JPH0369570A - Method for joining ceramic member and metallic member - Google Patents

Method for joining ceramic member and metallic member

Info

Publication number
JPH0369570A
JPH0369570A JP20442389A JP20442389A JPH0369570A JP H0369570 A JPH0369570 A JP H0369570A JP 20442389 A JP20442389 A JP 20442389A JP 20442389 A JP20442389 A JP 20442389A JP H0369570 A JPH0369570 A JP H0369570A
Authority
JP
Japan
Prior art keywords
precipitation hardening
filling
precipitation
ceramic member
metal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20442389A
Other languages
Japanese (ja)
Other versions
JP2536630B2 (en
Inventor
Hideo Nakamura
秀生 中村
Kazuhisa Sanpei
和久 三瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1204423A priority Critical patent/JP2536630B2/en
Publication of JPH0369570A publication Critical patent/JPH0369570A/en
Application granted granted Critical
Publication of JP2536630B2 publication Critical patent/JP2536630B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the bonding strength of a ceramic member and a metallic member by fitting the shaft projecting part of the ceramic member via a specific packing metallic member to a cylindrical part consisting of a precipitation hardening type alloy and subjecting the members to a melt packing treatment and a precipitation hardening treatment. CONSTITUTION:The shaft projecting part 11 of the ceramic member 1, such as turbine wheel made of silicon nitride, is fitted to the metallic sleeve 2 consisting of the precipitation hardening type metal [e.g: 'Incolloy 903(R)' (720 deg.C precipitation hardening temp.)] via the packing metallic material 4 having the m.p. higher than the m. p. of the precipitation hardening temp. [e.g: silver solder BAg-8 (780 deg.C m. p.)]. The packing metallic member 4 is heated to the m. p. or above and is melted and packed between the members; thereafter, the members are cooled and held to a prescribed temp. for a prescribed period of time during the cooling process, in the case of, for example, the above- mentioned example, the member is held for 10 minutes in a 720 to 680 deg.C range and is cooled down to 620 deg.C by spending 30 minutes to cause the precipitation hardening of the sleeve 2.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、セラミック部材と金属部材とを接合する方法
に関し、詳しくは金属部材として析出硬化型合金を使用
するセラミック部材と金属部材との接合方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for joining a ceramic member and a metal member, and more specifically, a method for joining a ceramic member and a metal member using a precipitation hardening alloy as the metal member. Regarding the method.

[従来の技術] 近年、セラミック部材と金属部材とを接合する方法が種
々提案されている。例えば、特開昭6270275号公
報には、セラミック部材の軸突起部と金属部材の筒状部
とを充填金属材(ろう付は材〉を介して嵌合し、荷重を
かけた状態で加熱して充填金属材を溶融充填させ、充填
金属材が凝固した後の冷却過程で金属部材とセラミック
部材の熱膨張係数の差に基づく収縮量の差を利用して焼
ばめ応力を発生させる方法が開示されている。
[Prior Art] In recent years, various methods for joining ceramic members and metal members have been proposed. For example, in Japanese Patent Application Laid-open No. 6270275, a shaft protrusion of a ceramic member and a cylindrical part of a metal member are fitted through a filling metal material (brazing is a material), and heated under a load. There is a method in which the filler metal material is melted and filled, and in the cooling process after the filler metal material solidifies, shrink fit stress is generated by utilizing the difference in the amount of shrinkage based on the difference in thermal expansion coefficient between the metal member and the ceramic member. Disclosed.

また、特開昭61−40879号公報には、金属部材と
して析出硬化型合金を使用し、セラミック部材との結合
後析出硬化処理を施す方法が開示されている。この析出
硬化型合金は時効温度で長時間保持されると過飽和固溶
体から溶質が析出することにより硬化する合金であり、
結合力を高く維持するのに有効である。
Further, Japanese Patent Application Laid-Open No. 61-40879 discloses a method in which a precipitation hardening type alloy is used as a metal member and a precipitation hardening treatment is performed after bonding with a ceramic member. This precipitation-hardening alloy is an alloy that hardens by precipitation of solute from a supersaturated solid solution when kept at aging temperature for a long time.
It is effective in maintaining high bonding strength.

したがって、セラミック部材の軸突起部に金属部材の筒
状部を焼ばめる際、充填金属材を充填しかつ金属部材と
して析出硬化型合金を用いれば、軸突起部と筒状部との
結合力がさらに高まることが期待される。
Therefore, when the cylindrical part of a metal member is shrink-fitted to the shaft protrusion of a ceramic member, if a filler metal material is filled and a precipitation hardening alloy is used as the metal member, the joint between the shaft protrusion and the cylindrical part can be improved. It is expected that the power will further increase.

[発明が解決しようとする課題] ところが、かかる手段を採用しても満足づ−べき結果が
得られないことがわかった。これは、析出硬化型合金よ
りなる筒状部を析出硬化させる前に溶融充填処理を施し
た場合に、溶融した充填金属材か凝固した後の冷却過程
で筒状部に焼ばめ応力が発生し始めることに起因してい
る。すなわち、溶融充填処理後の冷却時には筒状部に焼
ばめ応力が発生するため高温強度が必要となるが、未析
出硬化状態の析出硬化型合金ではこの特性が得られてい
ない。したがって、充填金属材の溶融充填処理後に析出
硬化処理を施しても、溶融充填処理及び析出硬化処理の
双方による結合強度を得ることができない。
[Problems to be Solved by the Invention] However, it has been found that even if such means are adopted, satisfactory results cannot be obtained. This is because when a cylindrical part made of a precipitation hardening alloy is melt-filled before precipitation hardening, shrink fit stress is generated in the cylindrical part during the cooling process after the molten filler metal solidifies. This is due to the fact that it begins to occur. That is, during cooling after melt-filling treatment, shrink fit stress is generated in the cylindrical portion, so high-temperature strength is required, but this property is not obtained in precipitation-hardened alloys in a non-precipitation-hardened state. Therefore, even if the precipitation hardening treatment is performed after the melt filling treatment of the filler metal material, the bonding strength obtained by both the melt filling treatment and the precipitation hardening treatment cannot be obtained.

本発明は、セラミック部材と金属部材との結合力を析出
硬化処理及び溶融充填処理の双方により確実に高めるこ
とを解決すべき技術課題とするものである。
The technical problem to be solved by the present invention is to reliably increase the bonding strength between a ceramic member and a metal member by both precipitation hardening treatment and melt filling treatment.

[課題を解決するための手段」 本発明のセラミック部材と金属部材との接合方法は、セ
ラミック部材の軸突起部を析出硬化型合金よりなる金属
部材の筒状部に該析出硬化型合金の析出硬化温度より高
い融点をもつ充填金属材を介して嵌合する嵌合工程と、
該充填金属材を融点以上に加熱して、該充填金属材を該
軸突起部と該筒状部との間に溶融充填させる溶融充填処
理工程と、該溶融充填処理工程後の冷却過程中に炉冷保
持して該筒状部を析出硬化させる析出硬化処理工程とか
らなることを特徴とする。
[Means for Solving the Problems] The method of joining a ceramic member and a metal member of the present invention involves attaching a shaft protrusion of a ceramic member to a cylindrical portion of a metal member made of a precipitation hardening alloy by depositing the precipitation hardening alloy. a fitting step of fitting through a filler metal material having a melting point higher than the curing temperature;
A melt filling treatment step in which the filling metal material is heated above its melting point to melt and fill the filling metal material between the shaft protrusion and the cylindrical portion, and a cooling step after the melt filling treatment step. The cylindrical part is precipitation hardened by keeping it cool in a furnace.

本発明の接合方法を構成する嵌合工程は、セラミック部
の軸突起部と析出硬化型合金からなる金属部材の筒状部
とを充填金属材を介して嵌合する工程である。この嵌合
は、例えば軸突起部の外径を筒状部の内径よりも僅かに
大きくし圧入により行うことができる。なお充填金属材
は、軸突起部と筒状部との間に形成される軸方向間隙、
又は軸突起部の外周面あるいは筒状部の内周面に形成さ
れた凹部内等に組付けることができる。
The fitting step constituting the joining method of the present invention is a step of fitting the shaft protrusion of the ceramic part and the cylindrical part of the metal member made of a precipitation hardening alloy via a filler metal material. This fitting can be achieved, for example, by making the outer diameter of the shaft protrusion slightly larger than the inner diameter of the cylindrical part and press-fitting it. Note that the filling metal material fills the axial gap formed between the shaft protrusion and the cylindrical part,
Alternatively, it can be assembled into a recess formed on the outer circumferential surface of the shaft protrusion or the inner circumferential surface of the cylindrical portion.

上記セラミック部材は一端に軸突起部をもち、金属部材
はこの軸突起部に嵌合可能な筒状部をもっている。セラ
ミック部材の材料としてはとくに限定されず、例えば窒
化珪素、炭化珪素、アルミナ等とすることができる。上
記析出硬化合金の種類もとくに限定されず、例えば析出
硬化温度が720’Cのインコロイ903、同じ<60
0’Cのインコロイ904等を使用することができる。
The ceramic member has a shaft projection at one end, and the metal member has a cylindrical portion that can fit into the shaft projection. The material of the ceramic member is not particularly limited, and may be, for example, silicon nitride, silicon carbide, alumina, or the like. The type of the precipitation hardening alloy is not particularly limited, and for example, Incoloy 903 with a precipitation hardening temperature of 720'C,
0'C Incoloy 904 or the like can be used.

上記充填金属材は、上記析出硬化型合金の析出硬化温度
より高くかつ上記析出硬化型合金の融点よりも低い融点
をもつものが使用される。この充填金属材として、例え
ば銅合金、銀合金、パラジウム合金、ニッケル合金等を
使用することができる。
The filler metal material used has a melting point higher than the precipitation hardening temperature of the precipitation hardenable alloy and lower than the melting point of the precipitation hardenable alloy. As this filling metal material, for example, copper alloy, silver alloy, palladium alloy, nickel alloy, etc. can be used.

本発明の接合方法を構成する溶融充填処理工程は、充填
金属材を融点以上に加熱して軸突起部と筒状部との間に
溶融充填させる工程である。融点以上に加熱された充填
金属材は溶融し、その後の冷却過程中の凝固点で凝固す
る。この溶融充填処理は、軸突起部と筒状部とが互いに
接近する方向に荷重がかけられた状態で行うことができ
る。
The melt-filling treatment step constituting the joining method of the present invention is a step in which the filling metal material is heated above its melting point and melted and filled between the shaft protrusion and the cylindrical portion. The filling metal material heated above the melting point melts and solidifies at the freezing point during the subsequent cooling process. This melt-filling process can be performed in a state where a load is applied in a direction in which the shaft protrusion and the cylindrical part approach each other.

本発明の接合方法を構成する析出硬化処理工程は、上記
溶融充填処理工程後の冷却途中で所定温度範囲内に所定
時間以上炉冷保持して、上記筒状部を析出硬化させる工
程である。これにより、筒状部は過飽和固溶体から溶質
が析出することにより硬化して軸突起部との結合に必要
な高温強度を得る。ざらに、筒状部と軸突起部の熱膨張
係数の差に基く収縮量の差により焼ばめ応力が発生し、
結合力が高まる。この析出硬化処理は、上記充填金属材
の融点よりも低い析出硬化温度に所定時間以上炉冷保持
することにより行うこともできるし、上記析出硬化温度
近傍の所定温度範囲内に所定時間以上炉冷保持すること
により行うこともできる。
The precipitation hardening treatment step constituting the joining method of the present invention is a step of precipitation hardening the cylindrical portion by keeping the tube cool within a predetermined temperature range for a predetermined period of time or more during cooling after the melt-filling treatment step. As a result, the cylindrical portion is hardened by precipitation of the solute from the supersaturated solid solution, thereby obtaining the high-temperature strength necessary for bonding with the shaft protrusion. Roughly speaking, shrink fit stress is generated due to the difference in the amount of shrinkage based on the difference in the coefficient of thermal expansion between the cylindrical part and the shaft protrusion.
Increases bonding strength. This precipitation hardening treatment can be carried out by keeping the furnace cooled at a precipitation hardening temperature lower than the melting point of the filling metal material for a predetermined period of time or more, or by keeping the furnace cooling within a predetermined temperature range near the precipitation hardening temperature for a predetermined period of time or more. This can also be done by holding.

なお後者の場合、析出硬化温度から高低100’C以内
の温度範囲内とすることが好ましい。また、上記保持時
間は]0分以上120分以内とすることが好ましい。保
持時間が10分よりも短いと析出硬化が十分に起こらず
十分な結合強度が確保されない。また保持時間が120
分より長くても得られる結合強度に変化がない。
In the latter case, the temperature is preferably within 100'C of the precipitation hardening temperature. Further, the above-mentioned holding time is preferably from 0 minutes to 120 minutes. If the holding time is shorter than 10 minutes, precipitation hardening will not occur sufficiently and sufficient bond strength will not be ensured. Also, the retention time is 120
There is no change in the bond strength obtained even if the time is longer than 1 minute.

[作用] 本発明のセラミック部材と金属部材との接合方法は、析
出硬化温度より高い融点をもつ充填金属材を介してセラ
ミック部材の軸突起部と析出硬化型金属よりなる筒状部
とを嵌合し、上記充填金属材を融点以上に加熱して溶融
充填させた後、冷却過程中に所定温度に所定時間炉冷保
持して、該筒状部を析出硬化させるものである。したが
って、まず溶融充填処理工程で充填金属材が軸突起部と
筒状部との間に溶融充填され、その後の冷却過程中の凝
固点で、溶融した充填金属(Aが凝固し、これにまり軸
突起部と筒状部とが結合する。さらに、その後の冷却過
程中の析出硬化処理工程で筒状部が析出硬化して軸突起
部との結合に必要な高温強度を得るとともに、軸突起部
と筒状部との間には熱収縮による焼ばめ応力が発生し、
両者の結合力がさらに高まる。
[Function] The method of joining a ceramic member and a metal member of the present invention involves fitting the shaft protrusion of the ceramic member and the cylindrical part made of a precipitation hardening metal via a filling metal material having a melting point higher than the precipitation hardening temperature. After heating the filling metal material above its melting point to melt and fill the filling metal material, the cylindrical portion is hardened by precipitation by being kept in a furnace at a predetermined temperature during the cooling process for a predetermined period of time. Therefore, the filler metal material is first melted and filled between the shaft protrusion and the cylindrical part in the melt-filling process, and then at the solidification point during the cooling process, the molten filler metal (A) solidifies and becomes stuck to the shaft. The protrusion and the cylindrical part are bonded together.Furthermore, the cylindrical part undergoes precipitation hardening during the subsequent cooling process to obtain the high temperature strength necessary for bonding with the shaft protrusion. Shrink fit stress occurs between the cylindrical part and the cylindrical part due to thermal contraction,
The bond between the two will further increase.

なお、溶融した充填金属が凝固してから筒状部が析出硬
化するまでの温度範囲内においても該筒状部に焼ばめ応
力が発生ずるが、溶融充填金属の凝固点と析出硬化温度
との差が小さいため上記温度範囲内における焼ばめ応力
の影響は小さい。
Note that shrink fit stress occurs in the cylindrical part even within the temperature range from when the molten filler metal solidifies until the cylindrical part undergoes precipitation hardening, but the difference between the freezing point of the molten filler metal and the precipitation hardening temperature Since the difference is small, the influence of shrink fit stress within the above temperature range is small.

[実施例] 以下、図面を参照しながら実施例により具体的に説明す
る。
[Examples] Hereinafter, examples will be specifically described with reference to the drawings.

本実施例は、セラミック製ターボロータシャフトの製造
に本発明を適用したものである。このセラミック製ター
ボロータシャフトは、第1図に示すように、セラミック
製タービンホイール1と金属スリーブ2と、金属軸3と
から構成されている。
In this example, the present invention is applied to the manufacture of a ceramic turbo rotor shaft. As shown in FIG. 1, this ceramic turbo rotor shaft is composed of a ceramic turbine wheel 1, a metal sleeve 2, and a metal shaft 3.

セラミック製タービンホイール1は窒化珪素がらなり、
軸突起部11がその先端に形成されている。
The ceramic turbine wheel 1 is made of silicon nitride,
A shaft protrusion 11 is formed at its tip.

金属スリーブ2は析出硬化型合金であるインコロイ90
3(析出硬化温度720’C)がらなり、軸突起部11
と嵌合する筒状部21が形成されている。上記軸突起部
11の外径は12mm、筒状部21の内径は12.2m
mである。なお、筒状部21の内周面には、該筒状部2
1に対する充填金属材4(後述する)の濡れ性を向上さ
せるための銅メツキが施されている。また、第2図は本
実施例の接合方法の各処理のb0熱パターンを示ずグラ
フである。
The metal sleeve 2 is made of Incoloy 90, which is a precipitation hardening alloy.
3 (precipitation hardening temperature 720'C), the shaft protrusion 11
A cylindrical portion 21 is formed which fits into the cylindrical portion 21 . The outer diameter of the shaft protrusion 11 is 12 mm, and the inner diameter of the cylindrical portion 21 is 12.2 m.
It is m. Note that on the inner peripheral surface of the cylindrical portion 21, the cylindrical portion 2
Copper plating is applied to improve the wettability of filler metal material 4 (described later) to 1. Further, FIG. 2 is a graph that does not show the b0 thermal patterns of each process in the bonding method of this example.

〈嵌合工程〉 筒状部21の開口内周端面に形成された凹部22に銀ろ
うBAQ−8(融点780’C)よりなる充填金属相4
を組付けた状態で、軸突起部1]と筒状部21とを嵌合
した。
<Fitting process> Filling metal phase 4 made of silver solder BAQ-8 (melting point 780'C) is filled in the recess 22 formed on the inner peripheral end surface of the opening of the cylindrical part 21.
In the assembled state, the shaft protrusion 1] and the cylindrical part 21 were fitted together.

(溶融充填処理工程) このように一体となったものを図示しない治具にセラ1
〜し、l’lll突起部11に筒状部21を押しっける
ように荷重を負荷した状態で真空炉に入れて850’C
の温度で60分間保持し、充填金属材4を溶融させて軸
突起部11と筒状部21との間に充填した。
(Melting filling process) Place the integrated product in a jig (not shown) with Cera 1.
~ Then, a load was applied to push the cylindrical part 21 onto the l'llll protrusion 11, and then it was placed in a vacuum furnace and heated to 850'C.
The filling metal material 4 was melted and filled between the shaft protrusion 11 and the cylindrical part 21.

(析出硬化処理工程) その後真空炉内で炉冷保持し、第2図に示すように、7
20〜620’C(第2図中、Tで示される範囲)の温
度範囲で10分間保持されるように、約30分かけて6
20’Cまで冷却した。このとき、まず上記充填金属材
4の凝固点(780’C)以下の温度になると、溶融し
た充填金属材4は凝固し、軸突起部11と筒状部21と
を結合させる。そして、720〜620’Cの温度範囲
では、筒状部21は過飽和固溶体から溶質が析出するこ
とにより硬化して軸突起部11との結合に必要な高温強
度を得る。ざらに、軸突起部11と筒状部21の熱膨張
係数の差に基く収縮量の差により焼ばめ応力が発生し、
軸突起部11と筒状部21との結合力が高まる。
(Precipitation hardening process) After that, the furnace is kept cool in a vacuum furnace, and as shown in Fig. 2,
6 for about 30 minutes so that the temperature range is 20 to 620'C (range indicated by T in Figure 2) for 10 minutes.
Cooled to 20'C. At this time, when the temperature first reaches below the freezing point (780'C) of the filling metal material 4, the molten filling metal material 4 solidifies and joins the shaft protrusion 11 and the cylindrical part 21. In a temperature range of 720 to 620'C, the cylindrical part 21 hardens due to the precipitation of solute from the supersaturated solid solution and obtains the high-temperature strength necessary for bonding with the shaft protrusion 11. Roughly speaking, shrink fit stress is generated due to the difference in shrinkage amount based on the difference in thermal expansion coefficient between the shaft protrusion 11 and the cylindrical part 21.
The bonding force between the shaft protrusion 11 and the cylindrical portion 21 is increased.

その後、真空炉内にアルゴンガスを導入し冷却ファンを
用いて60分かけて常温まで強制冷却した。
Thereafter, argon gas was introduced into the vacuum furnace, and the mixture was forcibly cooled down to room temperature over 60 minutes using a cooling fan.

以上のようにしてセラミック製タービンホイル1と金属
スリーブ2とを接合した後、金属スリブ2にクロム鋼よ
りなる金属軸3を電子ビーム溶接5し、機械加工にて仕
上げを施してセラミック製ターボロータシャフトを製造
した。このシャフトについて排気ガス温度950’Cに
て高温高速回転試験を実施した結果、18万r、p、m
、に]O おいても破壊が生じることなく、良好に結合しているこ
とか確認された。
After joining the ceramic turbine wheel 1 and the metal sleeve 2 as described above, a metal shaft 3 made of chrome steel is electron beam welded 5 to the metal sleeve 2, and finished by machining to form a ceramic turbo rotor. Manufactured the shaft. As a result of conducting a high-temperature, high-speed rotation test on this shaft at an exhaust gas temperature of 950'C, the results were 180,000 r, p, m.
It was confirmed that good bonding was observed without any breakage even under the conditions of [O2].

(試験例) 上記実施例における、析出硬化処理温度(720〜62
0 ’C)の保持時間下を種々変え、この保持時間下と
金属スリーブ2の硬さとの関係を調べた。その結果を第
3図に示ず。さらに、上記保持時間下を種々変え、上記
実施例と同様に製造したセラミック製ターボ[1−タシ
V71〜を高温ネジリ試験機にかけ、結合部の500℃
における高温ネジリ強度を測定し、高温ネジリ強度と金
属スリブ2の硬さとの関係を調べた。その結果を第4図
にボす。
(Test Example) Precipitation hardening treatment temperature (720 to 62
The holding time at 0'C) was varied and the relationship between the holding time and the hardness of the metal sleeve 2 was investigated. The results are not shown in Figure 3. Furthermore, by varying the holding time mentioned above, ceramic turbos [1-Tashi V71~] manufactured in the same manner as in the above examples were subjected to a high-temperature torsion tester, and the joint portion was heated to 500°C.
The high-temperature torsional strength was measured, and the relationship between the high-temperature torsional strength and the hardness of the metal sleeve 2 was investigated. The results are shown in Figure 4.

第3図及び第4図からもわかるように、保持時間下を1
0分以上にすることにより金属スリーブ2の硬度は28
0〜380 Hvとなり、金属スリブ2の硬度が280
口V以上あれば十分な結合強度が得られる。したがって
、析出硬化処理における保持時間下を10分以上とする
ことにより、十分な結合強度か確保できる。なお、保持
時間T1 を10分J:り長くしても金属スリーブ2の硬度は高く
ならなかった。
As can be seen from Figures 3 and 4, the retention time was
By keeping it for more than 0 minutes, the hardness of the metal sleeve 2 becomes 28.
0 to 380 Hv, and the hardness of metal sleeve 2 is 280
Sufficient bonding strength can be obtained if the opening is V or more. Therefore, by setting the holding time in the precipitation hardening treatment to 10 minutes or more, sufficient bond strength can be ensured. Note that even if the holding time T1 was increased by 10 minutes, the hardness of the metal sleeve 2 did not increase.

[発明の効果] 以上詳述したように、本発明のセラミック部材と金属部
材との接合方法では、析出硬化温度以上の融点をもつ充
填金属材がセラミック部材の軸突起部と金属部材の筒状
部との間に溶融充填され、その後の冷却過程中の凝固点
で、溶融した充填金属材が凝固し、これにより1111
突起部と筒状部とが結合する。さらに、その後の冷却過
程中の析出硬化工程で筒状部が析出硬化して軸突起部と
の結合に必要な高温強度を得るとともに、軸突起部と筒
状部との間には熱収縮による焼ばめ応力か発生し、両者
の結合力がさらに高まる。
[Effects of the Invention] As detailed above, in the method of joining a ceramic member and a metal member of the present invention, the filler metal material having a melting point higher than the precipitation hardening temperature connects the shaft protrusion of the ceramic member and the cylindrical shape of the metal member. The molten filling metal material solidifies at the solidification point during the subsequent cooling process, thereby forming 1111
The protrusion and the cylindrical part are combined. Furthermore, in the precipitation hardening process during the subsequent cooling process, the cylindrical part is precipitation hardened to obtain the high temperature strength necessary for bonding with the shaft protrusion, and the space between the shaft protrusion and the cylindrical part is due to heat shrinkage. Shrink fit stress is generated, further increasing the bonding strength between the two.

したがって、本発明の接合方法は溶融充填処理後の冷却
過程中に析出硬化処理を行うものであるから、充填金属
材の融点が析出硬化温度より高い場合でも結合強度が低
下することなく、溶融充填処理及び析出硬化処理の双方
により、上記軸突起部と筒状部とを確実に接合すること
か可能となる。
Therefore, since the joining method of the present invention performs the precipitation hardening process during the cooling process after the melt filling process, even if the melting point of the filling metal material is higher than the precipitation hardening temperature, the bonding strength does not decrease and the melt filling process is performed. By both the treatment and the precipitation hardening treatment, it is possible to reliably join the shaft protrusion and the cylindrical portion.

2 また、溶融充填処理工程後に炉冷しているため、セラミ
ック部材に対し急激に熱応力が作用することもなく、該
熱応力が原因で発生するクラックを防止することができ
る。
2. Furthermore, since the ceramic member is cooled in a furnace after the melt-filling process, no sudden thermal stress is applied to the ceramic member, and cracks caused by the thermal stress can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本実施例の接合方法により得られたセラミック
製ターボロータシャフ1〜の部分断面図、第2図は上記
接合方法の各処理工程の加熱パタンを示すグラフ、第3
図は析出硬化処理工程の保持時間下と金属スリーブの硬
度との関係を示すグラフ、第4図は高温ネジリ強度と金
属スリーブの硬度との関係を示すグラフである。 1・・・セラミック製タービンホイール2・・・金属ス
リーブ   3・・・金属軸4・・・充填金属材   
11・・・軸突起部21・・・筒状部
FIG. 1 is a partial sectional view of a ceramic turbo rotor shaft 1 obtained by the joining method of this example, FIG. 2 is a graph showing the heating pattern of each processing step of the above joining method, and FIG.
The figure is a graph showing the relationship between the holding time of the precipitation hardening process and the hardness of the metal sleeve, and FIG. 4 is a graph showing the relationship between high temperature torsional strength and the hardness of the metal sleeve. 1...Ceramic turbine wheel 2...Metal sleeve 3...Metal shaft 4...Filled metal material
11... Axial protrusion 21... Cylindrical part

Claims (1)

【特許請求の範囲】[Claims] (1)セラミック部材の軸突起部を析出硬化型合金より
なる金属部材の筒状部に該析出硬化型合金の析出硬化温
度より高い融点をもつ充填金属材を介して嵌合する嵌合
工程と、 該充填金属材を融点以上に加熱して、該充填金属材を該
軸突起部と該筒状部との間に溶融充填させる溶融充填処
理工程と、 該溶融充填処理工程後の冷却過程中に炉冷保持して該筒
状部を析出硬化させる析出硬化処理工程とからなること
を特徴とするセラミック部材と金属部材との接合方法。
(1) A fitting step in which the shaft protrusion of the ceramic member is fitted into the cylindrical portion of the metal member made of a precipitation hardenable alloy through a filler metal material having a melting point higher than the precipitation hardening temperature of the precipitation hardenable alloy. , a melt filling treatment step of heating the filling metal material above its melting point and melting and filling the filling metal material between the shaft protrusion and the cylindrical portion; and during a cooling process after the melt filling treatment step. 1. A method for joining a ceramic member and a metal member, comprising a precipitation hardening treatment step of cooling the cylindrical portion in a furnace and precipitation hardening the cylindrical portion.
JP1204423A 1989-08-07 1989-08-07 Method for joining ceramic member and metal member Expired - Lifetime JP2536630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1204423A JP2536630B2 (en) 1989-08-07 1989-08-07 Method for joining ceramic member and metal member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1204423A JP2536630B2 (en) 1989-08-07 1989-08-07 Method for joining ceramic member and metal member

Publications (2)

Publication Number Publication Date
JPH0369570A true JPH0369570A (en) 1991-03-25
JP2536630B2 JP2536630B2 (en) 1996-09-18

Family

ID=16490296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1204423A Expired - Lifetime JP2536630B2 (en) 1989-08-07 1989-08-07 Method for joining ceramic member and metal member

Country Status (1)

Country Link
JP (1) JP2536630B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497967A (en) * 1990-08-09 1992-03-30 Ngk Spark Plug Co Ltd Production of ceramic-precipitation hardening alloy united body
JP2003097213A (en) * 2001-09-25 2003-04-03 Kyocera Corp Ceramic turbine rotor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270275A (en) * 1985-09-25 1987-03-31 本田技研工業株式会社 Method for bonding ceramic rotor and metal rotary shaft

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270275A (en) * 1985-09-25 1987-03-31 本田技研工業株式会社 Method for bonding ceramic rotor and metal rotary shaft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497967A (en) * 1990-08-09 1992-03-30 Ngk Spark Plug Co Ltd Production of ceramic-precipitation hardening alloy united body
JP2003097213A (en) * 2001-09-25 2003-04-03 Kyocera Corp Ceramic turbine rotor

Also Published As

Publication number Publication date
JP2536630B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
JPH07500479A (en) A rotor manufacturing method for an asynchronous AC motor, a rotor manufactured by the same method, and a rotor manufacturing device for an asynchronous motor
WO1985001556A1 (en) Built-up cam shaft and method of manufacture thereof
JPH05347122A (en) Brazed x-ray tube anode
JPH0369570A (en) Method for joining ceramic member and metallic member
JPH10193087A (en) Manufacture of titanium-aluminum-made turbine rotor
JP2508823B2 (en) How to connect a ceramic rotor to a metal shaft
JPS60201002A (en) Turbine rotor
JP3179928B2 (en) Bonded body, bonded body thereof and ceramics, and methods of manufacturing them
JPH02127986A (en) Structure for coupling ceramics body of rotation with metallic shaft
JP2883223B2 (en) Method of joining ceramic member and metal member
JP2613599B2 (en) Piston and method of manufacturing the same
JP2650372B2 (en) Method of joining ceramic member and metal member
JP2003097213A (en) Ceramic turbine rotor
JPH0233677B2 (en) CHITSUKAKEISOSERAMITSUKUSUTOKINZOKUTONOSETSUGOHOHO
JPS6270275A (en) Method for bonding ceramic rotor and metal rotary shaft
JP2822405B2 (en) Method of joining ceramic rotor and metal shaft
JPH0354174A (en) Bonding of ceramic part and metallic part and bonded product
JPS59227781A (en) Ceramic metal bonding method
JPS61146424A (en) Jointing of ceramics and metal
JPS61202771A (en) Production of cam shaft
JPH0597531A (en) Method for bonding ceramic turbine wheel
JPH01215769A (en) Production of ceramic-metal coupled body
JPH04198069A (en) Bonding of combination body of ceramics and metal
JPH02124780A (en) Coupling structure of ceramic rotor and metallic shaft
JPS61142024A (en) Shrink-fit of ceramic shaft