JP2650372B2 - Method of joining ceramic member and metal member - Google Patents

Method of joining ceramic member and metal member

Info

Publication number
JP2650372B2
JP2650372B2 JP30474088A JP30474088A JP2650372B2 JP 2650372 B2 JP2650372 B2 JP 2650372B2 JP 30474088 A JP30474088 A JP 30474088A JP 30474088 A JP30474088 A JP 30474088A JP 2650372 B2 JP2650372 B2 JP 2650372B2
Authority
JP
Japan
Prior art keywords
metal
ceramic
ring groove
ceramic member
brazing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30474088A
Other languages
Japanese (ja)
Other versions
JPH02149479A (en
Inventor
秀生 中村
和久 三瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP30474088A priority Critical patent/JP2650372B2/en
Publication of JPH02149479A publication Critical patent/JPH02149479A/en
Application granted granted Critical
Publication of JP2650372B2 publication Critical patent/JP2650372B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0085Materials for constructing engines or their parts
    • F02F7/0087Ceramic materials

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は例えばセラミックス製ターボロータに適用で
きる、セラミックス部材と金属部材の結合方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for joining a ceramic member and a metal member, which can be applied to, for example, a ceramic turbo rotor.

<従来の技術> 内燃機関のターボ過給器は排気エネルギーでターボロ
ータを回し、その動力でコンプレッサーを駆動すること
により吸入空気又は混合気を予圧する装置であり、その
タービンホイールはかなりの高熱にさらされる。またタ
ーボ過給器付エンジンの欠点としてターボ回転の立ち上
がり遅れが指摘されているが、このターボビンホイール
の重量の重いことが一因とされている。
<Conventional technology> A turbocharger of an internal combustion engine is a device that turns a turbo rotor with exhaust energy and drives a compressor with the power to preload intake air or an air-fuel mixture. Exposed. In addition, it has been pointed out that the turbocharger engine has a drawback of a rise in turbo rotation as a drawback. One of the causes is that the weight of the turbobin wheel is heavy.

以上のことからターボロータのタービンホイールを金
属に比べて軽量で耐熱性に優れ、しかも金属なみの強さ
を有しているセラミックスで形成するのは有利である。
In view of the above, it is advantageous to form the turbine wheel of the turbo rotor from ceramics which is lighter in weight, has better heat resistance, and has a strength comparable to that of metal.

そのためのセラミックス部材と金属部材の結合方法と
して、ロウ材を用いた焼ばめによる方法が特開昭63−82
73号に開示されている。この方法は第4図(a)に示す
ようにセラミックス部材の回転中心部に軸突起部(凸部
13)を設ける一方、金属軸14の先端部に凹部15を設け、
この凹部15の底にロウ材16を配した状態で金属軸14を加
熱膨張させた後、第4図(b)に示すように金属軸14の
凹部15にセラミックス部材の凸部13を嵌込むとともに溶
融したロウ材16を両者間に充填し、冷却することによ
り、焼ばめ力で結合させる方法である。
As a method of joining the ceramic member and the metal member for this purpose, a method of shrink fitting using a brazing material is disclosed in Japanese Patent Application Laid-Open No. 63-82.
No. 73. In this method, as shown in FIG. 4 (a), a shaft projection (convex portion) is provided at the center of rotation of the ceramic member.
13), a recess 15 is provided at the tip of the metal shaft 14,
After the metal shaft 14 is heated and expanded in a state where the brazing material 16 is arranged at the bottom of the concave portion 15, the convex portion 13 of the ceramic member is fitted into the concave portion 15 of the metal shaft 14 as shown in FIG. This is a method in which the molten brazing material 16 is filled between the two, and the two are cooled and bonded together by shrink fitting.

<発明が解決しようとする課題> しかしながら、主として熱膨張差を利用した金属の焼
ばめの締め付け力で結合させる従来の結合方法には以下
のような問題点があった。
<Problems to be Solved by the Invention> However, the conventional joining method of joining by the tightening force of shrink fitting of a metal mainly using a difference in thermal expansion has the following problems.

即ち、両部材の結合強度は低温において高いものの、
実用に供され結合部が高温になると、セラミックス部材
の凸部よりも、それを外側から掴んでいる金属軸の凹部
の方がより大きく膨張しようとするため、たとえ充填金
属(ロウ材)が存在するにしても結合強度が低下してし
まうという問題があった。しかもターボロータの場合、
10万rpmを越える高回転で使用されるため、第5図に示
すようにタービンホイール1の微小なアンバランス量に
起因する遠心力により曲げモーメントMが加わり、金属
軸14の凹部15を広げようとする力が作用し、実用時の結
合強度は更に弱められることになる。また、コンパクト
エンジンの小型ターボ過給器では、セラミックス製ター
ボロータにおけるセラミックス部材の凸部と金属軸の凹
部との結合部を細径化しなければならず、それを従来の
結合方法で適用しようとすると充分な結合力が得られ
ず、排気温度900℃の高速回転試験では、12万rpm以下の
回転数で破損する虞れのあることが分かった。
That is, although the joining strength of both members is high at low temperature,
In practical use, when the temperature of the joint becomes high, the concave portion of the metal shaft that grips the convex portion of the ceramic member from the outside tends to expand more than the convex portion of the ceramic member. Even so, there is a problem that the bonding strength is reduced. Moreover, in the case of a turbo rotor,
Since it is used at a high speed exceeding 100,000 rpm, a bending moment M is applied by centrifugal force caused by a minute amount of unbalance of the turbine wheel 1 as shown in FIG. Is applied, and the bonding strength in practical use is further reduced. Also, in the case of a compact turbocharger of a compact engine, the connecting portion between the convex portion of the ceramic member and the concave portion of the metal shaft in the ceramic turborotor must be reduced in diameter. Then, it was found that sufficient bonding force could not be obtained, and in a high-speed rotation test at an exhaust temperature of 900 ° C., there was a possibility of breakage at a rotation speed of 120,000 rpm or less.

本発明は上記問題点を解決する目的でなされたもので
あり、その解決しようとする課題は、高温にさらされて
も強固な結合力を失わず、曲げモーメントに充分に耐
え、しかも結合部が細径化されても破損を生じる虞れの
ないセラミックス部材と金属部材の結合方法を提供する
ことである。
The present invention has been made for the purpose of solving the above problems, and the problem to be solved is that a strong bonding force is not lost even when exposed to a high temperature, a bending moment is sufficiently endured, and the bonding portion is formed. An object of the present invention is to provide a method for joining a ceramic member and a metal member, which does not cause damage even if the diameter is reduced.

<課題を解決するための手段> 上記課題を解決するための本発明のセラミックス部材
と金属軸の結合方法は、セラミックス部材に設けたリン
グ溝の底部にロウ材を配置しておき、このリング溝内
に、金属部材の端部に形設された筒状部を収縮ばめ(焼
ばめ又は冷やしばめ)により挿入嵌合させ、次にそれら
を上記ロウ材が溶融する温度以上に加熱保持してロウ材
を上記リング溝の内面と上記筒状部の内周面との隙間に
充填し、その後冷却することを特徴とする。
<Means for Solving the Problems> In order to solve the above problems, a method of connecting a ceramic member and a metal shaft according to the present invention includes disposing a brazing material at the bottom of a ring groove provided in the ceramic member, Inside, the cylindrical part formed at the end of the metal member is inserted and fitted by shrink fit (shrink fit or cold fit), and then heated and held above the temperature at which the brazing material melts. Then, a brazing material is filled in a gap between the inner surface of the ring groove and the inner peripheral surface of the cylindrical portion, and then cooled.

即ち本発明は、セラミックス部材及び金属部材の結合
すべき部分に夫々リング溝及び筒状部を設け、それらを
結合するに際し、その結合工程を次のように二段階とす
るものである。まず第1段階でセラミックス部材のリン
グ溝に低融点金属(ロウ材)を配置した状態で、上記リ
ング溝の大径側面(溝壁面であってリング中心から遠い
側の面)に金属部材の筒状部の外側面を、セラミックス
部材を加熱して焼ばめるか又は金属部材を冷却して冷や
しばめする。続く第2段階で、セラミックス部材のリン
グ溝の小径側面(溝壁面であってリング中心寄り側の
面)と金属部材の筒状部の内側面との隙間に、予め配置
してあった上記低融点金属を加熱により溶融充填し、そ
の後の常温までの冷却で両者の熱膨張差による締め付け
力を得て、セラミックス部材と金属部材を結合させるこ
とからなる。
That is, in the present invention, a ring groove and a cylindrical portion are provided in portions to be joined of a ceramic member and a metal member, respectively, and when joining them, the joining process is performed in two steps as follows. First, in the first stage, with the low melting point metal (brazing material) disposed in the ring groove of the ceramic member, the cylindrical member of the metal member is placed on the large-diameter side surface of the ring groove (the groove wall surface farther from the ring center). The outer surface of the shape is shrink-fitted by heating the ceramic member or by cooling the metal member. In the subsequent second step, the low-profile side previously arranged in the gap between the small-diameter side surface of the ring groove of the ceramic member (the groove wall surface and the surface closer to the center of the ring) and the inner side surface of the cylindrical portion of the metal member. The melting point metal is melt-filled by heating, and then the ceramic member and the metal member are joined by obtaining a clamping force due to a difference in thermal expansion between the two by cooling to room temperature.

上記リング溝の底部の形状は、応力集中防止のためR
形状とするのが好ましい。また金属部材の筒状部の内周
面及び外周面に応力緩和のために軟質金属を被覆してお
くのが好ましい。
The shape of the bottom of the ring groove is R
Preferably, it is shaped. Further, it is preferable that the inner peripheral surface and the outer peripheral surface of the cylindrical portion of the metal member are coated with a soft metal to relieve stress.

<作用> 以上のように構成すると、セラミックス部材と金属部
材は二つの接合面(リング溝内面の大径側面−筒状部
の外周面、リング溝内面の小径側面−筒状部の内周
面)によって結合することとなり、熱膨張差や曲げモー
メントによって一方の接合面での結合力が弱まると他方
の接合面では結合力が強まる。従って高温、高回転で使
用されても全体として結合力の低下は見られない。セラ
ミックス部材に、より熱膨張係数の大きな金属部材を嵌
入する構造を取るため、むしろ高温になるにつれて結合
強度が高まる。
<Operation> When configured as described above, the ceramic member and the metal member have two joining surfaces (the large-diameter side surface of the ring groove inner surface-the outer peripheral surface of the cylindrical portion, the small-diameter side surface of the ring groove inner surface-the inner peripheral surface of the cylindrical portion). ), And if the bonding force at one joint surface is weakened by the difference in thermal expansion or bending moment, the bonding force at the other joint surface is increased. Therefore, even when used at a high temperature and a high speed, a decrease in the bonding force as a whole is not observed. Since a metal member having a larger coefficient of thermal expansion is inserted into the ceramic member, the bonding strength increases as the temperature increases.

上記構成の結合方法ではリング溝底部をR形状とした
り筒状部に金属皮膜を形成したりするなど、結合部の破
損防止策を構ずることが容易となる。
In the coupling method having the above-described configuration, it is easy to take measures to prevent damage to the coupling portion, such as forming the bottom of the ring groove into an R shape or forming a metal film on the cylindrical portion.

<実施例> 以下、本発明の結合方法の実施例を説明するが、これ
により本発明は何ら限定されるものではない。
<Examples> Hereinafter, examples of the bonding method of the present invention will be described, but the present invention is not limited thereto.

実施例1 本実施例に係るセラミックス製ターボロータを製作す
るためのセラミックス製タービンホイール1と金属軸6
の結合方法を、第1図ないし第3図により説明する。
Embodiment 1 A ceramic turbine wheel 1 and a metal shaft 6 for manufacturing a ceramic turbo rotor according to the present embodiment.
1 to 3 will be described with reference to FIGS.

セラミックス(Si3N4)製タービンホイール1は第1
図に示すように端面中央に凸部4が形成されるようにリ
ング溝3が設けられており、溝内面2の大径側面2aは研
磨加工されている。このリング溝3の底部の形状は、結
合時に加わる応力の集中を避けるためR形状としてあ
り、そのR形状底部に予め銀ロウ材(Bag−8a)5がセ
ットされている。
Ceramic (Si 3 N 4 ) turbine wheel 1 is the first
As shown in the figure, a ring groove 3 is provided so that a convex portion 4 is formed at the center of the end surface, and a large-diameter side surface 2a of the groove inner surface 2 is polished. The shape of the bottom of the ring groove 3 is an R shape in order to avoid concentration of stress applied at the time of connection, and a silver brazing material (Bag-8a) 5 is set in advance at the bottom of the R shape.

低熱膨張性合金(インコロイ903)製の金属軸6は第
2図に示すように、その結合すべき端部に筒状部7が形
成されており、筒状部7の内周面8bと外周面8a及び端面
9には、軟質金属の銅を50〜500μmの厚に溶融メッキ
することにより銅被覆層10が形成されている。
As shown in FIG. 2, a metal shaft 6 made of a low-thermal-expansion alloy (Incoloy 903) has a tubular portion 7 at an end to be joined, and an inner peripheral surface 8b and an outer peripheral surface of the tubular portion 7 are formed. A copper coating layer 10 is formed on the surface 8a and the end surface 9 by hot-dip plating soft metal copper to a thickness of 50 to 500 μm.

第2図はセラミックス製タービンホイール1と金属軸
6を結合した時の状態を示すものであり、結合工程は二
段階に分けられる。まず第1段階として、セラミックス
製タービンホイール1側を加熱するか金属軸6側を冷却
して、或はその両方の処理を行なって、リング溝3の大
径側面2aと筒状部7の外周面8aとを収縮ばめにより接合
する。なお常温での両者2a、8aの径寸法差は、縮め代が
5〜35μmになるように設定されている。また、溝内面
2の小径側面2bと筒状部7の内周面8bとの間には、上記
収縮ばめ後に10〜100μmの隙間12が形成されるよう
に、夫々の径寸法が設定されている。
FIG. 2 shows a state in which the ceramic turbine wheel 1 and the metal shaft 6 are connected, and the connecting process is divided into two stages. First, as a first step, the ceramic turbine wheel 1 side is heated or the metal shaft 6 side is cooled, or both of them are performed, so that the large-diameter side surface 2a of the ring groove 3 and the outer periphery of the cylindrical portion 7 are formed. The surface 8a is joined by shrink fitting. The difference in diameter between the two 2a and 8a at room temperature is set so that the shrinkage allowance is 5 to 35 μm. Each diameter dimension is set between the small diameter side surface 2b of the groove inner surface 2 and the inner peripheral surface 8b of the cylindrical portion 7 so that a gap 12 of 10 to 100 μm is formed after the above-described shrink fit. ing.

次の第2段階では、収縮ばめにより嵌合されたセラミ
ックス製タービンホイール1と金属軸6の嵌合体を、真
空炉内で銀ロウ材(BAg−8a)5の融点770℃以上に加熱
する。すると銀ロウ材16が溶融し、毛細管作用と重力G
の作用によって隙間12に充填される。
In the next second stage, the fitted body of the ceramic turbine wheel 1 and the metal shaft 6 fitted by shrink fitting is heated to a melting point of 770 ° C. or more of the silver brazing material (BAg-8a) 5 in a vacuum furnace. . Then, the silver brazing material 16 is melted, and the capillary action and the gravity G
The gap 12 is filled by the action of.

この加熱中、溝内面2の大径側面2aには、金属軸6の
筒状部7の外周面8aから膨張による押圧力を受けるが、
その力が過大となってセラミックス製タービンホイール
1を破損させることを、予め筒状部7の外周面8aに形成
しておいた銅被覆層10が防いでいる。
During this heating, the large-diameter side surface 2a of the groove inner surface 2 receives a pressing force due to expansion from the outer peripheral surface 8a of the cylindrical portion 7 of the metal shaft 6.
The copper coating layer 10 formed on the outer peripheral surface 8a of the tubular portion 7 in advance prevents the excessively large force from damaging the ceramic turbine wheel 1.

充填後の冷却過程において、セラミックス製タービン
ホイール1のリング溝3の小径側面2bと金属軸6の内周
面8bとの間には、セラミックス(Si3N4)と金属(イン
コロイ903)の熱膨張差による締め付け力が、銅被覆層1
0と隙間12に充填された銀ロウ材16を介して作用するこ
とになる。
In the cooling process after filling, the heat of ceramics (Si 3 N 4 ) and metal (Incoloy 903) is transferred between the small diameter side surface 2b of the ring groove 3 of the ceramic turbine wheel 1 and the inner peripheral surface 8b of the metal shaft 6. The tightening force due to the difference in expansion
0 and the silver brazing material 16 filled in the gap 12 act.

このようにしてセラミックス製タービンホイール1と
金属軸6を結合して得られるセラミックス製ターボロー
タは、エンジン搭載のホットスピン時において、結合部
が高温となっても、金属軸6の筒状部7から銅被覆層10
を介して熱膨張差による押圧力が溝外周部11に作用する
ため、従来のように高温になるに従い結合強度が低下す
るという問題は無い。また微小なアンバランス量からく
る高回転時の遠心力Fによって従来みられた金属軸凹部
15(第5図参照)の広がり、それによる結合強度の低下
という問題も起こらない。これは金属軸6の筒状部7
が、タービンホイール1の溝外周部11から締め付け力を
うけることによる。
The ceramic turbo rotor obtained by coupling the ceramic turbine wheel 1 and the metal shaft 6 in this manner has a cylindrical portion 7 of the metal shaft 6 even at a high temperature at the time of hot spin during mounting on an engine. From copper coating layer 10
Thus, the pressing force due to the difference in thermal expansion acts on the groove outer peripheral portion 11 via the groove, so that there is no problem that the bonding strength decreases as the temperature increases as in the conventional case. In addition, the metal shaft recess which was conventionally seen due to the centrifugal force F at high rotation caused by the minute unbalance amount
15 (see FIG. 5), and there is no problem that the coupling strength is reduced. This is the cylindrical part 7 of the metal shaft 6
However, a tightening force is applied from the groove outer peripheral portion 11 of the turbine wheel 1.

そして本結合方法によれば、結合部位が金属軸6の筒
状部7の内周面と外周面の両側に設定してあるため、結
合面積が大きく増加し、結合強度が従来に比べ常温から
500℃で3〜6kg・m向上している。従って、セラミック
ス製ターボロータの小型化の要請に応えるため、結合軸
部を細径化しても、充分な結合強度を確保することがで
きる。
According to the present bonding method, since the bonding portions are set on both sides of the inner peripheral surface and the outer peripheral surface of the cylindrical portion 7 of the metal shaft 6, the coupling area is greatly increased, and the coupling strength is lower than that of the related art at room temperature.
It is improved by 3 to 6 kg · m at 500 ° C. Therefore, in order to meet the demand for miniaturization of the ceramic turbo rotor, a sufficient coupling strength can be ensured even if the diameter of the coupling shaft is reduced.

<発明の効果> 本発明のセラミックス部材と金属軸の結合方法によれ
ば、上述したように高温にさらされても強固な結合強度
を失わず、曲げモーメントに充分に耐え、しかも結合部
が細径化されても破損を生じる恐れのないセラミックス
−金属結合製品を提供することができる。
<Effect of the Invention> According to the method for joining a ceramic member and a metal shaft of the present invention, as described above, strong joint strength is not lost even when exposed to a high temperature, the bending moment is sufficiently endured, and the joint is thin. It is possible to provide a ceramic-metal bonded product that is not likely to be damaged even if the diameter is increased.

また、セラミックス部材の背面部よりセラミックス側
で金属軸と結合が可能となり、従来のセラミックス部材
の背面部より金属軸側に向けて軸突起部(凸部)を設け
る構造のものに比べ、セラミックス材料費を低下するこ
とができる。
In addition, the ceramic material can be connected to the metal shaft from the back side of the ceramic member, and compared to the conventional structure in which a shaft projection (convex portion) is provided from the back side of the ceramic member toward the metal shaft side. Costs can be reduced.

加えて金属軸の設計に自由度が広がり、軸径の細径化
も容易となる。従って、本発明方法をセラミックス製タ
ーボロータに適用すれば、排気ガスによる回転性を高め
るべく一段とターボロータの軽量化を進めることが可能
となり、エンジンのレスポンス性能を向上させることが
できる。
In addition, the degree of freedom in designing the metal shaft is increased, and the reduction of the shaft diameter becomes easy. Therefore, if the method of the present invention is applied to a ceramic turbo rotor, it is possible to further reduce the weight of the turbo rotor in order to enhance the rotation performance by the exhaust gas, and to improve the response performance of the engine.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図は夫々本発明の一実施例により結合さ
れるセラミックス製タービンホイール及び金属軸を示す
断面図、 第3図はその実施例により得られたセラミックス製ター
ボロータの結合構造を示す断面図、 第4図(a)及び(b)は従来の結合方法を連続して示
す説明図、 第5図は従来の結合方法の問題点の説明図である。 図中: 1……セラミックス製タービンホイール 2……溝内面、2a……大径側面 2b……小径側面、3……リング溝 5……ロウ材、6……金属軸 7……筒状部、8a……外周面 8b……内周面、10……銅被覆層 12……隙間
1 and 2 are cross-sectional views showing a ceramic turbine wheel and a metal shaft, respectively, connected according to an embodiment of the present invention. FIG. 3 shows a connecting structure of a ceramic turbo rotor obtained by the embodiment. 4 (a) and 4 (b) are explanatory diagrams successively showing the conventional coupling method, and FIG. 5 is an explanatory diagram of problems of the conventional coupling method. In the figure: 1 ... Turbine wheel made of ceramics 2 ... Groove inner surface, 2a ... Large diameter side surface 2b ... Small diameter side surface 3 ... Ring groove 5 ... Brazing material, 6 ... Metal shaft 7 ... Cylindrical portion , 8a: outer peripheral surface 8b: inner peripheral surface, 10: copper coating layer 12: gap

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】セラミックス部材に設けたリング溝の底部
にロウ材を配置しておき、このリング溝内に、金属部材
の端部に形設された筒状部を収縮ばめにより挿入嵌合さ
せ、次にそれらを上記ロウ材が溶融する温度以上に加熱
保持してロウ材を上記リング溝の内面と上記筒状部の内
周面との隙間に充填し、その後冷却することを特徴とす
るセラミックス部材と金属部材の結合方法。
1. A brazing material is arranged at the bottom of a ring groove provided in a ceramic member, and a cylindrical portion formed at an end of a metal member is inserted and fitted into the ring groove by shrink fitting. And then heating and holding them above the temperature at which the brazing material melts, filling the brazing material into the gap between the inner surface of the ring groove and the inner peripheral surface of the cylindrical portion, and then cooling. To join the ceramic member and the metal member.
JP30474088A 1988-12-01 1988-12-01 Method of joining ceramic member and metal member Expired - Lifetime JP2650372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30474088A JP2650372B2 (en) 1988-12-01 1988-12-01 Method of joining ceramic member and metal member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30474088A JP2650372B2 (en) 1988-12-01 1988-12-01 Method of joining ceramic member and metal member

Publications (2)

Publication Number Publication Date
JPH02149479A JPH02149479A (en) 1990-06-08
JP2650372B2 true JP2650372B2 (en) 1997-09-03

Family

ID=17936643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30474088A Expired - Lifetime JP2650372B2 (en) 1988-12-01 1988-12-01 Method of joining ceramic member and metal member

Country Status (1)

Country Link
JP (1) JP2650372B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11428158B2 (en) 2016-01-19 2022-08-30 Robert Bosch Gmbh Shaft-hub connection

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0494153U (en) * 1990-12-29 1992-08-14
JP5785494B2 (en) * 2009-08-28 2015-09-30 エドワーズ株式会社 Components used in vacuum pumps and vacuum pumps

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11428158B2 (en) 2016-01-19 2022-08-30 Robert Bosch Gmbh Shaft-hub connection

Also Published As

Publication number Publication date
JPH02149479A (en) 1990-06-08

Similar Documents

Publication Publication Date Title
US4983064A (en) Metal ceramic fitting assembly
JP2650372B2 (en) Method of joining ceramic member and metal member
WO1985001556A1 (en) Built-up cam shaft and method of manufacture thereof
JPH0260635B2 (en)
JPS60201002A (en) Turbine rotor
JPS5988379A (en) Ceramic-metal composite body
JPH0352962Y2 (en)
JPH0240031B2 (en)
JPH018641Y2 (en)
JP2508823B2 (en) How to connect a ceramic rotor to a metal shaft
JPH0220189Y2 (en)
JP2822405B2 (en) Method of joining ceramic rotor and metal shaft
JPH0410198Y2 (en)
JPS606726B2 (en) Joining method
JPS61219766A (en) Joint structure of ceramic shaft and metal shaft
JPH0455201Y2 (en)
JPH0338401Y2 (en)
JPH0322489Y2 (en)
JPH02115555A (en) Friction welded body of ceramics-metal and ceramics-inserted piston made thereof
JPH061701U (en) Joining structure of metal rotating shaft and ceramic rotating body
JPH061672A (en) Joining structure for ceramic shaft and metallic shaft
JPH01215769A (en) Production of ceramic-metal coupled body
JPS62119180A (en) Manufacture of ceramic shafted turbine blade
JPS638273A (en) Method of joining ceramic member to metal member
JPH0692722B2 (en) Ceramic rotor