JPH02127986A - Structure for coupling ceramics body of rotation with metallic shaft - Google Patents

Structure for coupling ceramics body of rotation with metallic shaft

Info

Publication number
JPH02127986A
JPH02127986A JP63278112A JP27811288A JPH02127986A JP H02127986 A JPH02127986 A JP H02127986A JP 63278112 A JP63278112 A JP 63278112A JP 27811288 A JP27811288 A JP 27811288A JP H02127986 A JPH02127986 A JP H02127986A
Authority
JP
Japan
Prior art keywords
shaft
metal
metallic
face
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63278112A
Other languages
Japanese (ja)
Inventor
Kazuhisa Sanpei
和久 三瓶
Masatsune Kondo
近藤 正恒
Hideo Nakamura
秀生 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63278112A priority Critical patent/JPH02127986A/en
Publication of JPH02127986A publication Critical patent/JPH02127986A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain firm coupling of a ceramics body of rotation with a metallic shaft with high productivity by forming the welded surface between a metallic sleeve and the metallic shaft to the tapered surface inclining toward a rotational central axis at the metallic shaft side from the shaft projecting part end face of the ceramics body of rotation. CONSTITUTION:The end face (the face to be welded and joined face 9) at the tip side of the shaft projecting part 2 of the metallic sleeve 3 is formed so as to correspond to a part of the conical surface formed in the case the surface to cross orthogonally to the rotational central axis 10 of a ceramics turbine wheel 1 is inclined to the metallic shaft 4 side. The same shaped face formed on a flange part 13 of the metallic shaft 4 is then pressed on the above- mentioned face. The ceramics turbine wheel 1 is then coupled with the metallic shaft 4 via the metallic sleeve 3 by performing electron beam welding 5 from the diagonal direction with respect to the rotational axis of the turbine wheel 1.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は例えばセラミックス製ターボロータシャフトに
適用できるセラミックス製回転体と金属軸の結合構造に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a coupling structure between a ceramic rotating body and a metal shaft, which can be applied to, for example, a ceramic turbo rotor shaft.

〈従来の技術〉 内燃機関のターボチャージャーは排気エネルギーでター
ボロータシャフトを回し、その動力でコンプレッサーを
駆動することにより吸入空気又は混合気を予圧する装置
であり、そのタービンホイールはかなりの高熱にさらさ
れる。またターボチャージャー付エンジンの欠点として
ターボ回転の立ち上がり遅れが指摘されているが、この
タービンホイールの重量の重いことが一因とされている
0以上のことからタービンホイールを金属に比べて軽量
で耐熱性に優れ、しかも金属なみの強さを有しているセ
ラミックスで形成するのは効果的である。
<Prior art> A turbocharger for an internal combustion engine is a device that uses exhaust energy to turn a turbo rotor shaft and uses that power to drive a compressor to precompress intake air or a mixture, and its turbine wheel is exposed to considerable heat. It will be done. Also, a delay in the start-up of the turbo rotation has been pointed out as a disadvantage of turbocharged engines, but this is said to be partly due to the heavy weight of the turbine wheel. It is effective to use ceramics, which have excellent properties and strength comparable to metals.

そのため第6図に示すようにセラミックス製タービンホ
イールlの回転中心部に設けられた軸突起部2に金属ス
リーブ3を焼ばめるか、又は充填金属でロウ付けし、そ
の金属スリーブ3に別の金属で形成された金属軸4を電
子ビーム溶接で接合したセラミックス製ターボロータシ
ャフトが提案されている(特開昭62−119180号
、同62−70275号、同61−152902号公報
参照)。
Therefore, as shown in Fig. 6, a metal sleeve 3 is shrink-fitted to the shaft protrusion 2 provided at the center of rotation of the ceramic turbine wheel l, or is brazed with filler metal, and the metal sleeve 3 is attached separately. A ceramic turbo rotor shaft has been proposed in which a metal shaft 4 made of metal is joined by electron beam welding.

金属スリーブ3の材料としては、耐熱合金、特にインコ
ロイ、インコネル等の高温強度が大きい析出硬化型合金
が使用されることが多い、これら析出硬化型合金は一旦
析出硬化しても、その合金の溶体化処理温度を超える温
度に加熱された後に空冷されると、時効処理により析出
硬化したものが再度溶体化処理されることとなり、金属
スリーブ材料の硬度及び強度が低下してしまう。
As the material for the metal sleeve 3, heat-resistant alloys, especially precipitation hardening alloys with high high-temperature strength such as Incoloy and Inconel, are often used. If the metal sleeve material is air cooled after being heated to a temperature exceeding the heat treatment temperature, the precipitation hardened material due to the aging treatment will be subjected to the solution treatment again, resulting in a decrease in the hardness and strength of the metal sleeve material.

この現象は金属スリーブ3に金属軸4を電子ビーム溶接
した時の溶接接合面に現れる。金属スリーブ3にインコ
ロイ903を使用し金属軸部材に低合金鋼を使用した場
合の電子ビーム溶接部を第7図に示す。該図中、6は溶
接ビート部を、7は溶接熱影響部(軟化領域)を示して
いる。
This phenomenon appears on the welded joint surface when the metal shaft 4 is electron beam welded to the metal sleeve 3. FIG. 7 shows an electron beam welded part when Incoloy 903 is used for the metal sleeve 3 and low alloy steel is used for the metal shaft member. In the figure, 6 indicates a weld bead, and 7 indicates a weld heat affected zone (softened region).

電子ビーム溶接部近傍の硬度測定結果を第8図に示す、
該図は、断面図で示した測定部位とビッカース硬度を示
すグラフを対応させた図である。
Figure 8 shows the hardness measurement results near the electron beam welding area.
This figure is a diagram in which the measurement site shown in the cross-sectional view corresponds to a graph showing Vickers hardness.

金属スリーブ3の時効処理後のビッカース硬度は350
以上であるのに対して、溶接ビート部6ならびに金属ス
リーブ3の溶接熱影響部7のビッカース硬度は200以
下に低下している。つまり領域6.7が再溶体化された
ことを示しており、その軟化領域7は軸突起部2との結
合部8(金属スリーブ3の軟化が問題となる領域11)
まで達している。
The Vickers hardness of the metal sleeve 3 after aging treatment is 350.
On the other hand, the Vickers hardness of the weld bead portion 6 and the weld heat affected zone 7 of the metal sleeve 3 has decreased to 200 or less. In other words, this shows that the region 6.7 has been re-solutionized, and the softened region 7 is the joint portion 8 with the shaft protrusion 2 (region 11 where softening of the metal sleeve 3 is a problem).
It has reached this point.

このように電子ビーム溶接の熱影響によって再溶体化さ
れ強度低下を生じる金属スリーブ3が、セラミックス製
タービンホイールlの軸突起部2に、化学的結合を有さ
ない焼ばめ等の機械的結合で固定される場合には、軸突
起部2と金属軸4の結合強度が低下してしまうことにな
る。
In this way, the metal sleeve 3, which is re-solutionized and whose strength decreases due to the thermal influence of electron beam welding, is mechanically bonded to the shaft protrusion 2 of the ceramic turbine wheel l by mechanical bonding such as shrink fit without chemical bonding. If the shaft protrusion 2 and the metal shaft 4 are fixed together, the strength of the connection between the shaft protrusion 2 and the metal shaft 4 will be reduced.

電子ビーム溶接後、再度時効処理を施せば、溶接熱影響
部7の硬度は回復するか、−殻内に時効処理には長時間
の熱処理か必要である。インコロイ903の場合、78
0’C−8時間保持→620”C−8時間保持→空冷、
か標準的な時効処理条件である。また、電子ビーム溶接
後に、セラミックス製タービンホイールlと金属軸4を
結合させた状態で時効処理を行なおうとすると、例えば
同一の炉を使用する場合、結合前の状態で熱処理を実施
する場合の鍾以下の数量しか処理できず、生産性が非常
に低下するという問題か生じる。
If the aging treatment is performed again after electron beam welding, the hardness of the weld heat-affected zone 7 will be restored.-A long time heat treatment is required for the aging treatment within the shell. For Incoloy 903, 78
0'C - held for 8 hours → 620"C - held for 8 hours → air cooled,
or standard aging treatment conditions. In addition, if you try to perform aging treatment with the ceramic turbine wheel l and the metal shaft 4 combined after electron beam welding, for example, if you use the same furnace, it will be difficult to perform the heat treatment before they are combined. The problem arises that only a small quantity can be processed, resulting in a very low productivity.

なお第9図に示すように金属軸4を金属スリーブ3に嵌
合させ、A方向から溶接する構造、あるいは第1O図に
示すように溶接部Bをより金属軸4側に移すべく金属ス
リーブ3を長くする構造が考えられるが、第9図に示さ
れる結合構造ではスリーブ3と金属軸4の嵌合面に対し
て直角方向の残留引っ張り応力(熱応力)が生じ、溶接
部分に割れが発生しやすく、また第1O図に示される結
合構造では金属軸4のフランジ部13の肉厚を厚くしな
ければならず寸法上の制約から別の問題が生じる。
As shown in FIG. 9, the metal shaft 4 is fitted into the metal sleeve 3 and welded from the direction A, or as shown in FIG. However, in the joint structure shown in Figure 9, residual tensile stress (thermal stress) occurs in the direction perpendicular to the mating surface of the sleeve 3 and metal shaft 4, causing cracks in the welded part. In addition, in the coupling structure shown in FIG. 1O, the thickness of the flange portion 13 of the metal shaft 4 must be increased, which causes another problem due to dimensional constraints.

本発明は上記問題を解決する目的でなされたものであり
、その解決しようとする課題は、強固な結合が得られし
かも非常に生産性よ〈実施できるセラミックス製回転体
と金属軸の結合構造を提供することである。
The present invention was made for the purpose of solving the above problems, and the object of the present invention is to provide a structure for connecting a ceramic rotating body and a metal shaft that can provide a strong connection and be highly productive. It is to provide.

(課題を解決するための手段〉 上記課題を解決するための本発明のセラミックス回転体
と金属軸の結合構造は、セラミックス製回転体の軸突起
部に嵌合固定した析出硬化合金製スリーブの他端に、金
属軸をそのフランジ部を以って溶接した構造であって、
該フランジ部と上記スリーブとの溶接接合面を、セラミ
ックス製回転体の軸突起部端面より金属軸側において回
転中心軸とは鋭角(9Q’より小さい角)をなして金属
軸側に傾斜するテーパ面としたことを特徴とする。
(Means for Solving the Problems) In order to solve the above problems, the coupling structure of a ceramic rotating body and a metal shaft of the present invention includes a precipitation-hardened alloy sleeve fitted and fixed to a shaft protrusion of a ceramic rotating body. It has a structure in which a metal shaft is welded to the end with its flange,
The welded joint surface between the flange portion and the sleeve is tapered so as to form an acute angle (an angle smaller than 9Q') with the rotation center axis on the metal shaft side from the end surface of the shaft protrusion of the ceramic rotating body and slope toward the metal shaft side. It is characterized by having a face.

即ち本発明の結合構造は、セラミックス製回転体の回転
中心部に形設されている軸突起部に、析出硬化型合金か
らなる金属スリーブを、化学的結合による接合状態を有
さない機械的結合、例えば加熱後の金属スリーブの熱収
縮による締め付は力を利用した焼はめ、もしくはロウ付
は材を使用した中間金属充填による結合等で固定させた
後、その金属スリーブの他端に、別の金属からなり溶接
用フランジ部が形設されている金属軸を、電子ビームも
しくはレーザ等の高エネルギー密度熱源を用いた溶接法
により接合して構成されるセラミックス製回転体と金属
軸の結合構造において、結合継手である金属スリーブの
溶接面を金属軸側に向つて径が拡大するテーパ形状とし
、それに対応する形の突き合わせ面を金属軸の溶接用フ
ランジ部に設け、テーパ当接させたこれら両部材に、回
転軸に対して金属軸側斜方向から高エネルギー密度熱源
を照射して金属スリーブと金属軸を溶接したものである
That is, the bonding structure of the present invention connects a metal sleeve made of a precipitation hardening alloy to a shaft protrusion formed at the center of rotation of a ceramic rotating body through mechanical bonding that does not involve chemical bonding. For example, tightening by heat shrinkage of a metal sleeve after heating is done by shrink fitting using force, or brazing is done by joining by intermediate metal filling using material, and then the other end of the metal sleeve is attached separately. A structure in which a ceramic rotating body and a metal shaft are joined by welding a metal shaft made of metal with a welding flange formed using a high energy density heat source such as an electron beam or laser. In these methods, the welding surface of the metal sleeve, which is a coupling joint, has a tapered shape whose diameter increases toward the metal shaft side, and a matching surface of a corresponding shape is provided on the welding flange of the metal shaft, and the taper abuts the welding surface. The metal sleeve and metal shaft are welded by irradiating both members with a high energy density heat source from an oblique direction on the metal shaft side with respect to the rotating shaft.

〈作用〉 以上のように構成すると、溶接熱影響部すなわち金属ス
リーブの再溶体化による軟化領域は、セラミックス製回
転体との機械的結合部位にまで及ばない、したがって金
属スリーブのセラミックス製回転体への結合力は高エネ
ルギー溶接によって低下せず、セラミックス製回転体と
金属軸は強固に結合する。
<Operation> With the above configuration, the weld heat affected zone, that is, the softened area due to re-solution of the metal sleeve does not extend to the mechanical connection area with the ceramic rotating body. The bond strength is not reduced by high-energy welding, and the ceramic rotating body and metal shaft are firmly bonded.

〈実施例〉 以下、本発明の結合構造の実施例を説明するが、これは
本発明を限定するものではない。
<Examples> Examples of the bonding structure of the present invention will be described below, but the present invention is not limited thereto.

実施例1 本実施例に係るセラミックス製ターボロータシャフトの
セラミックス製タービンホイールlと金属軸4の結合構
造を、第1図及びその部分拡大図である第2図により説
明する。セラミックス製タービンホイール1は窒化珪素
(Si2H4)製てあり、その回転中心部に軸突起部2
が形設されている。
Example 1 A coupling structure between a ceramic turbine wheel l and a metal shaft 4 of a ceramic turbo rotor shaft according to this example will be explained with reference to FIG. 1 and FIG. 2, which is a partially enlarged view thereof. The ceramic turbine wheel 1 is made of silicon nitride (Si2H4), and has a shaft protrusion 2 at its center of rotation.
is formed.

金属スリーブ3は、AIとTiを組成分として含有する
析出硬化型の耐熱合金(インコロイ903)を機械加工
して製造されたものであり、該スリーブ3の内周面には
銅メツキが施されている。
The metal sleeve 3 is manufactured by machining a precipitation-hardening type heat-resistant alloy (Incoloy 903) containing AI and Ti as components, and the inner peripheral surface of the sleeve 3 is plated with copper. ing.

軸突起部2の外径は、金属スリーブ3の内径より僅かに
小さくなっており、嵌挿した状態の軸突起部2の外周面
と金属スリーブ3の内周面の間には微小間隙が形成され
るが、これらは次のようにして固定される。セラミック
ス製タービンホイールlと金属スリーブ3と線状ロウ付
は材(図示せず)を治具にセットし、真空炉中で加熱す
ることにより、軸突起部2の外周面と金属スリーブ3の
内周面の間の微小間隙に充填金属であるロウ付は材(7
2$Ag−281Cu ) ヲ充填tル、ロウffケ材
カ充填された後の冷却過程で、ロウ付は材が凝固温度で
凝固した後、金属スリーブ3は温度の低下とともに収縮
し、その締付は力が結合面に作用し、焼ばめと同様の結
合力が得られる。このとき金属スリーブ3の軸突起部2
の外周に位置する部分、即ち金属スリーブ3の軟化か問
題となる領域11には引っ張り応力が働いている。
The outer diameter of the shaft protrusion 2 is slightly smaller than the inner diameter of the metal sleeve 3, and a minute gap is formed between the outer circumferential surface of the shaft protrusion 2 and the inner circumferential surface of the metal sleeve 3 in the fitted state. However, these are fixed as follows. The ceramic turbine wheel 1, the metal sleeve 3, and the wire brazing material (not shown) are set in a jig and heated in a vacuum furnace, so that the outer peripheral surface of the shaft protrusion 2 and the inner surface of the metal sleeve 3 are heated. A brazing material (7
2$Ag-281Cu) In the cooling process after filling and brazing the material, the metal sleeve 3 contracts as the temperature decreases and its tightening occurs after the material solidifies at the solidification temperature. When attaching, force acts on the bonding surface, resulting in a bonding force similar to that of a shrink fit. At this time, the shaft protrusion 2 of the metal sleeve 3
Tensile stress is acting on a portion located on the outer periphery of the metal sleeve 3, that is, a region 11 where softening of the metal sleeve 3 is a problem.

金属スリーブ3の軸突起部2先端側の端面(溶接接合面
9となる面)は、タービンホイール1の回転中心軸10
に対して直交する而を金属軸4側に傾けた場合に形成さ
れる円錐面の一部(円錐台の外周側面:テーパ面)に相
当するよう形成されており、この面に金属軸4のフラン
ジ部13に形成された同形状面を押し当てる。そしてタ
ービンホイールlの回転軸に対して斜め方向から電子ビ
ーム溶接5を行なうことにより、セラミックス製タービ
ンホイール1と金属軸4が金属スリーブ3を介して結合
される。
The end surface of the metal sleeve 3 on the tip side of the shaft protrusion 2 (the surface that becomes the welding joint surface 9) is connected to the rotation center axis 10 of the turbine wheel 1.
It is formed to correspond to a part of the conical surface (outer peripheral side of a truncated cone: tapered surface) that is formed when the surface perpendicular to the truncated cone is tilted toward the metal shaft 4 side. The same-shaped surfaces formed on the flange portion 13 are pressed against each other. Then, the ceramic turbine wheel 1 and the metal shaft 4 are joined via the metal sleeve 3 by performing electron beam welding 5 in a direction oblique to the rotating shaft of the turbine wheel 1.

第2図は、得られたセラミックス製ターボロータシャフ
トの電子ビーム溶接部を拡大して示す断面図である。溶
接ビート部6及び軟化した溶接熱影響部7はともに軸突
起部2と金属スリーブ3の結合部8より金属軸4側に形
成されており、金属スリーブ3の軟化が問題となる領域
11には至っていない、したがって上記溶接によって軸
突起部2とスリーブ3の結合力が低下することはない。
FIG. 2 is an enlarged sectional view showing the electron beam welded portion of the obtained ceramic turbo rotor shaft. Both the weld bead 6 and the softened weld heat affected zone 7 are formed closer to the metal shaft 4 than the joint 8 between the shaft protrusion 2 and the metal sleeve 3, and the area 11 where the softening of the metal sleeve 3 is a problem is Therefore, the bonding force between the shaft protrusion 2 and the sleeve 3 is not reduced by the welding.

実施例2 第3図は本発明の別の実施例を示したものである。金属
スリーブ3の溶接側端部に、軸突起部2と金属軸4とで
挟まれる座部15が設けられており、この座部15を囲
む周縁端面はテーパ面となっている。該テーパ面ならび
に座部15の平面に対応する突き合わせ面がフランジ部
13に形成されている金属軸4を上記スリーブ3に当接
させた状態で、金属軸4側の斜方向からレーザ溶接5す
る以外は実施例1と同様の構成であり、この結合構造に
おいても実施例1と同様の作用効果が得られる。
Embodiment 2 FIG. 3 shows another embodiment of the present invention. A seat 15 that is sandwiched between the shaft protrusion 2 and the metal shaft 4 is provided at the welding side end of the metal sleeve 3, and the peripheral end surface surrounding the seat 15 is tapered. With the metal shaft 4, which has an abutting surface formed in the flange portion 13 that corresponds to the tapered surface and the flat surface of the seat portion 15, in contact with the sleeve 3, laser welding 5 is performed from an oblique direction on the metal shaft 4 side. Other than this, the structure is the same as in Example 1, and the same effects as in Example 1 can be obtained with this coupling structure as well.

(発明の効果〉 以上の如く、本発明のセラミックス回転体と金属軸の結
合構造によれば、析出硬化合金でできた金属スリーブを
継手として用いる結合構造において、該スリーブと金属
軸の溶接接合面を、セラミックス製回転体の軸突起部端
面より金属軸側で且つ回転中心軸に向って傾斜するテー
パ面としたことにより、溶接による再溶体化で生じる金
属スリーブの軟化領域がセラミックス製回転体との機械
的結合部位にまで及ばなくなり、結合力低下を来さない
結合か可能となる。
(Effects of the Invention) As described above, according to the coupling structure of the ceramic rotating body and the metal shaft of the present invention, in the coupling structure using a metal sleeve made of a precipitation hardened alloy as a joint, the welded joint surface of the sleeve and the metal shaft is By making this a tapered surface that is closer to the metal shaft than the end surface of the shaft protrusion of the ceramic rotating body and inclined toward the rotational center axis, the softened area of the metal sleeve that occurs due to re-solution by welding can be prevented from forming a part of the ceramic rotating body. The mechanical bonding site is no longer reached, and bonding can be achieved without reducing the bonding strength.

電子ビーム溶接やレーザ溶接等の高エネルギー密度熱源
を用いる溶接法では、溶は込み深さPに対する溶接ビー
ド巾Wの比P/Wが大きいため、溶接ビートの表面状態
を外1IlI観察するたけては溶接状態の良否を判定す
ることができない。そのため超音波探傷検査か一般に行
なわれているが、検査すべき面に直角に超音波を入射す
ることが一般に必要とされることから1反射法により超
音波探傷検査を実施しようとした場合、第4図に示すよ
うに超音波の発信・受信を行なうプローブ18を金属軸
4と干渉する位置に配さないと、溶接底部16の溶接状
態の良否判定ができず、実際には検査か不可能となって
しまう、これに対し、本発明の結合構造では第5図に示
すようにプローブ18を配することに支障がなく、溶接
底部16の溶接状態の良否判定を容易に行なうことかで
きる。
In welding methods that use high energy density heat sources such as electron beam welding and laser welding, the ratio P/W of the weld bead width W to the penetration depth P is large, so it is difficult to observe the surface condition of the weld bead externally. cannot judge whether the welding condition is good or bad. For this reason, ultrasonic flaw detection is generally performed, but since it is generally necessary to inject the ultrasonic waves at right angles to the surface to be inspected, when attempting to perform ultrasonic flaw detection using the one-reflection method, the As shown in Figure 4, unless the probe 18 that transmits and receives ultrasonic waves is placed in a position where it interferes with the metal shaft 4, it will not be possible to judge whether the welding condition of the weld bottom 16 is good or bad, and in fact, inspection is impossible. In contrast, in the joint structure of the present invention, there is no problem in arranging the probe 18 as shown in FIG. 5, and it is possible to easily judge whether the welding condition of the welded bottom part 16 is good or bad.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る、セラミックス製ター
ビンホイールと金属軸の結合構造を示す断面図、 第2図はその溶接部を拡大して示す断面図、第3図は他
の実施例の結合構造を示す断面図、第4図及び第5図は
従来例の短所及びそれが除かれる一実施例の効果を対比
させて説明する図、第6図は従来の結合構造の一例を示
す断面図。 第7図はその溶接部を拡大して示す断面図、第8図はそ
の溶接部の硬度測定部位とそこの硬度とを対応させて示
す図、 第9図及び第10図は夫々従来他に考えられた結合構造
の問題点の説明図である。 図中: 1・・・セラミックス製タービンホイール2・・・軸突
起部 3・・・金属スリーブ 4・・・金属軸5・・・
電子ビーム溶接又はレーザ溶接6・・・溶接ビート部 7・・・溶接熱影響部(軟化領域) 9・・・溶接接合面 11・・・金属スリーブの軟化が問題となる領域13−
・・フランジ部
Fig. 1 is a cross-sectional view showing a coupling structure between a ceramic turbine wheel and a metal shaft according to one embodiment of the present invention, Fig. 2 is a cross-sectional view showing an enlarged welding part thereof, and Fig. 3 is a cross-sectional view showing another embodiment of the present invention. 4 and 5 are diagrams comparing and explaining the disadvantages of the conventional example and the effects of an embodiment that eliminates them. FIG. 6 is a cross-sectional view showing an example of the conventional joint structure. A sectional view shown. Fig. 7 is an enlarged sectional view of the welded part, Fig. 8 is a diagram showing the correspondence between the hardness measurement site of the welded part and the hardness there, and Figs. 9 and 10 are respectively FIG. 3 is an explanatory diagram of the problems of the considered bonding structure. In the figure: 1... Ceramic turbine wheel 2... Shaft protrusion 3... Metal sleeve 4... Metal shaft 5...
Electron beam welding or laser welding 6... Welding bead 7... Weld heat affected zone (softening area) 9... Welding joint surface 11... Area where softening of the metal sleeve is a problem 13-
・・Flange part

Claims (1)

【特許請求の範囲】[Claims] セラミックス製回転体の軸突起部に嵌合固定した析出硬
化合金製スリーブの他端に、金属軸をそのフランジ部を
以って溶接した構造であって、該フランジ部と上記スリ
ーブとの溶接接合面を、セラミックス製回転体の軸突起
部端面より金属軸側において回転中心軸とは鋭角をなし
て金属軸側に傾斜するテーパ面としたことを特徴とする
セラミックス製回転体と金属軸の結合構造。
It has a structure in which a metal shaft is welded at its flange to the other end of a precipitation-hardened alloy sleeve that is fitted and fixed to the shaft protrusion of a ceramic rotating body, and the flange and the sleeve are welded together. A combination of a ceramic rotating body and a metal shaft, characterized in that the surface is a tapered surface that forms an acute angle with the rotation center axis on the metal shaft side from the end face of the shaft protrusion of the ceramic rotating body and slopes toward the metal shaft side. structure.
JP63278112A 1988-11-02 1988-11-02 Structure for coupling ceramics body of rotation with metallic shaft Pending JPH02127986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63278112A JPH02127986A (en) 1988-11-02 1988-11-02 Structure for coupling ceramics body of rotation with metallic shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63278112A JPH02127986A (en) 1988-11-02 1988-11-02 Structure for coupling ceramics body of rotation with metallic shaft

Publications (1)

Publication Number Publication Date
JPH02127986A true JPH02127986A (en) 1990-05-16

Family

ID=17592791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63278112A Pending JPH02127986A (en) 1988-11-02 1988-11-02 Structure for coupling ceramics body of rotation with metallic shaft

Country Status (1)

Country Link
JP (1) JPH02127986A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134254A1 (en) * 2009-05-19 2010-11-25 日本特殊陶業株式会社 Spark plug
JP2011141953A (en) * 2010-01-05 2011-07-21 Ngk Spark Plug Co Ltd Spark plug
WO2012032138A1 (en) * 2010-09-09 2012-03-15 Siemens Aktiengesellschaft Method for joining two bars end-on by means of electron beam welding
WO2013138143A1 (en) * 2012-03-15 2013-09-19 Borgwarner Inc. Exhaust-gas turbocharger
WO2016130300A1 (en) * 2015-02-09 2016-08-18 Borgwarner Inc. Method of joining by electron beam or laser welding a turbocharger turbine wheel to a shaft; corresponding turbocharger turbine wheel

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8664844B2 (en) 2009-05-19 2014-03-04 Ngk Spark Plug., Ltd. Spark plug having a substantially columnar electrode tip welded to a component thereof
JP2010272212A (en) * 2009-05-19 2010-12-02 Ngk Spark Plug Co Ltd Spark plug
WO2010134254A1 (en) * 2009-05-19 2010-11-25 日本特殊陶業株式会社 Spark plug
JP2011141953A (en) * 2010-01-05 2011-07-21 Ngk Spark Plug Co Ltd Spark plug
WO2012032138A1 (en) * 2010-09-09 2012-03-15 Siemens Aktiengesellschaft Method for joining two bars end-on by means of electron beam welding
CN103097071A (en) * 2010-09-09 2013-05-08 西门子公司 Method for joining two bars end-on by means of electron beam welding
US9073144B2 (en) 2010-09-09 2015-07-07 Siemens Aktiengesellschaft Method for joining two bars end-on by means of electron beam welding
WO2013138143A1 (en) * 2012-03-15 2013-09-19 Borgwarner Inc. Exhaust-gas turbocharger
CN104145100A (en) * 2012-03-15 2014-11-12 博格华纳公司 Exhaust-gas turbocharger
US9726020B2 (en) 2012-03-15 2017-08-08 Borgwarner Inc. Exhaust-gas turbocharger
WO2016130300A1 (en) * 2015-02-09 2016-08-18 Borgwarner Inc. Method of joining by electron beam or laser welding a turbocharger turbine wheel to a shaft; corresponding turbocharger turbine wheel
CN107206542A (en) * 2015-02-09 2017-09-26 博格华纳公司 The method that turbocharger turbine impeller is engaged in by electron beam or laser welding by axle, corresponding turbocharger turbine impeller
CN107206542B (en) * 2015-02-09 2020-03-03 博格华纳公司 Method for joining a turbocharger turbine wheel to a shaft and resulting assembly
US10603740B2 (en) 2015-02-09 2020-03-31 Borgwarner Inc. Method of joining by electron beam or laser welding a turbocharger turbine wheel to a shaft; corresponding turbocharger turbine wheel

Similar Documents

Publication Publication Date Title
JPH0444632B2 (en)
JPH043129Y2 (en)
US5365661A (en) Ceramic-metal composite joint body
JP3453302B2 (en) Method of joining TiAl alloy member to structural steel and joining parts
KR20020045485A (en) Method of joining different metal materials by friction welding
JP2752768B2 (en) Joint structure of turbine rotor
JPH02127986A (en) Structure for coupling ceramics body of rotation with metallic shaft
JP2531708Y2 (en) Ceramic / metal composite
US20180105914A1 (en) Hybrid component and method of making
JPH0477704B2 (en)
JPH0444631B2 (en)
WO1985001556A1 (en) Built-up cam shaft and method of manufacture thereof
JPS6227380A (en) Method of joining axis of ceramic structure to boss of metalstructure
JP2003088964A (en) Joint structure of ceramics dispersed iron group alloy and its manufacturing method
JPS61152902A (en) Manufacture of turbine impeller made of ceramic with shaft
JP2508823B2 (en) How to connect a ceramic rotor to a metal shaft
JPH0454196Y2 (en)
JPS62119180A (en) Manufacture of ceramic shafted turbine blade
JPH06658A (en) Formation of joint for stainless steel products and different metallic material
JP2536630B2 (en) Method for joining ceramic member and metal member
JP2613599B2 (en) Piston and method of manufacturing the same
JPH052585Y2 (en)
JPH0516192Y2 (en)
JPH063171B2 (en) Ceramic-Metal Friction Welding Body and Ceramic Casting Piston Composed of It
JPS59218286A (en) Welding method of rotor for turbo-charger