車本体に接近するにつれ
て漸次太くなつて翼車本体内側端面に滑らかな曲
面で接続するため、応力の集中が避けられ、応力
集中による円柱状嵌入基部の破損が阻止される。 さらにまた本考案においては、前記金属製軸部
材の円筒状嵌合孔の内周面はその先端開口縁に接
近するにつれて漸次広くなつて前記セラミツク製
翼車の円筒状嵌入基部の外周面と略同一形状に形
成され、前記金属製軸部材の円筒部はその先端開
口縁に接近するにつれて薄く形成されているた
め、前記金属製軸部材の円筒部より前記セラミツ
ク製翼車の円柱状嵌入部への熱膨張差による軸中
心に向う半径方向圧縮応力は前記金属製軸部材の
円筒先端開口縁に接近するにつれて漸次減少し、
前記半径方向圧縮応力分布の急激な変化による破
断が未然に防止され、強度および耐久性が大巾に
向上する。 実施例 第2図は、窒化珪素製翼車10およびこれを支
持する金属製回転軸20を断面で示しており、該
翼車10を−線方向から見た形状を第3図に
示している。回転軸20は、主軸部22と、これ
に連なる円筒部24とで形成され、円筒部24の
大部分、すなわち先端側壁部26は、低膨張率
(α=5.7〜6.2×10-6/℃)のコーバル(Ni23〜
30wt%、Co17〜30wt%、Mn0.6〜0.8wt%、残部
Fe)(商標名)製であつて、Cr−Mo鋼(JIS
SCM435)製の主軸部22と一体に形成された主
軸側壁部28に対して摩擦溶接により一体に接合
されている。 そして、円筒部24に対して、翼車10の円柱
条軸部12が密嵌され、鑞材40によつて接合さ
れている。この接合は、主軸部22に穿設された
開孔30内に、予め鑞材を装入しておき、翼車1
0と、回転軸20を組合わせた状態で全体を鑞材
の溶融温度以上に加熱し、鑞材を嵌合面間に浸透
させることによつて達成される。 翼車10および回転軸20が、以上の様に組合
わされた部材において、その嵌合長lおよび円筒
部24の内径Dの異なるサンプル1,2,3,…
…11を作成(表1参照)し、各サンプルを、回転
軸20を支軸として高速回転させ、目標回転数N
=No rpmに達するまでに異常が発生するか否か
を調べた。表1の第3欄に、各サンプルのl/D
値を示し、第5欄に、発生した異常の内容を、第
4欄に、異常発生時の回転数Nrpmと、異常発生
のない場合の回転数(目標回転数No)とを示し
ている。第4図は、前記第3欄、第4欄に示す
値、l/Dと回転数(Nrpm)との関係をグラフ
として示したものである。
INDUSTRIAL APPLICATION FIELD The present invention relates to the structure of a shafted turbine wheel used in a turbocharger for an internal combustion engine, a gas turbine, etc., and in particular the interaction between a ceramic turbine wheel and a shaft member that supports it. This relates to a fitting structure. Conventional technology Ceramics have superior heat resistance compared to metals.
For example, the bending strength of silicon nitride (Si 3 N 4 ) ceramics, which has been attracting attention recently, is 90 kgf/mm 2 at room temperature.
It still has a bending strength of 80 Kgf/mm 2 even at 1000°C. Ceramics, which have such excellent heat resistance, are being used in place of metal members for various mechanical parts that are subject to severe usage conditions. One example is a turbine wheel used in a turbocharger for an internal combustion engine. A turbocharger is a device that uses engine exhaust energy to turn an exhaust turbine and uses that power to drive a compressor to precompress intake air or a mixture. Since it is a member that will be exposed, it is effective to form it from ceramics that have excellent heat resistance and low specific gravity. Problems to be Solved However, ceramic components, which are placed in environments with large temperature changes from low to high temperatures, have a much smaller coefficient of thermal expansion (α) than metals, so the connection relationship with metal components is difficult. It becomes a problem. For example, in silicon nitride (Si 3 N 4 ), α = 2.6 to 4.5 × 10 -6 /°C, while in Cr-Mo steel, α = 11.7 ×
10 -6 /°C, and when the bonded ceramic member and metal member undergo thermal changes, the ceramic member fitted into the metal member will separate or break due to the difference in thermal expansion between the two members. There is a risk. To explain this specifically, FIG. 1 shows that the cylindrical fitting part 04 of the ceramic impeller 03 is fitted into the cylindrical fitting part 02 of the metal shaft member 01, and the cylindrical fitting part 04 of the ceramic impeller 03 is inserted between the fitting surfaces. Both parts 0 with the solder material 05
This figure shows the state in which the members 01 and 03 are joined together, and the solder material 0 that uses both the members 01 and 03 is shown in FIG.
By heating the solder material to a temperature higher than the melting temperature of No. 5, the solder material penetrates between the mating surfaces and is allowed to cool to room temperature. , l(α 1 −α 2 )t (where α 1 , α 2
represents the coefficient of thermal expansion of the metal shaft member and the ceramic rotating body, respectively, and t represents the temperature difference between the soldering temperature and room temperature). The stress corresponding to this l(α 1 −α 2 )t appears concentrated in the A section. That is, the cylindrical fitting part 0
Due to the large contraction of 2, a compressive stress is generated in the surface layer of the cylindrical insertion part 04 between A and B, and as a result, a tensile stress is generated in the A part. Therefore, if the fitting length l is too large, the cylindrical fitting part 04 will break at the part A due to the bending stress generated in the cylindrical fitting part 04 of the impeller 03 when both members 01 and 03 rotate. I will do it. On the other hand, if the fitting length l is too short compared to the hole diameter D of the cylindrical fitting part 02, the soldered joint surface will be insufficient, and the ceramic impeller 03 will easily separate from the shaft member 01. It will end with that. In addition, there is a large gap between the inner peripheral surface of the tip of the cylindrical fitting part 02 of the metal shaft member 01 and the outer peripheral surface of the base of the fitting part 04 of the ceramic impeller 03, and the solder material 05 is present in the gap. First, since the thickness of the cylindrical fitting part 02 at the part in contact with the cylindrical fitting part 04 is the same, a substantially constant compressive stress in the center direction acts on the cylindrical fitting part 04, and the thickness of the impeller 03 is greater than this. The center-direction compressive stress does not act on the main body at all, and the distribution of the center-direction compressive stress changes rapidly at the boundary A. As a result, when a bending load is applied to the ceramic impeller 03, the circular The columnar fitting portion 04 is likely to break at the A section. Means and Effects for Solving the Problems The present invention relates to an improvement of the mutual fitting structure between the ceramic impeller and the metal shaft member, which overcomes the above-mentioned difficulties. In the structure in which the cylindrical fitting part of the ceramic impeller is fitted and the two members are fitted together using a solder, the cylindrical fitting hole and the cylindrical fitting part are fitted in the axial direction. The length (l) and the diameter (D) of the cylindrical fitting hole satisfy the conditional expression: 0.4≦l/D≦1.0, and the main body of the ceramic impeller and the cylindrical fitting part are adjacent to each other, The cylindrical fitting base of the ceramic impeller gradually becomes thicker as it approaches the impeller main body, and connects to the inner end surface of the impeller main body with a smooth curved surface, and is connected to the inner circumferential surface of the cylindrical fitting hole of the metal shaft member. gradually widens as it approaches the edge of the tip opening, and is formed in substantially the same shape as the outer peripheral surface of the cylindrical fitting base of the ceramic impeller, and the cylindrical portion of the metal shaft member approaches the edge of the tip opening. It is characterized by being formed thinner as the thickness increases. In the present invention, as described above, the cylindrical fitting part of the ceramic impeller is fitted into the cylindrical fitting hole of the metal shaft member, and both members are fitted together using a solder material. , a fitting length (l) of the cylindrical fitting hole and the cylindrical fitting part in the axial direction, and a diameter (D) of the cylindrical fitting hole satisfy 0.4≦l/D≦1.0. Since the fitting part of the metal shaft member is short and the amount of expansion and contraction due to temperature changes is small, excessive tensile stress does not act on the cylindrical fitting part of the ceramic impeller. The durability of ceramic impellers is improved. Moreover, since the diameter (D) of the cylindrical fitting hole is made equal to or larger than the fitting length (l), even though the fitting length (l) is small, the fitting surface (i.e., the joint surface ) can be ensured to be sufficiently large to prevent the ceramic impeller from coming off. In addition, in the present invention, since the main body of the ceramic impeller and the cylindrical fitting part are adjacent to each other, it is difficult for the oscillation phenomenon to occur when the impeller rotates, and the breakage of the shaft due to this oscillation phenomenon is prevented. Prevented. Furthermore, in the present invention, the cylindrical fitting base of the ceramic impeller gradually becomes thicker as it approaches the impeller main body and connects to the inner end surface of the impeller main body with a smooth curved surface, thereby avoiding concentration of stress. Breakage of the cylindrical inset base due to concentration is prevented. Furthermore, in the present invention, the inner circumferential surface of the cylindrical fitting hole of the metal shaft member gradually becomes wider as it approaches the tip opening edge thereof, and is approximately equal to the outer circumferential surface of the cylindrical fitting base of the ceramic impeller. They are formed in the same shape, and the cylindrical portion of the metal shaft member becomes thinner as it approaches the tip opening edge, so that the cylindrical portion of the metal shaft member extends into the cylindrical fitting portion of the ceramic impeller. The radial compressive stress toward the shaft center due to the thermal expansion difference gradually decreases as it approaches the cylindrical tip opening edge of the metal shaft member,
Fractures due to sudden changes in the radial compressive stress distribution are prevented, and strength and durability are greatly improved. Embodiment FIG. 2 shows a cross section of a silicon nitride impeller 10 and a metal rotating shaft 20 that supports it, and FIG. 3 shows the shape of the impeller 10 when viewed from the - line direction. . The rotating shaft 20 is formed of a main shaft part 22 and a cylindrical part 24 connected to the main shaft part 22, and most of the cylindrical part 24, that is, the tip side wall part 26 has a low expansion coefficient (α=5.7 to 6.2×10 -6 /°C). ) Kobal (Ni23~
30wt%, Co17~30wt%, Mn0.6~0.8wt%, balance
Fe) (trade name), made of Cr-Mo steel (JIS
It is integrally joined by friction welding to the main shaft side wall part 28 which is formed integrally with the main shaft part 22 made of SCM435). The cylindrical shaft portion 12 of the impeller 10 is tightly fitted into the cylindrical portion 24 and joined by a solder material 40 . This joining is performed by charging a solder material in advance into the opening 30 made in the main shaft portion 22, and then
0 and the rotating shaft 20 are heated as a whole to a temperature higher than the melting temperature of the solder material so that the solder material penetrates between the mating surfaces. Samples 1, 2, 3, . . . in which the impeller 10 and the rotating shaft 20 are combined in the above manner have different fitting length l and inner diameter D of the cylindrical portion 24.
...11 (see Table 1), rotate each sample at high speed around the rotating shaft 20, and set the target rotation speed N.
It was investigated whether an abnormality occurs before reaching = No rpm. The third column of Table 1 shows the l/D of each sample.
The fifth column shows the details of the abnormality that has occurred, and the fourth column shows the rotation speed N rpm when the abnormality occurs and the rotation speed when no abnormality occurs (target rotation speed No.). FIG. 4 is a graph showing the relationship between the values shown in the third and fourth columns, l/D, and rotation speed (Nrpm).

【表】 第4図から明らかなように、l/Dが0.4〜
1.03の範囲にあれば、サンプルの回転が目標回転
数No rpmに達しても異常は生じないが、その範
囲外(l/D<0.4,l/D>1.03)では、サン
プルの回転が目標回転数No rpmに達するまで
に、表1(第5欄)に示す異常が生じる。
[Table] As is clear from Figure 4, l/D is 0.4~
If it is within the range of 1.03, no abnormality will occur even if the sample rotation reaches the target rotation speed No rpm, but outside that range (l/D<0.4, l/D>1.03), the sample rotation will reach the target rotation speed. By the time the engine reaches several rpm, the abnormalities shown in Table 1 (column 5) occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は金属製軸部材およびセラミツク製回転
体の嵌合状態を示す断面図、第2図は本考案の効
果を確認するための試験に使用した内燃機関の過
給機で使用する翼車、軸部材の断面図、第3図は
その−線矢視図、第4図は試験結果を示すグ
ラフである。 10……翼車、12……軸部、20……回転
軸、22……主軸部、24……円筒部、26……
先端側壁部、28……主軸側壁部、30……開
孔、40……鑞材。
Figure 1 is a sectional view showing the fitted state of the metal shaft member and the ceramic rotating body, and Figure 2 is the blade wheel used in the internal combustion engine supercharger used in tests to confirm the effects of the present invention. , a sectional view of the shaft member, FIG. 3 is a view taken along the - line, and FIG. 4 is a graph showing the test results. DESCRIPTION OF SYMBOLS 10... Impeller, 12... Shaft part, 20... Rotating shaft, 22... Main shaft part, 24... Cylindrical part, 26...
Tip side wall portion, 28...Main shaft side wall portion, 30...Opening hole, 40...Brazing material.

Claims (1)

【実用新案登録請求の範囲】 金属製軸部材の円筒状嵌合孔内に、セラミツク
製翼車の円柱状嵌入部を嵌挿し、鑞材を用いて両
部材を一体に嵌着する構造において、 前記円筒状嵌合孔と円柱状嵌入部の軸心線方向
の嵌合長(l)、および該円筒状嵌合孔の径(D)
が、 条件式:0.4≦l/D≦1.0 を満足し、前記セラミツク製翼車の本体と円柱状
嵌入部とは隣接し、該セラミツク製翼車の円柱状
嵌入基部は翼車本体に接近するにつれて漸次太く
なつて翼車本体内側端面に滑らかな曲面で接続
し、前記金属製軸部材の円筒状嵌合孔の内周面は
その先端開口縁に接近するにつれて漸次広くなつ
て前記セラミツク製翼車の円柱状嵌入基部の外周
面と略同一形状に形成され、前記金属製軸部材の
円筒部はその先端開口縁に接近するにつれて薄く
形成されたことを特徴とするセラミツク製翼車と
金属製軸部材の相互嵌合構造。
[Scope of Claim for Utility Model Registration] In a structure in which a cylindrical fitting part of a ceramic impeller is fitted into a cylindrical fitting hole of a metal shaft member, and both members are fitted together using a solder material, A fitting length (l) in the axial direction of the cylindrical fitting hole and the cylindrical fitting part, and a diameter (D) of the cylindrical fitting hole.
However, the conditional expression: 0.4≦l/D≦1.0 is satisfied, the main body of the ceramic impeller and the cylindrical insertion portion are adjacent to each other, and the cylindrical insertion base of the ceramic impeller approaches the impeller main body. The inner circumferential surface of the cylindrical fitting hole of the metal shaft member gradually becomes wider as it approaches the tip opening edge of the ceramic blade. A ceramic impeller and a metal impeller, characterized in that the cylindrical portion of the metal shaft member becomes thinner as it approaches its tip opening edge, and is formed in substantially the same shape as the outer peripheral surface of a cylindrical insertion base of a vehicle. Interfitting structure of shaft members.
JP1984191479U 1984-12-19 1984-12-19 Expired JPH0220190Y2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1984191479U JPH0220190Y2 (en) 1984-12-19 1984-12-19
GB08531265A GB2169058B (en) 1984-12-19 1985-12-19 Fitting assembly
US06/811,160 US4747722A (en) 1984-12-19 1985-12-19 Metal-ceramic fitting assembly
DE19853545135 DE3545135A1 (en) 1984-12-19 1985-12-19 FITTING UNIT
FR858518882A FR2574783B1 (en) 1984-12-19 1985-12-19 DEVICE FOR ASSEMBLING A CERAMIC ELEMENT TO A METAL ELEMENT, IN PARTICULAR FOR TURBO-COMPRESSORS OF INTERNAL COMBUSTION ENGINES
US07/181,839 US4983064A (en) 1984-12-19 1988-04-15 Metal ceramic fitting assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984191479U JPH0220190Y2 (en) 1984-12-19 1984-12-19

Publications (2)

Publication Number Publication Date
JPS61108329U JPS61108329U (en) 1986-07-09
JPH0220190Y2 true JPH0220190Y2 (en) 1990-06-01

Family

ID=30748918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984191479U Expired JPH0220190Y2 (en) 1984-12-19 1984-12-19

Country Status (1)

Country Link
JP (1) JPH0220190Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2572803B2 (en) * 1988-03-22 1997-01-16 日本碍子株式会社 Metal / ceramic joints
DE102008008857B4 (en) * 2008-02-13 2017-06-22 Daimler Ag Connection of a shaft with a rotary component

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5995134U (en) * 1982-12-15 1984-06-28 日産自動車株式会社 Bonding structure between ceramic shaft and metal shaft

Also Published As

Publication number Publication date
JPS61108329U (en) 1986-07-09

Similar Documents

Publication Publication Date Title
US4991991A (en) Joint structure between a ceramic shaft and a metallic shaft
US4557704A (en) Junction structure of turbine shaft
JP2006037952A (en) Titanium aluminide impeller and connection of steel shaft to the impeller
JPH0438715B2 (en)
JPH043129Y2 (en)
JP2531708Y2 (en) Ceramic / metal composite
JPH0220190Y2 (en)
JPH03279277A (en) Joint structure of turbine rotor
JP3174979B2 (en) Rotating body of ceramic and metal
JPH0646001B2 (en) Ceramic rotor
JP2650372B2 (en) Method of joining ceramic member and metal member
JPH0240031B2 (en)
JPH018641Y2 (en)
JPS61169164A (en) Joint structure of rotary shaft
JP2619216B2 (en) Combined ceramic and metal
JPH0345938Y2 (en)
JPH0516192Y2 (en)
JPS606726B2 (en) Joining method
JPH0692722B2 (en) Ceramic rotor
JPS61126992A (en) Brazing filler metal for joining zirconia and stainless steel
JPH0322489Y2 (en)
JPS61101601A (en) Turbine rotor and manufacture thereof
JPH0417761Y2 (en)
JPS6231631Y2 (en)
JPS6278403A (en) Ceramic turbo rotor