JPS62119180A - Manufacture of ceramic shafted turbine blade - Google Patents

Manufacture of ceramic shafted turbine blade

Info

Publication number
JPS62119180A
JPS62119180A JP25843685A JP25843685A JPS62119180A JP S62119180 A JPS62119180 A JP S62119180A JP 25843685 A JP25843685 A JP 25843685A JP 25843685 A JP25843685 A JP 25843685A JP S62119180 A JPS62119180 A JP S62119180A
Authority
JP
Japan
Prior art keywords
shaft
metal
ceramic
cylindrical body
shaft member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25843685A
Other languages
Japanese (ja)
Inventor
川口 泰伸
高野 裕喜
武藤 敏昭
本橋 道夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP25843685A priority Critical patent/JPS62119180A/en
Publication of JPS62119180A publication Critical patent/JPS62119180A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 り又上立五■ユ1 本発明は、内燃機関用ターボ過給様、ガスタービン等に
使用されるIIMII付きタービン翼車の製造方法に係
り、特に、セラミックス製タービン翼車と金属製軸部材
の結合方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a turbine impeller with an IIMII used in a turbocharger for an internal combustion engine, a gas turbine, etc. The present invention relates to a method for connecting a blade wheel and a metal shaft member.

従」Uえガ セラミックスは、金属に比して耐熱性に優れ、かつ金属
並みの強さを有しており1、例えば、近年注目されてい
る窒化けい素(SLsN4)セラミックスの曲げ強度は
、常温で90に9f/m”であるが、1000℃におい
ても、なお80Kgf/m’の曲げ強度を有している。
Comparing to metals, ceramics have superior heat resistance and strength comparable to metals1. For example, the bending strength of silicon nitride (SLsN4) ceramics, which has been attracting attention in recent years, is Although it has a bending strength of 90 to 9 f/m' at room temperature, it still has a bending strength of 80 Kgf/m' even at 1000°C.

この様に優れた耐熱性を有するセラミックスは、金属部
材に代って、使用条件の苛酷な各種機械部品として採用
されつつある。内燃機関のターボ過給機で使用されるタ
ービン翼車もその一例である。ターボ過給機は、機関の
排気エネルギーを利用して耕気タービンを回し、その動
力でコンプレッサーを駆動することにより、吸入空気ま
たは混合気を予圧する装置であり、タービン翼車は、高
温の排気にさらされる部材であるから、これを耐熱性の
優れたヒラミックスで形成するのは効果的である。
Ceramics having such excellent heat resistance are being used in place of metal members for various mechanical parts that are subject to severe usage conditions. One example is a turbine wheel used in a turbocharger for an internal combustion engine. A turbocharger is a device that precompresses intake air or air-fuel mixture by using engine exhaust energy to turn a tillage turbine and using that power to drive a compressor. Since this is a member that is exposed to heat, it is effective to form it from Hiramix, which has excellent heat resistance.

しかして、従来使用されている軸付ぎセラミック製ター
ビン翼車の製造方法として、例えば、第1図に示す様に
、セラミック製タービン翼車O1の回転中心部に突設さ
れた軸突起02に低熱膨張率金属で形成された円筒体0
3を嵌合鑞接し、該金属とは異なる金属で形成された軸
部材04の鍔05を円筒体03に嵌合させ、次いで該嵌
合部にて矢印へ方自から電子ビーム溶接を行い、もって
円筒体03と軸部材04とを接合する手法がある。
As a conventional method for manufacturing a ceramic turbine wheel with a shaft, for example, as shown in FIG. Cylindrical body made of low thermal expansion coefficient metal 0
3 are fitted and soldered, and the collar 05 of the shaft member 04 formed of a metal different from the above metal is fitted into the cylindrical body 03, and then electron beam welding is performed from the direction of the arrow at the fitting part, There is a method of joining the cylindrical body 03 and the shaft member 04.

° ′lし  とする。° 'l  .

ところが、この手法による時は、剛性の大きな円筒体0
3で拘束された溶接部に、円筒体03と鍔05の嵌合面
に対して直角方向の残留引張り応力(熱応力)が生じ、
溶接部分に割れが発生し易い。
However, when using this method, the rigid cylinder body 0
Residual tensile stress (thermal stress) in the direction perpendicular to the fitting surface of the cylindrical body 03 and the collar 05 is generated in the welded part restrained by 3,
Cracks are likely to occur in welded parts.

た  の   およ   。It was.

本発明の目的は、セラミックス製タービン翼車に付され
る金属製軸部材の溶接部における健全性を確保する点に
ある。
An object of the present invention is to ensure the soundness of a welded portion of a metal shaft member attached to a ceramic turbine wheel.

この目的は、セラミックス製タービン翼車の回転中心部
に形成された軸突起に、その熱膨張率が翼車を形成する
セラミックスの熱膨張率に近い値の金属で形成された筒
体を嵌合して、その全嵌合面を鑞接し、該筒体の端面に
、前記金属とは異なる金属で形成された軸部材を宛てが
い、タービン翼車の回転中心線に対して直角に交差する
平面に沿うその当接面部にて、外周から電子ビーム溶接
を行い、筒体と軸部材とを接合することによって達成さ
れる。
The purpose of this is to fit a cylindrical body made of metal whose coefficient of thermal expansion is close to that of the ceramics forming the blade wheel onto the shaft protrusion formed at the rotation center of the ceramic turbine wheel. Then, the entire fitting surface is soldered, and a shaft member made of a metal different from the metal is attached to the end face of the cylinder, and a plane that intersects at right angles to the rotation center line of the turbine blade wheel is formed. This is achieved by performing electron beam welding from the outer periphery at the contact surface along the cylindrical body and the shaft member.

ヒラミックス製タービン翼車の軸突起に金B製筒体を鑞
接するには、軸突起に対して金属製筒体を嵌合させ、軸
突起の端面を上方に向けて同部分に鑞材を供給し、その
姿勢のままでタービン翼車を真空炉に入れて全体を鑞接
温度まで加熱し、溶融した鑞材を、軸突起と金属製筒体
の嵌合面部に滲透せしめ、次いでこれを放冷する。この
加熱、冷却に加えて、金属製軸部材を付された完成品と
してのタービン翼車は、m閏に組込まれて使用される際
には、運転温度まで加熱され、使用後に冷却される。
To solder a gold B cylinder to the shaft protrusion of a HIRAMIX turbine wheel, fit the metal cylinder onto the shaft protrusion, and apply solder material to the same part with the end of the shaft protrusion facing upward. Then, the turbine wheel is placed in a vacuum furnace in that position and heated to the soldering temperature, and the molten solder material permeates through the mating surface of the shaft protrusion and the metal cylindrical body. Leave to cool. In addition to this heating and cooling, the turbine wheel as a completed product with a metal shaft member attached thereto is heated to an operating temperature when it is assembled into an m-leaf and used, and is cooled down after use.

しかるに、セラミックスは、熱膨張率(α)が一般の金
属に比してかなり小さく、例えば窒化けい素(SLs 
N4 )では、α= 2.6〜4.5X10−”7℃で
あるから、タービン翼車の軸突起に嵌合させる金属製筒
体を、通常の熱膨張率の大きな金属で形成すると、軸突
起と筒体の伸縮分の差が大き過ぎて、軸突起に好ましく
ない影響を与えることになる。それ故、本発明では、そ
の熱膨張率(α)が翼車を形成するセラミックスの熱膨
張率(α)に近い値の金属、例えば、コーパル(NL2
3〜30wt%、 Co 17〜30wt%、 Mn 
O,6〜0.8wt%、残部Fe :Ct= 4.4〜
5.2X10’/℃)  (商標名)をもって筒体を形
成することとした。
However, the coefficient of thermal expansion (α) of ceramics is considerably smaller than that of general metals, such as silicon nitride (SLs).
In N4), α = 2.6 to 4.5 x 10-''7°C, so if the metal cylinder fitted to the shaft protrusion of the turbine wheel is made of a normal metal with a large coefficient of thermal expansion, the shaft The difference in expansion and contraction between the protrusion and the cylindrical body is too large and will have an unfavorable effect on the shaft protrusion.Therefore, in the present invention, the coefficient of thermal expansion (α) is determined by the thermal expansion of the ceramic forming the impeller. Metals with values close to the ratio (α), such as copal (NL2
3-30wt%, Co 17-30wt%, Mn
O, 6~0.8wt%, balance Fe: Ct=4.4~
5.2×10′/° C.) (trade name) to form a cylinder.

支JLJI 本発明は、下記の手順によって実施される。Branch JLJI The present invention is carried out by the following procedure.

■セラミック(例、β−8L3N4、α=3.0〜5、
Ox 10′6/ ’C) ”Aタービン翼車10の軸
突起12に、該軸突起12よりもやや長尺の低熱膨張率
金属(例、コーパル(商標名))!11円筒体14を嵌
合させる。
■ Ceramic (e.g. β-8L3N4, α=3.0~5,
Ox 10'6/ 'C) "A A cylindrical body 14 made of a low thermal expansion coefficient metal (eg, Copal (trade name)), which is slightly longer than the shaft projection 12, is fitted into the shaft projection 12 of the turbine wheel 10. Match.

ただし、この嵌合部には、鑞材の進入を許す僅かな間隔
を設けである。
However, this fitting portion is provided with a slight gap to allow entry of the solder material.

■次いで、前述の様に、軸突起12の喘面部に粒状の鑞
材を供給し、全体を真空炉に入れて鑞接温度まで加熱し
、溶融した鑞材を、軸突起12と円筒体14の嵌合面間
に滲透せしめた後、放冷する。
Next, as described above, granular solder material is supplied to the surface of the shaft projection 12, the whole is placed in a vacuum furnace and heated to the soldering temperature, and the molten solder material is applied to the shaft projection 12 and the cylindrical body 12. After allowing the material to seep between the mating surfaces of the material, it is allowed to cool.

■軸突起12に嵌合、鑞接された円筒体14の外端に対
し、その隆起部20を嵌合させる形態で、金属(例、J
IS G4105−3CH420材)製軸部材16の鍔
18を宛てがい、回転中心線りと直角(はぼ直角である
場合をも含む)に交差する平面内に含まれる当接面部に
対し、矢印B方向から全周に亘って電子ビーム溶接を実
施する(第2図、第3図参照。ただし、第3図は第2図
における■−■線矢視図である)。
■ The protrusion 20 is fitted to the outer end of the cylindrical body 14 which is fitted and soldered to the shaft protrusion 12.
Attach the collar 18 of the shaft member 16 (IS G4105-3CH420 material) to the abutment surface included in a plane that intersects at right angles (including cases where it is almost at right angles) to the rotation center line, using arrow B. Electron beam welding is performed from the direction to the entire circumference (see FIGS. 2 and 3. However, FIG. 3 is a view taken along the line ■-■ in FIG. 2).

以上の手順によって得られた軸部材16付きタービン翼
車10の溶接接合部Wには、第1図図示例におけるが如
ぎ拘束力が作用しないため、溶接面に対して直角方向(
回転中心線りと平行な方向)の残留引張り応力が生ずる
ことはなく、残留熱応力による割れ発生を効果的に防ぐ
ことができる。
Since no restraining force acts on the welded joint W of the turbine impeller 10 with the shaft member 16 obtained by the above procedure as in the example shown in FIG.
No residual tensile stress is generated in the direction parallel to the rotation center line, and cracking due to residual thermal stress can be effectively prevented.

また、円筒体14を軸突起12よりも長尺に形成するこ
とにより、鑞接部と溶接接合部Wとを離隔さぼることか
でき、鑞材に与える溶接熱の影響を十分低減化すること
ができる。
Furthermore, by forming the cylindrical body 14 to be longer than the shaft protrusion 12, the solder joint part and the weld joint part W can be separated from each other, and the influence of welding heat on the solder material can be sufficiently reduced. can.

さらにまた、円筒体14の外端に鍔18を当接させて両
者を溶接した構造では、第1図図示例のものに比して、
溶接接合部が回転中心線りから離隔しているため、トル
ク伝j工負荷が小さく、耐久性が向上する。
Furthermore, in the structure in which the collar 18 is brought into contact with the outer end of the cylindrical body 14 and the two are welded, compared to the example shown in FIG.
Since the welded joint is separated from the center of rotation, the torque transmission load is small and durability is improved.

免匪互1皿 以上の説明から明らかな様に、セラミックス製タービン
翼車の回転中心部に形成された軸突起に、その熱膨張率
が翼車を形成するヒラミックスの熱膨張率に近い値の金
属で形成された筒体を嵌合して、その全嵌合面を鑞接し
、該筒体の端面に、前記金属とは異なる金属で形成され
た軸部材を宛てがい、ターごン翼車の回転中心線に対し
て直角に交差する平面に沿うその当接面部にて、外周か
ら電子ビーム溶接を行い、筒体と軸部材とを接合するこ
とを特徴とする軸付きセラミックス製タービン翼車の製
造方法が提案された。
As is clear from the above explanation, the shaft protrusion formed at the center of rotation of the ceramic turbine impeller has a coefficient of thermal expansion close to that of the Hiramix that forms the impeller. A cylindrical body formed of a metal of A ceramic turbine blade with a shaft, characterized in that a cylindrical body and a shaft member are joined by electron beam welding from the outer periphery at the contact surface along a plane perpendicular to the rotation center line of the vehicle. A method of manufacturing a car was proposed.

この方法によれば、筒体と軸部材の溶接接合部に好まし
からざる拘束力がわくことがなく、溶接面に直角な方向
の残留引張り応力が生じないため、vjれのない健全な
溶接接合部を1qることができる。
According to this method, there is no undesirable restraining force on the welded joint between the cylinder and the shaft member, and no residual tensile stress is generated in the direction perpendicular to the welding surface, resulting in a sound welded joint without vj deviation. 1q can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は公知に係る!!!造方決方法た軸付きセラミッ
クス製タービン翼車の一要部欠截側面図、第2図は本発
明法で得た軸付きセラミックス製タービン翼車の要部欠
截側面図、第3図は第2図における■−■線矢視図であ
る。 10・・・タービン翼車、12・・・軸突起、14・・
・円筒体、16、・・軸部材、18・・・鍔、20・・
・隆起部。
Figure 1 is publicly known! ! ! Fig. 2 is a cutaway side view of a main part of a ceramic turbine wheel with a shaft obtained by the manufacturing method of the present invention; Fig. 3 is a cutaway side view of a main part of a ceramic turbine wheel with a shaft obtained by the method of the present invention. It is a view taken along the line ■-■ in FIG. 2. 10... Turbine impeller, 12... Shaft protrusion, 14...
・Cylindrical body, 16... Shaft member, 18... Tsuba, 20...
・Rumps.

Claims (1)

【特許請求の範囲】[Claims] セラミックス製タービン翼車の回転中心部に形成された
軸突起に、その熱膨張率が翼車を形成するセラミックス
の熱膨張率に近い値の金属で形成された筒体を嵌合して
、その全嵌合面を鑞接し、該筒体の端面に、前記金属と
は異なる金属で形成された軸部材を宛てがい、タービン
翼車の回転中心線に対して直角に交差する平面に沿うそ
の当接面部にて、外周から電子ビーム溶接を行い、筒体
と軸部材とを接合することを特徴とする軸付きセラミッ
クス製タービン翼車の製造方法。
A cylindrical body made of a metal whose coefficient of thermal expansion is close to that of the ceramics forming the blade wheel is fitted onto the shaft protrusion formed at the center of rotation of a ceramic turbine wheel. All fitting surfaces are soldered together, a shaft member made of a metal different from the above metal is attached to the end face of the cylinder, and its contact is made along a plane perpendicular to the rotational center line of the turbine wheel. A method of manufacturing a ceramic turbine blade wheel with a shaft, characterized in that electron beam welding is performed from the outer periphery at the contact surface part to join the cylinder and the shaft member.
JP25843685A 1985-11-20 1985-11-20 Manufacture of ceramic shafted turbine blade Pending JPS62119180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25843685A JPS62119180A (en) 1985-11-20 1985-11-20 Manufacture of ceramic shafted turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25843685A JPS62119180A (en) 1985-11-20 1985-11-20 Manufacture of ceramic shafted turbine blade

Publications (1)

Publication Number Publication Date
JPS62119180A true JPS62119180A (en) 1987-05-30

Family

ID=17320176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25843685A Pending JPS62119180A (en) 1985-11-20 1985-11-20 Manufacture of ceramic shafted turbine blade

Country Status (1)

Country Link
JP (1) JPS62119180A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097213A (en) * 2001-09-25 2003-04-03 Kyocera Corp Ceramic turbine rotor
US7508105B2 (en) 2002-04-22 2009-03-24 Mitsubishi Denki Kabushiki Kaisha Magneto-generator
CN102046960A (en) * 2008-06-19 2011-05-04 博格华纳公司 Rotor shaft of a turbomachine and method for the production of a rotor of a turbomachine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097213A (en) * 2001-09-25 2003-04-03 Kyocera Corp Ceramic turbine rotor
US7508105B2 (en) 2002-04-22 2009-03-24 Mitsubishi Denki Kabushiki Kaisha Magneto-generator
CN102046960A (en) * 2008-06-19 2011-05-04 博格华纳公司 Rotor shaft of a turbomachine and method for the production of a rotor of a turbomachine
JP2011524961A (en) * 2008-06-19 2011-09-08 ボーグワーナー・インコーポレーテッド Turbomachine rotor shaft and method of manufacturing turbomachine rotor

Similar Documents

Publication Publication Date Title
JP3453302B2 (en) Method of joining TiAl alloy member to structural steel and joining parts
JPH03279277A (en) Joint structure of turbine rotor
WO1985001556A1 (en) Built-up cam shaft and method of manufacture thereof
JPS62119180A (en) Manufacture of ceramic shafted turbine blade
JPH0329031B2 (en)
JPH0477704B2 (en)
JP3077410B2 (en) Turbocharger turbine housing
JPS59103902A (en) Ceramic vane wheel
JPH02157403A (en) Joining of turbine wheel made of titanium aluminum alloy
JPS6227380A (en) Method of joining axis of ceramic structure to boss of metalstructure
JPH02127986A (en) Structure for coupling ceramics body of rotation with metallic shaft
JPS61152902A (en) Manufacture of turbine impeller made of ceramic with shaft
JPS58217814A (en) Construction of shaft
JP2650372B2 (en) Method of joining ceramic member and metal member
JP2508823B2 (en) How to connect a ceramic rotor to a metal shaft
JPS6270275A (en) Method for bonding ceramic rotor and metal rotary shaft
JPH0338401Y2 (en)
JPH0431772B2 (en)
JPH052585Y2 (en)
JPH0220190Y2 (en)
JPS61126992A (en) Brazing filler metal for joining zirconia and stainless steel
JPH046677B2 (en)
JPH01215769A (en) Production of ceramic-metal coupled body
JPS626773A (en) Joining structure for ceramic and metal
JP2619216B2 (en) Combined ceramic and metal