JP2536630B2 - Method for joining ceramic member and metal member - Google Patents

Method for joining ceramic member and metal member

Info

Publication number
JP2536630B2
JP2536630B2 JP1204423A JP20442389A JP2536630B2 JP 2536630 B2 JP2536630 B2 JP 2536630B2 JP 1204423 A JP1204423 A JP 1204423A JP 20442389 A JP20442389 A JP 20442389A JP 2536630 B2 JP2536630 B2 JP 2536630B2
Authority
JP
Japan
Prior art keywords
precipitation hardening
filling
metal material
shaft
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1204423A
Other languages
Japanese (ja)
Other versions
JPH0369570A (en
Inventor
秀生 中村
和久 三瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1204423A priority Critical patent/JP2536630B2/en
Publication of JPH0369570A publication Critical patent/JPH0369570A/en
Application granted granted Critical
Publication of JP2536630B2 publication Critical patent/JP2536630B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、セラミック部材と金属部材とを接合する方
法に関し、詳しくは金属部材として析出硬化型合金を使
用するセラミック部材と金属部材との接合方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for joining a ceramic member and a metal member, and more specifically, joining a ceramic member and a metal member using a precipitation hardening alloy as the metal member. Regarding the method.

[従来の技術] 近年、セラミック部材と金属部材とを接合する方法が
種々提案されている。例えば、特開昭62−70275号公報
には、セラミック部材の軸突起部と金属部材の筒状部と
を充填金属材(ろう付け材)を介して嵌合し、荷重をか
けた状態で加熱して充填金属材を溶融充填させ、充填金
属材が凝固した後の冷却過程で金属部材とセラミック部
材の熱膨張係数の差に基づく収縮量の差を利用して焼ば
め応力を発生させる方法が開示されている。また、特開
昭61−40879号公報には、金属部材として析出硬化型合
金を使用し、セラミック部材との結合後析出硬化処理を
施す方法が開示されている。この析出硬化型合金は時効
温度で長時間保持されると過飽和固溶体から溶質が析出
することにより硬化する合金であり、結合力を高く維持
するのに有効である。
[Prior Art] In recent years, various methods for joining a ceramic member and a metal member have been proposed. For example, in Japanese Unexamined Patent Publication No. 62-70275, a shaft protrusion of a ceramic member and a cylindrical portion of a metal member are fitted with each other through a filling metal material (brazing material) and heated under a load. Then, the filling metal material is melted and filled, and shrinkage stress is generated by utilizing the difference in shrinkage amount based on the difference in thermal expansion coefficient between the metal member and the ceramic member in the cooling process after the filling metal material is solidified. Is disclosed. Further, JP-A-61-40879 discloses a method of using a precipitation hardening alloy as a metal member and performing a precipitation hardening treatment after bonding with a ceramic member. This precipitation hardening alloy is an alloy that hardens due to the precipitation of a solute from the supersaturated solid solution when it is held at the aging temperature for a long time, and is effective in maintaining a high binding force.

したがって、セラミック部材の軸突起部に金属部材の
筒状部を焼ばめる際、充填金属材を充填しかつ金属部材
として析出硬化型合金を用いれば、軸突起部と筒状部と
の結合力がさらに高まることが期待される。
Therefore, when the cylindrical protrusion of the metal member is shrink-fitted to the shaft protrusion of the ceramic member, if the filling metal material is filled and a precipitation hardening alloy is used as the metal member, the coupling between the shaft protrusion and the cylindrical member is achieved. It is expected that the power will increase further.

[発明が解決しようとする課題] ところが、かかる手段を採用しても満足すべき結果が
得られないことがわかった。これは、析出硬化型合金よ
りなる筒状部を析出硬化させる前に溶融充填処理を施し
た場合に、溶融した充填金属材が凝固した後の冷却過程
で筒状部に焼ばめ応力が発生し始めることに起因してい
る。すなわち、溶融充填処理後の冷却時には筒状部に焼
ばめ応力が発生するため高温強度が必要となるが、未析
出硬化状態の析出硬化型合金ではこの特性が得られてい
ない。したがって、充填金属材の溶融充填処理後に析出
硬化処理を施しても、溶融充填処理及び析出硬化処理の
双方による結合強度を得ることができない。
[Problems to be Solved by the Invention] However, it has been found that satisfactory results cannot be obtained even if such means is adopted. This is because when the melt filling process is performed before the precipitation hardening of the cylindrical part made of precipitation hardening alloy, shrink fit stress occurs in the cylindrical part in the cooling process after the molten filling metal material is solidified. It is due to starting to. That is, at the time of cooling after the melt-filling treatment, shrinkage stress is generated in the tubular portion, so high-temperature strength is required, but this property is not obtained in the precipitation-hardening alloy in the non-precipitation hardened state. Therefore, even if the precipitation hardening treatment is performed after the melt filling processing of the filled metal material, the bond strength due to both the melt filling processing and the precipitation hardening treatment cannot be obtained.

本発明は、セラミック部材と金属部材との結合力を析
出硬化処理及び溶融充填処理の双方により確実に高める
ことを解決すべき技術課題とするものである。
SUMMARY OF THE INVENTION The present invention provides a technical problem to be solved to reliably increase the bonding force between a ceramic member and a metal member by both precipitation hardening treatment and melt filling treatment.

[課題を解決するための手段] 本発明のセラミック部材と金属部材との接合方法は、
セラミック部材の軸突起部を析出硬化型合金よりなる金
属部材の筒状部に該析出硬化型合金の析出硬化温度より
高い融点をもつ充填金属材を介して嵌合する嵌合工程
と、該充填金属材を融点以上に加熱して、該充填金属材
を該軸突起部と該筒状部との間に溶融充填させる溶融充
填処理工程と、該溶融充填処理工程後の冷却過程中に炉
冷保持して該筒状部を析出硬化させる析出硬化処理工程
とからなることを特徴とする。
[Means for Solving the Problems] The method for joining a ceramic member and a metal member according to the present invention includes:
A fitting step of fitting the shaft projection of the ceramic member into the cylindrical portion of the metal member made of a precipitation hardening alloy through a filling metal material having a melting point higher than the precipitation hardening temperature of the precipitation hardening alloy, and the filling process. A melt-filling treatment step of heating the metal material to a temperature equal to or higher than the melting point to melt-fill the filled metal material between the shaft projection portion and the tubular portion, and a furnace cooling during a cooling process after the melt-filling treatment step. It is characterized by comprising a precipitation hardening treatment step of holding and cylindrically hardening the tubular portion.

本発明の接合方法を構成する嵌合工程は、セラミック
部の軸突起部と析出硬化型合金からなる金属部材の筒状
部とを充填金属材を介して嵌合する工程である。この嵌
合は、例えば軸突起部の外径を筒状部の内径よりも僅か
に大きくし圧入により行うことができる。なお充填金属
材は、軸突起部と筒状部との間に形成される軸方向間
隙、又は軸突起部の外周面あるいは筒状部の内周面に形
成された凹部内等に組付けることができる。
The fitting step constituting the joining method of the present invention is a step of fitting the shaft protrusion of the ceramic part and the tubular part of the metal member made of a precipitation hardening alloy with a filling metal material interposed therebetween. This fitting can be performed, for example, by press fitting the outer diameter of the shaft protrusion slightly larger than the inner diameter of the tubular portion. The filling metal material should be assembled in the axial gap formed between the shaft protrusion and the cylindrical portion, or in the recess formed on the outer peripheral surface of the shaft protrusion or the inner peripheral surface of the cylindrical portion. You can

上記セラミック部材は一端に軸突起部をもち、金属部
材はこの軸突起部に嵌合可能な筒状部をもっている。セ
ラミック部材の材料としてはとくに限定されず、例えば
窒化珪素、炭化珪素、アルミナ等とすることができる。
上記析出硬化合金の種類もとくに限定されず、例えば析
出硬化温度が720℃のインコロイ903、同じく600℃のイ
ンコロイ904等を使用することができる。上記充填金属
材は、上記析出硬化型合金の析出硬化温度より高くかつ
上記析出硬化型合金の融点よりも低い融点をもつものが
使用される。この充填金属材として、例えば銅合金、銀
合金、パラジウム合金、ニッケル合金等を使用すること
ができる。
The ceramic member has a shaft protruding portion at one end, and the metal member has a cylindrical portion that can be fitted into the shaft protruding portion. The material of the ceramic member is not particularly limited, and may be, for example, silicon nitride, silicon carbide, alumina or the like.
The type of the precipitation hardening alloy is not particularly limited, and for example, Incoloy 903 having a precipitation hardening temperature of 720 ° C., Incoloy 904 having the same hardening temperature of 600 ° C. and the like can be used. As the filling metal material, one having a melting point higher than the precipitation hardening temperature of the precipitation hardening alloy and lower than the melting point of the precipitation hardening alloy is used. As the filling metal material, for example, a copper alloy, a silver alloy, a palladium alloy, a nickel alloy or the like can be used.

本発明の接合方法を構成する溶融充填処理工程は、充
填金属材を融点以上に加熱して軸突起部と筒状部との間
に溶融充填させる工程である。融点以上に加熱された充
填金属材は溶融し、その後の冷却過程中の凝固点で凝固
する。この溶融充填処理は、軸突起部と筒状部とが互い
に接近する方向に荷重がかけられた状態で行うことがで
きる。
The melt-filling treatment step constituting the joining method of the present invention is a step of heating the filler metal material to a temperature equal to or higher than the melting point to melt-fill between the shaft protrusion and the tubular portion. The filled metal material heated above the melting point melts and solidifies at the solidification point during the subsequent cooling process. This melt filling process can be performed in a state in which a load is applied in a direction in which the shaft protrusion portion and the tubular portion approach each other.

本発明の接合方法を構成する析出硬化処理工程は、上
記溶融充填処理工程後の冷却途中で所定温度範囲内に所
定時間以上炉冷保持して、上記筒状部を析出し硬化させ
る工程である。これにより、筒状部は過飽和固溶体から
容質が析出することにより硬化して軸突起部との結合に
必要な高温強度を得る。さらに、筒状部と軸突起部の熱
膨張係数の差に基く収縮量の差により焼ばめ応力が発生
し、結合力が高まる。この析出硬化処理は、上記充填金
属材の融点よりも低い析出硬化温度に所定時間以上炉冷
保持することにより行うこともできるし、上記析出硬化
温度近傍の所定温度範囲内に所定時間以上炉冷保持する
ことにより行うこともできる。なお後者の場合、析出硬
化温度から高低100℃以内の温度範囲内とすることが好
ましい。また、上記保持時間は10分以上120分以内とす
ることが好ましい。保持時間が10分よりも短いと析出硬
化が十分に起こらず十分な結合強度が確保されない。ま
た保持時間が120分より長くても得られる結合強度に変
化がない。
The precipitation hardening treatment step that constitutes the joining method of the present invention is a step of precipitating and hardening the tubular portion by keeping the furnace cold in a predetermined temperature range for a predetermined time or more during cooling after the melt filling treatment step. . As a result, the tubular portion is hardened due to the precipitation of the solute from the supersaturated solid solution, and the high temperature strength required for bonding with the shaft protrusion is obtained. Further, due to the difference in shrinkage amount based on the difference in coefficient of thermal expansion between the tubular portion and the shaft projection portion, shrink fit stress is generated, and the binding force is increased. This precipitation hardening treatment can be carried out by keeping the furnace at a precipitation hardening temperature lower than the melting point of the filling metal material for a predetermined time or more, or in a predetermined temperature range near the precipitation hardening temperature for a predetermined time or more. It can also be carried out by holding. In the latter case, it is preferable to set the temperature within a range of 100 ° C. from the precipitation hardening temperature. The holding time is preferably 10 minutes or more and 120 minutes or less. If the holding time is shorter than 10 minutes, sufficient precipitation hardening does not occur and sufficient bond strength cannot be secured. Also, even if the holding time is longer than 120 minutes, the bond strength obtained does not change.

[作用] 本発明のセラミック部材と金属部材との接合方法は、
析出硬化温度より高い融点をもつ充填金属材を介してセ
ラミック部材の軸突起部と析出硬化型金属よりなる筒状
部とを嵌合し、上記充填金属材を融点以上に加熱して溶
融充填させた後、冷却過程中に所定温度に所定時間炉冷
保持して、該筒状部を析出硬化させるものである。した
がって、まず溶融充填処理工程で充填金属材が軸突起部
と筒状部との間に溶融充填され、その後の冷却過程中の
凝固点で、溶融した充填金属材が凝固し、これにより軸
突起部と筒状部とが結合する。さらに、その後の冷却過
程中の析出硬化処理工程で筒状部が析出硬化して軸突起
部との結合に必要な高温強度を得るとともに、軸突起部
と筒状部との間には熱収縮による焼ばめ応力が発生し、
両者の結合力がさらに高まる。
[Operation] The method for joining the ceramic member and the metal member of the present invention is
The shaft protrusion of the ceramic member and the tubular portion made of precipitation hardening metal are fitted through a filling metal material having a melting point higher than the precipitation hardening temperature, and the above filling metal material is heated to a melting point or higher to melt and fill. After that, the furnace is kept at a predetermined temperature for a predetermined time during the cooling process to precipitate and harden the tubular portion. Therefore, first, in the melt filling process, the filling metal material is melt-filled between the shaft projection and the cylindrical portion, and the molten filling metal material is solidified at the freezing point in the subsequent cooling process, whereby the shaft projection is formed. And the tubular portion are joined together. Further, in the subsequent precipitation hardening treatment step during the cooling process, the cylindrical portion is precipitation hardened to obtain the high temperature strength necessary for bonding with the shaft protruding portion, and the heat shrinkage occurs between the shaft protruding portion and the cylindrical portion. Shrinkage stress occurs due to
The bond strength between the two is further increased.

なお、溶融した充填金属が凝固してから筒状部が析出
硬化するまでの温度範囲内においても該筒状部に焼ばめ
応力が発生するが、溶融充填金属の凝固点と析出硬化温
度との差が小さいため上記温度範囲内における焼ばめ応
力の影響は小さい。
Although shrink-fitting stress occurs in the tubular portion even within the temperature range from the solidification of the molten filling metal to the precipitation hardening of the tubular portion, the solidification point of the molten filling metal and the precipitation hardening temperature Since the difference is small, the effect of shrink fit stress in the above temperature range is small.

[実施例] 以下、図面を参照しながら実施例により具体的に説明
する。
[Examples] Hereinafter, specific examples will be described with reference to the drawings.

本実施例は、セラミック製ターボロータシャフトの製
造に本発明を適用したものである。このセラミック製タ
ーボロータシャフトは、第1図に示すように、セラミッ
ク製タービンホイール1と金属スリーブ2と、金属軸3
とから構成されている。セラミック製タービンホイール
1は窒化珪素からなり、軸突起部11がその先端に形成さ
れている。金属スリーブ2は析出硬化型合金であるイン
コロイ903(析出硬化温度720℃)からなり、軸突起部11
と嵌合する筒状部21が形成されている。上記軸突起部11
の外径は12mm、筒状部21の内径は12.2mmである。なお、
筒状部21の内周面には、該筒状部21に対する充填金属材
4(後述する)の濡れ性を向上させるための銅メッキが
施されている。また、第2図は本実施例の接合方法の各
処理の加熱パターンを示すグラフである。
The present embodiment applies the present invention to the manufacture of a ceramic turbo rotor shaft. As shown in FIG. 1, the ceramic turbo rotor shaft includes a ceramic turbine wheel 1, a metal sleeve 2, and a metal shaft 3.
It consists of and. The ceramic turbine wheel 1 is made of silicon nitride and has a shaft projection 11 formed at its tip. The metal sleeve 2 is made of precipitation hardenable alloy Incoloy 903 (precipitation hardening temperature 720 ° C.), and the shaft projection 11
A tubular portion 21 that fits with is formed. The shaft protrusion 11
Has an outer diameter of 12 mm and an inner diameter of the tubular portion 21 of 12.2 mm. In addition,
Copper plating is applied to the inner peripheral surface of the tubular portion 21 to improve the wettability of the filling metal material 4 (described later) with respect to the tubular portion 21. Further, FIG. 2 is a graph showing a heating pattern of each treatment of the joining method of this embodiment.

(嵌合工程) 筒状部21の開口内周端面に形成された凹部22に銀ろう
BAg−8(融点780℃)よりなる充填金属材4を組付けた
状態で、軸突起部11と筒状部21とを嵌合した。
(Fitting process) Silver brazing is applied to the concave portion 22 formed on the inner peripheral end surface of the opening of the tubular portion 21.
The shaft protrusion 11 and the tubular portion 21 were fitted together with the filler metal material 4 made of BAg-8 (melting point 780 ° C.) assembled.

(溶融充填処理工程) このように一体となったものを図示しない治具にセッ
トし、軸突起部11に筒状部21を押しつけるように荷重を
負荷した状態で真空炉に入れて850℃の温度で60分間保
持し、充填金属材4を溶融させて軸突起部11と筒状部21
との間に充填した。
(Melting and filling process step) The thus-integrated unit is set in a jig (not shown), placed in a vacuum furnace with a load applied so as to press the tubular portion 21 against the shaft protrusion 11 and placed at 850 ° C. Hold at the temperature for 60 minutes to melt the filling metal material 4 to make the shaft projection 11 and the tubular portion 21
Filled between and.

(析出硬化処理工程) その後真空炉内で炉冷保持し、第2図に示すように、
720〜620℃(第2図中、Tで示される範囲)の温度範囲
で10分間保持されるように、約30分かけて620℃まで冷
却した。このとき、まず上記充填金属材4の凝固点(78
0℃)以下の温度になると、溶融した充填金属材4は凝
固し、軸突起部11と筒状部21とを結合させる。そして、
720〜620℃の温度範囲では、筒状部21は過飽和固溶体か
ら溶質が析出することにより硬化して軸突起部11との結
合に必要な高温強度を得る。さらに、軸突起部11と筒状
部21の熱膨張係数の差に基く収縮量の差により焼ばめ応
力が発生し、軸突起部11と筒状部21との結合力が高ま
る。
(Precipitation hardening treatment step) After that, the furnace is kept cold in a vacuum furnace, and as shown in FIG.
It was cooled to 620 ° C. over about 30 minutes so that it was kept at a temperature range of 720 to 620 ° C. (range indicated by T in FIG. 2) for 10 minutes. At this time, first, the freezing point (78
When the temperature becomes 0 ° C. or lower, the molten filling metal material 4 is solidified, and the shaft protruding portion 11 and the tubular portion 21 are bonded. And
In the temperature range of 720 to 620 ° C., the tubular portion 21 is hardened due to the precipitation of the solute from the supersaturated solid solution, and the high temperature strength required for bonding with the shaft projection 11 is obtained. Further, a shrink fit stress is generated due to a difference in shrinkage amount based on a difference in thermal expansion coefficient between the shaft protrusion portion 11 and the tubular portion 21, and a coupling force between the shaft protrusion portion 11 and the tubular portion 21 is increased.

その後、真空炉内にアルゴンガスを導入し冷却ファン
を用いて60分かけて常温まで強制冷却した。
After that, argon gas was introduced into the vacuum furnace and forced cooling to normal temperature was performed for 60 minutes using a cooling fan.

以上のようにしてセラミック製タービンホイール1と
金属スリーブ2とを接合した後、金属スリーブ2にクロ
ム鋼よりなる金属軸3を電子ビーム溶接5し、機械加工
にて仕上げを施してセラミック製ターボロータシャフト
を製造した。このシャフトについて排気ガス温度950℃
にて高温高速回転試験を実施した結果、18万r.p.m.にお
いても破壊が生じることなく、良好に結合していること
が確認された。
After joining the ceramic turbine wheel 1 and the metal sleeve 2 as described above, a metal shaft 3 made of chrome steel is electron beam welded 5 to the metal sleeve 2 and finished by machining to make a ceramic turbo rotor. The shaft was manufactured. About this shaft Exhaust gas temperature 950 ℃
As a result of a high-temperature high-speed rotation test conducted at, it was confirmed that there was no breakage even at 180,000 rpm and that good bonding was achieved.

(試験例) 上記実施例における、析出硬化処理温度(720〜620
℃)の保持時間Tを種々変え、この保持時間Tと金属ス
リーブ2の硬さとの関係を調べた。その結果を第3図に
示す。さらに、上記保持時間Tを種々変え、上記実施例
と同様に製造したセラミック製ターボロータシャフトを
高温ネジリ試験機にかけ、結合部の500℃における高温
ネジリ強度を測定し、高温ネジリ強度と金属スリーブ2
の硬さとの関係を調べた。その結果を第4図に示す。
(Test Example) In the above example, the precipitation hardening treatment temperature (720 to 620
The holding time T of (° C.) was variously changed, and the relationship between the holding time T and the hardness of the metal sleeve 2 was investigated. FIG. 3 shows the results. Further, the holding time T was variously changed, and the ceramic turbo rotor shaft manufactured in the same manner as in the above-mentioned embodiment was subjected to a high temperature twist tester to measure the high temperature twist strength of the joint at 500 ° C.
I investigated the relationship with the hardness. The results are shown in FIG.

第3図及び第4図からもわかるように、保持時間Tを
10分以上にすることにより金属スリーブ2の硬度は280
〜380Hvとなり、金属スリーブ2の硬度が280Hv以上あれ
ば十分な結合強度が得られる。したがって、析出硬化処
理における保持時間Tを10分以上とすることにより、十
分な結合強度が確保できる。なお、保持時間Tを10分よ
り長くしても金属スリーブ2の硬度は高くならなかっ
た。
As can be seen from FIGS. 3 and 4, the holding time T
The hardness of the metal sleeve 2 is 280 by making it 10 minutes or more.
If the hardness of the metal sleeve 2 is 280 Hv or more, sufficient bond strength can be obtained. Therefore, by setting the holding time T in the precipitation hardening treatment to 10 minutes or more, sufficient bond strength can be secured. Even if the holding time T was set longer than 10 minutes, the hardness of the metal sleeve 2 did not increase.

[発明の効果] 以上詳述したように、本発明のセラミック部材と金属
部材との接合方法では、析出硬化温度以上の融点をもつ
充填金属材がセラミック部材の軸突起部と金属部材の筒
状部との間に溶融充填され、その後の冷却過程中の凝固
点で、溶融した充填金属材が凝固し、これにより軸突起
部と筒状部とが結合する。さらに、その後の冷却過程中
の析出硬化工程で筒状部が析出硬化して軸突起部との結
合に必要な高温強度を得るとともに、軸突起部と筒状部
との間には熱収縮による焼ばめ応力が発生し、両者の結
合力がさらに高まる。
[Effects of the Invention] As described in detail above, in the method for joining a ceramic member and a metal member according to the present invention, the filling metal material having a melting point equal to or higher than the precipitation hardening temperature is the axial projection of the ceramic member and the tubular shape of the metal member. The molten metal material is melt-filled between the shaft projection and the tubular portion at the solidification point during the subsequent cooling process. Furthermore, in the subsequent precipitation hardening step during the cooling process, the cylindrical portion is precipitation hardened to obtain the high temperature strength necessary for bonding with the shaft protruding portion, and heat shrinkage occurs between the shaft protruding portion and the cylindrical portion. Shrinkage stress is generated and the binding force between the two is further increased.

したがって、本発明の接合方法は溶融充填処理後の冷
却過程中に析出硬化処理を行うものであるから、充填金
属材の融点が析出硬化温度より高い場合でも結合強度が
低下することなく、溶融充填処理及び析出硬化処理の双
方により、上記軸突起部と筒状部とを確実に接合するこ
とが可能となる。
Therefore, since the joining method of the present invention performs the precipitation hardening treatment during the cooling process after the melt filling processing, the bond strength does not decrease even when the melting point of the filled metal material is higher than the precipitation hardening temperature, and the melt filling is performed. By both the treatment and the precipitation hardening treatment, it becomes possible to reliably join the shaft protrusion and the tubular portion.

また、溶融充填処理工程後に炉冷しているため、セラ
ミック部材に対し急激に熱応力が作用することもなく、
該熱応力が原因で発生するクラックを防止することがで
きる。
Moreover, since the furnace is cooled after the melt filling process, thermal stress does not suddenly act on the ceramic member,
It is possible to prevent cracks caused by the thermal stress.

【図面の簡単な説明】[Brief description of drawings]

第1図は本実施例の接合方法により得られたセラミック
製ターボロータシャフトの部分断面図、第2図は上記接
合方法の各処理工程の加熱パターンを示すグラフ、第3
図は析出硬化処理工程の保持時間Tと金属スリーブの硬
度との関係を示すグラフ、第4図は高温ネジリ強度と金
属スリーブの硬度との関係を示すグラフである。 1…セラミック製タービンホイール 2…金属スリーブ、3…金属軸 4…充填金属材、11…軸突起部 21…筒状部
FIG. 1 is a partial cross-sectional view of a ceramic turbo rotor shaft obtained by the joining method of this embodiment, FIG. 2 is a graph showing a heating pattern in each treatment step of the joining method, and FIG.
FIG. 4 is a graph showing the relationship between the holding time T in the precipitation hardening treatment step and the hardness of the metal sleeve, and FIG. 4 is a graph showing the relationship between the high temperature torsion strength and the hardness of the metal sleeve. DESCRIPTION OF SYMBOLS 1 ... Ceramic turbine wheel 2 ... Metal sleeve, 3 ... Metal shaft 4 ... Filling metal material, 11 ... Shaft protrusion 21 ... Cylindrical part

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】セラミック部材の軸突起部を析出硬化型合
金よりなる金属部材の筒状部に該析出硬化型合金の析出
硬化温度より高い融点をもつ充填金属材を介して嵌合す
る嵌合工程と、 該充填金属材を融点以上に加熱して、該充填金属材を該
軸突起部と該筒状部との間に溶融充填させる溶融充填処
理工程と、 該溶融充填処理工程後の冷却過程中に炉冷保持して該筒
状部を析出硬化させる析出硬化処理工程とからなること
を特徴とするセラミック部材と金属部材との接合方法。
1. A fitting for fitting a shaft projection of a ceramic member to a cylindrical portion of a metal member made of a precipitation hardening alloy through a filling metal material having a melting point higher than the precipitation hardening temperature of the precipitation hardening alloy. A melt filling treatment step of heating the filling metal material to a temperature equal to or higher than the melting point so as to melt-fill the filling metal material between the shaft protrusion and the cylindrical portion, and cooling after the melting filling treatment step. A method for joining a ceramic member and a metal member, which comprises a precipitation hardening treatment step of holding the furnace cold during the process to precipitate and harden the tubular portion.
JP1204423A 1989-08-07 1989-08-07 Method for joining ceramic member and metal member Expired - Lifetime JP2536630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1204423A JP2536630B2 (en) 1989-08-07 1989-08-07 Method for joining ceramic member and metal member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1204423A JP2536630B2 (en) 1989-08-07 1989-08-07 Method for joining ceramic member and metal member

Publications (2)

Publication Number Publication Date
JPH0369570A JPH0369570A (en) 1991-03-25
JP2536630B2 true JP2536630B2 (en) 1996-09-18

Family

ID=16490296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1204423A Expired - Lifetime JP2536630B2 (en) 1989-08-07 1989-08-07 Method for joining ceramic member and metal member

Country Status (1)

Country Link
JP (1) JP2536630B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497967A (en) * 1990-08-09 1992-03-30 Ngk Spark Plug Co Ltd Production of ceramic-precipitation hardening alloy united body
JP2003097213A (en) * 2001-09-25 2003-04-03 Kyocera Corp Ceramic turbine rotor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270275A (en) * 1985-09-25 1987-03-31 本田技研工業株式会社 Method for bonding ceramic rotor and metal rotary shaft

Also Published As

Publication number Publication date
JPH0369570A (en) 1991-03-25

Similar Documents

Publication Publication Date Title
US7156282B1 (en) Titanium-aluminide turbine wheel and shaft assembly, and method for making same
JP3308973B2 (en) Rotor manufacturing method for asynchronous motor, rotor manufactured by the method, and rotor manufacturing apparatus for asynchronous motor
JPS63251127A (en) Combined construction of members with different thermal expansion and combining method thereof
US6899522B2 (en) Method for manufacturing a turbine wheel rotor
JP2002178167A (en) Joining method for ti alloy and ti-al-base intermetallic compound and engine valve formed by this method
JP2536630B2 (en) Method for joining ceramic member and metal member
JPH05347122A (en) Brazed x-ray tube anode
JPH01176284A (en) Conjugate of metal and ceramics
JP2508823B2 (en) How to connect a ceramic rotor to a metal shaft
JPS60201002A (en) Turbine rotor
JP2883223B2 (en) Method of joining ceramic member and metal member
JP3179928B2 (en) Bonded body, bonded body thereof and ceramics, and methods of manufacturing them
JPH02127986A (en) Structure for coupling ceramics body of rotation with metallic shaft
JP2003097213A (en) Ceramic turbine rotor
JPS61202771A (en) Production of cam shaft
JP2822405B2 (en) Method of joining ceramic rotor and metal shaft
JPH0233677B2 (en) CHITSUKAKEISOSERAMITSUKUSUTOKINZOKUTONOSETSUGOHOHO
JPS59227781A (en) Ceramic metal bonding method
JPS61146424A (en) Jointing of ceramics and metal
JPH04198069A (en) Bonding of combination body of ceramics and metal
JP4292100B2 (en) Manufacturing method of cylinder head with valve seat
JPS638273A (en) Method of joining ceramic member to metal member
JPH0354174A (en) Bonding of ceramic part and metallic part and bonded product
JPS62168658A (en) Rotor for turbocharger and its production
JPH01215769A (en) Production of ceramic-metal coupled body