JP2015205329A - Cutting tool that bonds superhard alloy and steel material, and method of manufacturing the cutting tool - Google Patents

Cutting tool that bonds superhard alloy and steel material, and method of manufacturing the cutting tool Download PDF

Info

Publication number
JP2015205329A
JP2015205329A JP2014088338A JP2014088338A JP2015205329A JP 2015205329 A JP2015205329 A JP 2015205329A JP 2014088338 A JP2014088338 A JP 2014088338A JP 2014088338 A JP2014088338 A JP 2014088338A JP 2015205329 A JP2015205329 A JP 2015205329A
Authority
JP
Japan
Prior art keywords
intermediate member
cutting tool
fitting
fitted
end surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014088338A
Other languages
Japanese (ja)
Inventor
康雄 福井
Yasuo Fukui
康雄 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSG Corp
Original Assignee
OSG Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSG Corp filed Critical OSG Corp
Priority to JP2014088338A priority Critical patent/JP2015205329A/en
Publication of JP2015205329A publication Critical patent/JP2015205329A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cutting tool in which bond strength is sufficiently secured.SOLUTION: In a state that an intermediate member 40 is interposed, a member 30 for a cutting blade and a member 20 for a shank are pressure-bonded after being relatively rotated so that bonding of the member 30 for a cutting blade and the intermediate member 40, and bonding of the intermediate member 40 and the member 20 for a shank are carried out. Since heating of the intermediate member 40 is carried out only once, the alteration of the intermediate member 40 affected by heat can be suppressed unlike in the case where both of the bonding are carried out separately (a two-stage friction welding, for example), and, accordingly, the bonding strength can be sufficiently secured.

Description

本発明は、切削工具に関するものである。   The present invention relates to a cutting tool.

切削工具において、切れ刃を含む第1部材を超硬合金から形成すると共にシャンク部を含む第2部材を鋼材から形成することで、切削性能の向上と製品コストの抑制とを図る技術が知られている。   In a cutting tool, a technique for improving cutting performance and reducing product cost by forming a first member including a cutting edge from cemented carbide and forming a second member including a shank portion from a steel material is known. ing.

この場合、第1部材と第2部材との接合には、ろう付けや摩擦溶接を利用する方法が知られているが、これらの方法では、超硬合金と鋼材との熱膨張係数の差に起因して、残留応力によるクラックが発生しやすい。   In this case, for joining the first member and the second member, methods using brazing or friction welding are known. However, in these methods, the difference in thermal expansion coefficient between the cemented carbide and the steel material is known. As a result, cracks due to residual stress are likely to occur.

これに対し、特許文献1には、第1部材および第2部材を、中間部材を介して接合することで、クラックの発生を抑制する技術が開示される。即ち、特許文献1では、鋼材製のシャンク用部材13(第2部材)と中間部材用部材25(中間部材)とを第1段階の摩擦溶接により接合した後、この接合によって得られた複合部材31の中間部材用部材25と超硬合金製の切削刃用部材11(第1部材)とを第2段階の摩擦溶接により接合する。   On the other hand, Patent Document 1 discloses a technique for suppressing the occurrence of cracks by joining the first member and the second member via an intermediate member. That is, in Patent Document 1, a steel shank member 13 (second member) and an intermediate member 25 (intermediate member) are joined by first stage friction welding, and then the composite member obtained by this joining is obtained. 31 intermediate member 25 and cemented carbide cutting blade member 11 (first member) are joined by friction welding in the second stage.

特開2004−216410号公報(例えば、段落0014〜0023、第1〜第7図など)JP-A-2004-216410 (for example, paragraphs 0014 to 0023, FIGS. 1 to 7 and the like)

しかしながら、上述したように摩擦溶接が第1および第2の2段階で行われる特許文献1の技術では、第1段階の摩擦溶接での熱の影響により中間部材用部材25(中間部材)が変質されているため、第2段階の摩擦溶接の際に中間部材用部材25が切削刃用部材11(第1部材)の表面に十分に回り込まず、外周部に未溶接部が発生しやすい。そのため、接合強度を十分に確保することが困難であるという問題点があった。   However, in the technique of Patent Document 1 in which friction welding is performed in the first and second stages as described above, the intermediate member 25 (intermediate member) is altered due to the influence of heat in the first stage friction welding. Therefore, the intermediate member 25 does not sufficiently wrap around the surface of the cutting blade member 11 (first member) during the second stage friction welding, and an unwelded portion is likely to occur on the outer peripheral portion. Therefore, there has been a problem that it is difficult to ensure sufficient bonding strength.

本発明は上述した問題点を解決するためになされたものであり、超硬合金から形成される第1部材と鋼材から形成される第2部材とが中間部材を介して接合される場合に、その接合強度が十分に確保された切削工具および切削工具の製造方法を提供することを目的としている。   The present invention was made to solve the above-described problems, and when the first member formed of cemented carbide and the second member formed of steel material are joined via an intermediate member, An object of the present invention is to provide a cutting tool and a method for manufacturing the cutting tool in which the bonding strength is sufficiently ensured.

この目的を達成するために請求項1記載の切削工具は、超硬合金から形成され切れ刃を有する第1部材と、鋼材から形成されシャンク部を有する第2部材と、それら第1部材および第2部材の軸方向端面の間に介在される中間部材とを備えた切削工具であって、前記中間部材は、軸方向端面に形成される嵌合部を備えると共に、前記第1部材または第2部材のうちの一方は、前記中間部材における嵌合部に嵌合可能な軸方向端面に形成される被嵌合部を備え、前記中間部材における嵌合部と前記第1部材または第2部材のうちの一方における被嵌合部とが嵌合されると共に前記嵌合部が形成される側とは反対側の前記中間部材の軸方向端面に前記第1部材または第2部材のうちの他方における軸方向端面が当接された状態で、前記第1部材および第2部材が軸まわりに相対回転された後に軸方向に圧接されることで、前記第1部材および中間部材の接合と前記中間部材および第2部材の接合とが行われている。   In order to achieve this object, a cutting tool according to claim 1 includes a first member made of cemented carbide and having a cutting edge, a second member made of steel and having a shank portion, the first member and the first member. A cutting tool including an intermediate member interposed between the axial end surfaces of two members, wherein the intermediate member includes a fitting portion formed on the axial end surface, and the first member or the second member. One of the members includes a fitted portion formed on an axial end surface that can be fitted to the fitting portion of the intermediate member, and the fitting portion of the intermediate member and the first member or the second member In the other of the first member or the second member on the axial end surface of the intermediate member on the side opposite to the side on which the fitting portion is formed while being fitted with the fitted portion in one of them With the end face in the axial direction in contact with the first member, By beauty second member is pressed against the axial direction after being relatively rotated around the axis, the joining of the the junction of the first member and the intermediate member intermediate member and the second member is performed.

請求項2記載の切削工具の製造方法は、超硬合金から形成され切れ刃を有する第1部材と、鋼材から形成されシャンク部を有する第2部材と、それら第1部材および第2部材の軸方向端面の間に介在される中間部材とを備えた切削工具の製造方法であって、前記中間部材の軸方向端面に嵌合部を形成すると共に、前記第1部材または第2部材のうちの一方の軸方向端面に前記中間部材における嵌合部に嵌合可能な被嵌合部を形成する形成工程と、その形成工程により形成された前記中間部材における嵌合部と前記第1部材または第2部材のうちの一方における被嵌合部とを嵌合させる嵌合工程と、その嵌合工程により前記第1部材または第2部材のうちの一方における被嵌合部と前記中間部材における前記嵌合部とを嵌合させた後、前記中間部材の前記嵌合部が形成される側とは反対側の軸方向端面と前記第1部材または第2部材のうちの他方における軸方向端面とを当接させる当接工程と、その当接工程により前記中間部材の前記嵌合部が形成される側とは反対側の軸方向端面と前記第1部材または第2部材のうちの他方の軸方向端面とを当接させた状態から、前記第1部材および第2部材を軸まわりに相対回転させた後に軸方向に圧接することで、前記第1部材および中間部材の接合と前記中間部材および第2部材の接合とを行う接合工程と、を備える。   The method for manufacturing a cutting tool according to claim 2 includes a first member formed of cemented carbide and having a cutting edge, a second member formed of steel and having a shank portion, and shafts of the first member and the second member. A cutting tool manufacturing method comprising an intermediate member interposed between directional end faces, wherein a fitting portion is formed on an axial end face of the intermediate member, and the first member or the second member A forming step of forming a fitted portion that can be fitted into a fitting portion of the intermediate member on one axial end surface, and the fitting portion and the first member or the first member in the intermediate member formed by the forming step A fitting step for fitting a fitted portion in one of the two members, and the fitted portion in one of the first member or the second member and the fitting in the intermediate member by the fitting step After fitting the joint, the intermediate An abutting step of abutting an axial end surface opposite to the side on which the fitting portion of the material is formed with an axial end surface of the other of the first member and the second member, and the abutting step From the state in which the axial end surface of the intermediate member opposite to the side on which the fitting portion is formed and the other axial end surface of the first member or the second member are in contact with each other, A joining step of joining the first member and the intermediate member and joining the intermediate member and the second member by pressing the one member and the second member relative to each other around the axis and then pressing them in the axial direction. Prepare.

請求項3記載の切削工具または切削工具の製造方法は、請求項1記載の切削工具または請求項2記載の切削工具の製造方法において、前記嵌合部が前記中間部材と同軸の円柱状の凸部として形成され、かつ、前記被嵌合部が前記第1部材または第2部材のうちの一方と同軸であって前記凸部の外径よりも小さな内径の断面円形の凹部として形成される、又は、前記嵌合部が前記中間部材と同軸の断面円形の凹部として形成され、かつ、前記被嵌合部が前記第1部材または第2部材のうちの一方と同軸であって前記凹部の内径よりも大きな外形の円柱状の凸部として形成される。   The cutting tool or the cutting tool manufacturing method according to claim 3 is the cutting tool according to claim 1 or the cutting tool manufacturing method according to claim 2, wherein the fitting portion is a cylindrical convex coaxial with the intermediate member. Formed as a portion, and the fitted portion is formed as a concave portion having a circular cross section having an inner diameter smaller than the outer diameter of the convex portion that is coaxial with one of the first member and the second member. Alternatively, the fitting portion is formed as a concave portion having a circular cross section coaxial with the intermediate member, and the fitted portion is coaxial with one of the first member and the second member, and the inner diameter of the concave portion It is formed as a cylindrical protrusion having a larger outer shape.

請求項4記載の切削工具または切削工具の製造方法は、請求項3記載の切削工具または切削工具の製造方法において、前記嵌合部が凹部として形成され、かつ、前記被嵌合部が凸部として形成される。   The cutting tool or the cutting tool manufacturing method according to claim 4 is the cutting tool or the cutting tool manufacturing method according to claim 3, wherein the fitting portion is formed as a concave portion, and the fitting portion is a convex portion. Formed as.

請求項5記載の切削工具または切削工具の製造方法は、請求項1から4のいずれかに記載の切削工具または切削工具の製造方法において、前記被嵌合部は前記第2部材に形成される。   The cutting tool or the cutting tool manufacturing method according to claim 5 is the cutting tool or the cutting tool manufacturing method according to any one of claims 1 to 4, wherein the fitted portion is formed on the second member. .

請求項6記載の切削工具または切削工具の製造方法は、請求項1から5のいずれかに記載の切削工具または切削工具の製造方法において、前記超硬合金は、WCを主成分とし、Co含有量が5wt%以上かつ16wt%以下に設定されると共に、硬さが89HRA以上かつ95HRA以下に設定される。   The cutting tool or the cutting tool manufacturing method according to claim 6 is the cutting tool or the cutting tool manufacturing method according to any one of claims 1 to 5, wherein the cemented carbide is mainly composed of WC and contains Co. The amount is set to 5 wt% or more and 16 wt% or less, and the hardness is set to 89 HRA or more and 95 HRA or less.

請求項7記載の切削工具または切削工具の製造方法は、請求項1から6のいずれかに記載の切削工具または切削工具の製造方法において、前記中間部材は、Co−Ni−Fe合金から形成され、少なくともCo含有量が5wt%以上かつ40wt%以下に、Ni含有量が20wt%以上かつ50wt%以下に、それぞれ設定される。   The cutting tool or the cutting tool manufacturing method according to claim 7 is the cutting tool or cutting tool manufacturing method according to any one of claims 1 to 6, wherein the intermediate member is formed of a Co-Ni-Fe alloy. , At least the Co content is set to 5 wt% or more and 40 wt% or less, and the Ni content is set to 20 wt% or more and 50 wt% or less.

請求項1記載の切削工具によれば、中間部材が介在された状態で、第1部材および第2部材が相対回転された後に圧接されることで、第1部材および中間部材の接合と中間部材および第2部材との接合が行われ、中間部材への加熱が1回とされるので、両接合が別々に行われる場合(例えば、二段階の摩擦溶接の場合)と比較して、中間部材が熱の影響を受けて変質することを抑制でき、その分、接合強度を十分に確保できる。   According to the cutting tool according to claim 1, the first member and the second member are pressed against each other after the first member and the second member are relatively rotated in a state where the intermediate member is interposed, so that the joining of the first member and the intermediate member and the intermediate member are performed. And the second member is joined, and the intermediate member is heated once, so that the intermediate member is compared with the case where both joints are performed separately (for example, in the case of two-stage friction welding). Can be suppressed from being affected by heat, and the joint strength can be sufficiently secured accordingly.

請求項2記載の切削工具の製造方法によれば、接合工程では、第1部材および第2部材の間に中間部材を介在した状態で、第1部材および第2部材を相対回転させた後に圧接することで、第1部材および中間部材の接合と中間部材および第2部材の接合とを行うので、中間部材への加熱を1回とできる。よって、両接合を別々に行う場合(例えば、二段階の摩擦溶接を行う場合)と比較して、中間部材が熱の影響を受けて変質することを抑制でき、その分、接合強度が十分に確保された切削工具を製造できる。また、二段階の摩擦溶接の場合と比較して、工数を低減して、製造コストの削減を図ることができる。   According to the method for manufacturing a cutting tool according to claim 2, in the joining step, after the first member and the second member are relatively rotated with the intermediate member interposed between the first member and the second member, the pressure contact is performed. By doing so, since the joining of the first member and the intermediate member and the joining of the intermediate member and the second member are performed, the heating of the intermediate member can be performed once. Therefore, compared with the case where both joinings are performed separately (for example, when performing two-stage friction welding), the intermediate member can be prevented from being deteriorated by the influence of heat, and the joint strength is sufficiently increased. A secured cutting tool can be manufactured. Moreover, compared with the case of two-stage friction welding, a man-hour can be reduced and reduction of manufacturing cost can be aimed at.

この場合、形成工程において形成した嵌合部および被嵌合部を嵌合させる嵌合工程を当接工程の前に備えるので、当接工程の前に、第1部材または第2部材の一方と中間部材とが嵌合により結合された複合体を形成しておくことができ、その分、当接工程における作業をしやすくできる。また、第1部材または第2部材の一方と中間部材とが嵌合されていることで、接合工程において、中間部材が第1部材および第2部材に対して位置ずれすることを抑制できる。   In this case, since the fitting step for fitting the fitting portion and the fitted portion formed in the forming step is provided before the abutting step, before the abutting step, one of the first member and the second member is connected. It is possible to form a complex in which the intermediate member is coupled by fitting, and accordingly, the work in the contact process can be facilitated. In addition, since one of the first member or the second member and the intermediate member are fitted, the intermediate member can be prevented from being displaced with respect to the first member and the second member in the joining step.

請求項3記載の切削工具または切削工具の製造方法によれば、請求項1記載の切削工具または請求項2記載の切削工具の製造方法の奏する効果に加え、嵌合部および被嵌合部が、それぞれ中間部材および第1部材または第2部材の一方に同軸の円柱状の凸部または断面円形の凹部として形成されるので、嵌合部および被嵌合部の形状を簡素化して、その分、製造コストを削減できる。   According to the cutting tool or the manufacturing method of the cutting tool according to claim 3, in addition to the effect exerted by the cutting tool according to claim 1 or the cutting tool manufacturing method according to claim 2, the fitting portion and the fitted portion include Since each of the intermediate member and the first member or the second member is formed as a coaxial cylindrical convex portion or a circular concave portion, the shapes of the fitting portion and the fitting portion are simplified, and Manufacturing cost can be reduced.

また、嵌合部および被嵌合部が、中間部材および第1部材または第2部材の一方に同軸とされることで、第1部材および第2部材を圧接する際の圧接量を安定して確保できる。更に、凸部の外径が凹部の内径よりも大きくされるので、嵌合部と被嵌合部との嵌合が外れることを抑制でき、また、第1部材および第2部材を相対回転させる際の駆動力を適正な状態で伝達できる。   In addition, the fitting portion and the fitted portion are coaxial with one of the intermediate member and the first member or the second member, so that the amount of pressure contact when the first member and the second member are pressed against each other can be stabilized. It can be secured. Furthermore, since the outer diameter of the convex portion is made larger than the inner diameter of the concave portion, it is possible to prevent the fitting portion and the fitting portion from being disengaged, and to relatively rotate the first member and the second member. The driving force at the time can be transmitted in an appropriate state.

請求項4記載の切削工具または切削工具の製造方法によれば、請求項3記載の切削工具または切削工具の製造方法の奏する効果に加え、嵌合部が凹部として形成され、被嵌合部が凸部として形成される、即ち、中間部材に凹部が形成されるので、軸方向に圧接された後の中間部材の厚み(軸方向寸法)を薄く(小さく)でき、その分、切削工具全体としての強度を確保できる。   According to the cutting tool or the manufacturing method of the cutting tool according to claim 4, in addition to the effect exerted by the cutting tool or the manufacturing method of the cutting tool according to claim 3, the fitting portion is formed as a recess, and the fitted portion is Since it is formed as a convex part, that is, a concave part is formed in the intermediate member, the thickness (axial dimension) of the intermediate member after being pressed in the axial direction can be made thin (small), and accordingly, the cutting tool as a whole The strength of can be secured.

請求項5記載の切削工具または切削工具の製造方法によれば、請求項1から4のいずれかに記載の切削工具または切削工具の製造方法の奏する効果に加え、被嵌合部が第2部材に形成されるので、加工対象を鋼材とでき、超硬合金への加工を不要とできる。よって、その分、加工工数を低減して、製造コストの削減を図ることができる。   According to the cutting tool or the manufacturing method of the cutting tool according to claim 5, in addition to the effect exhibited by the cutting tool or the manufacturing method of the cutting tool according to any one of claims 1 to 4, the fitted portion is the second member. Therefore, the object to be processed can be made of steel, and the processing to cemented carbide can be made unnecessary. Therefore, it is possible to reduce the number of processing steps and reduce the manufacturing cost.

請求項6記載の切削工具または切削工具の製造方法によれば、請求項1から5のいずれかに記載の切削工具または切削工具の製造方法の奏する効果に加え、超硬合金は、WCを主成分とし、Co含有量が5wt%以上かつ16wt%以下に設定されると共に、硬さが89HRA以上かつ95HRA以下に設定されるので、切削性能の向上を図ることができる。   According to the cutting tool or the manufacturing method of the cutting tool according to claim 6, in addition to the effect exerted by the cutting tool or the manufacturing method of the cutting tool according to any one of claims 1 to 5, the cemented carbide mainly includes WC. As a component, the Co content is set to 5 wt% or more and 16 wt% or less, and the hardness is set to 89 HRA or more and 95 HRA or less, so that the cutting performance can be improved.

請求項7記載の切削工具または切削工具の製造方法によれば、請求項1から6のいずれかに記載の切削工具または切削工具の製造方法の奏する効果に加え、中間部材は、Co−Ni−Fe合金から形成され、少なくともCo含有量が5wt%以上かつ40wt%以下に、Ni含有量が20wt%以上かつ50wt%以下に、それぞれ設定されるので、比較的高温とされた状態における熱膨張係数および伸びを適切として、残留応力の発生を抑制できると共に軸方向に圧接された際の変形性を確保できる。その結果、接合強度を十分に確保できる。   According to the cutting tool or the manufacturing method of the cutting tool according to claim 7, in addition to the effect exerted by the cutting tool or the manufacturing method of the cutting tool according to any one of claims 1 to 6, the intermediate member is made of Co-Ni-. It is made of Fe alloy, and at least Co content is set to 5 wt% or more and 40 wt% or less, and Ni content is set to 20 wt% or more and 50 wt% or less. Further, by making the elongation appropriate, it is possible to suppress the generation of residual stress and to ensure the deformability when pressed in the axial direction. As a result, sufficient bonding strength can be ensured.

第1実施形態における切削工具の正面図である。It is a front view of the cutting tool in a 1st embodiment. (a)から(c)は、摩擦溶接機構の正面図であり、(d)は、シャンク用部材、切削刃用部材及び中間部材の正面図である。(A) to (c) is a front view of a friction welding mechanism, and (d) is a front view of a shank member, a cutting blade member, and an intermediate member. (a)は、中間部材の側面図であり、(b)は、図3(a)のIIIb−IIIb線における中間部材の断面図であり、(c)は、第2実施形態における中間部材の側面図であり、(d)は、図3(c)のIIId−IIId線における中間部材の断面図であり、(e)は、第3実施形態における中間部材の側面図であり、(f)は、図3(e)のIIIf−IIIf線における中間部材の断面図である。(A) is a side view of the intermediate member, (b) is a cross-sectional view of the intermediate member taken along line IIIb-IIIb in FIG. 3 (a), and (c) is an intermediate member according to the second embodiment. It is a side view, (d) is a sectional view of the intermediate member in line IIId-IIId in FIG. 3 (c), (e) is a side view of the intermediate member in the third embodiment, (f) These are sectional drawings of the intermediate member in the IIIf-IIIf line of Drawing 3 (e). (a)は、第4実施形態における中間部材の側面図であり、(b)は、図4(a)のIVb−IVb線における中間部材の断面図であり、(c)は、第5実施形態における中間部材の側面図であり、(d)は、図4(c)のIVd−IVd線における中間部材の断面図であり、(e)は、第6実施形態における中間部材の側面図であり、(f)は、図4(e)のIVf−IVf線における中間部材の断面図である。(A) is a side view of the intermediate member in 4th Embodiment, (b) is sectional drawing of the intermediate member in the IVb-IVb line | wire of Fig.4 (a), (c) is 5th implementation. It is a side view of the intermediate member in a form, (d) is a sectional view of the intermediate member in the IVd-IVd line of Drawing 4 (c), (e) is a side view of the intermediate member in a 6th embodiment. FIG. 4F is a cross-sectional view of the intermediate member taken along line IVf-IVf in FIG.

以下、本発明の第1実施形態について、添付図面を参照して説明する。図1は、本発明の第1実施形態における切削工具10の正面図である。図1に示すように、切削工具10は、炭素含有量が0.1〜1.4wt%の炭素鋼材から形成されると共にシャンク部21を有するシャンク用部材20と、超硬合金から形成されると共に切れ刃31を有する切削刃用部材30と、それらのシャンク用部材20及び切削刃用部材30を連結する中間部材40と、を主に備えて構成される。なお、シャンク用部材20は炭素鋼材に限定されるものではなく、構造鋼、合金工具鋼または冷間ダイス鋼でも良い。   Hereinafter, a first embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a front view of a cutting tool 10 according to a first embodiment of the present invention. As shown in FIG. 1, the cutting tool 10 is formed of a carbon steel material having a carbon content of 0.1 to 1.4 wt% and a shank member 20 having a shank portion 21 and a cemented carbide. A cutting blade member 30 having a cutting edge 31 and an intermediate member 40 connecting the shank member 20 and the cutting blade member 30 are mainly provided. The shank member 20 is not limited to a carbon steel material, and may be structural steel, alloy tool steel, or cold die steel.

切削刃用部材30は、WCを主成分とし、Co含有量が5wt%以上かつ16wt%以下に設定されると共に、後述する摩擦溶接を行う以前の素材としての硬さが89HRA以上かつ95HRA以下に設定される。これにより、切削性能の向上を図ることができる。なお、HRAとは、JIS−Z2245に規定されるダイヤモンド円錐状材を圧子として用いるAスケールのロックウェル硬さを意味し、切削性能とは、切れ味や耐久性、及び摩耗性などを意味する。   The cutting blade member 30 is mainly composed of WC, the Co content is set to 5 wt% or more and 16 wt% or less, and the hardness as a material before performing friction welding described later is 89 HRA or more and 95 HRA or less. Is set. Thereby, the cutting performance can be improved. HRA means A-scale Rockwell hardness using a diamond conical material defined in JIS-Z2245 as an indenter, and cutting performance means sharpness, durability, wearability, and the like.

中間部材40は、Co―Ni―Fe合金から形成され、少なくともCo含有量が5wt%以上かつ40wt%以下に、Ni含有量が20wt%以上かつ50wt%以下に、それぞれ設定される。   The intermediate member 40 is formed of a Co—Ni—Fe alloy, and at least the Co content is set to 5 wt% or more and 40 wt% or less, and the Ni content is set to 20 wt% or more and 50 wt% or less.

ここで、超硬合金は、引張の残留応力がかけられるとクラックが生じやすい。一方、鋼材は金属であり延性に富むため、残留応力を緩和する態様で変形することができる。そのため、中間部材40の熱膨張係数を切削刃用部材30の熱膨張係数に近似させることで、切削刃用部材30が破損することを防止することができる。   Here, the cemented carbide is likely to crack when subjected to a tensile residual stress. On the other hand, since the steel material is a metal and rich in ductility, the steel material can be deformed in a mode of relaxing residual stress. Therefore, the cutting blade member 30 can be prevented from being damaged by approximating the thermal expansion coefficient of the intermediate member 40 to the thermal expansion coefficient of the cutting blade member 30.

本実施形態では、切削刃用部材30の熱膨張係数は6〜6.5程度であり、シャンク用部材20の熱膨張係数は12程度である。中間部材40は、摩擦熱が発生し比較的高温(約500度)とされた状態(図2(b)及び図2(c)参照)における熱膨張係数が切削刃用部材30と略同等となる。そのため、残留応力により切削刃用部材30にクラックが発生することを抑制できると共に軸方向に圧接された際の変形性を確保できる。その結果、接合強度を十分に確保できる。なお、切削刃用部材30及び中間部材40の組成比は一例であり、適宜変更することができる。   In this embodiment, the thermal expansion coefficient of the cutting blade member 30 is about 6 to 6.5, and the thermal expansion coefficient of the shank member 20 is about 12. The intermediate member 40 has substantially the same thermal expansion coefficient as that of the cutting blade member 30 in a state where the frictional heat is generated and the temperature is relatively high (about 500 degrees) (see FIGS. 2B and 2C). Become. Therefore, it is possible to prevent cracks from occurring in the cutting blade member 30 due to residual stress and to ensure the deformability when pressed in the axial direction. As a result, sufficient bonding strength can be ensured. In addition, the composition ratio of the member 30 for cutting blades and the intermediate member 40 is an example, and can be changed suitably.

本実施形態では、シャンク用部材20及び切削刃用部材30は、それぞれ直径16mmの丸棒材から形成される。また、中間部材40は、圧縮前の形状が直径16mm及び厚さ10mmの円板部材から形成される。なお、シャンク用部材20、切削刃用部材30及び中間部材40の互いに当接される端面は軸方向と垂直に広がる態様で形成される。   In the present embodiment, the shank member 20 and the cutting blade member 30 are each formed from a round bar having a diameter of 16 mm. The intermediate member 40 is formed of a disk member having a diameter of 16 mm and a thickness of 10 mm before compression. Note that the end surfaces of the shank member 20, the cutting blade member 30, and the intermediate member 40 that are in contact with each other are formed so as to expand perpendicular to the axial direction.

次いで、図2を参照して、切削工具10(図1参照)の製造方法について説明する。切削工具10の製造方法は、形成工程と、嵌合工程と、当接工程と、接合工程と、を主に備える。各工程については、順に後述する。   Then, with reference to FIG. 2, the manufacturing method of the cutting tool 10 (refer FIG. 1) is demonstrated. The manufacturing method of the cutting tool 10 mainly includes a forming process, a fitting process, a contact process, and a joining process. Each step will be described later in order.

図2(a)から図2(c)は、シャンク用部材20、切削刃用部材30及び中間部材40が摩擦溶接により接合される様子を時系列で図示した摩擦溶接機構1の正面図であり、図2(d)は、接合されたシャンク用部材20、切削刃用部材30及び中間部材40の正面図である。なお、図2(a)及び図2(c)では、各部材が部分的に断面視され、図2(d)では、摩擦溶接により生じるバリが除去された後の状態が図示される。   2 (a) to 2 (c) are front views of the friction welding mechanism 1 illustrating the manner in which the shank member 20, the cutting blade member 30, and the intermediate member 40 are joined by friction welding in time series. FIG. 2D is a front view of the joined shank member 20, cutting blade member 30 and intermediate member 40. 2 (a) and 2 (c), each member is partially viewed in cross section, and FIG. 2 (d) illustrates a state after removing burrs generated by friction welding.

図2(a)から図2(c)に示すように、摩擦溶接機構1は、軸回転可能に形成される回転軸2と、その回転軸2の先端に取り付けられる回転把持装置(コレットチャック)3と、その回転把持装置3と対向配置されるクランプ台4と、そのクランプ台4に回転把持装置3と軸を同一として配設される非回転把持装置(バイス)5と、を主に備えて構成される。なお、非回転把持装置5は断面視される。ここで、図3(a)及び図3(b)を参照して、中間部材40の形状について説明する。   As shown in FIGS. 2 (a) to 2 (c), the friction welding mechanism 1 includes a rotary shaft 2 formed so as to be axially rotatable, and a rotary gripping device (collet chuck) attached to the tip of the rotary shaft 2. 3, a clamp table 4 disposed opposite to the rotary gripping device 3, and a non-rotating gripping device (vise) 5 disposed on the clamp table 4 with the same axis as the rotary gripping device 3. Configured. The non-rotating gripping device 5 is viewed in cross section. Here, the shape of the intermediate member 40 is demonstrated with reference to Fig.3 (a) and FIG.3 (b).

図3(a)は、中間部材40の側面図であり、図3(b)は、図3(a)のIIIb−IIIb線における中間部材40の断面図である。形成工程において、中間部材40には、シャンク用部材20(図2参照)に接合される側の端面である第1端面41に、直径10mm及び深さ3mmの断面円形状の窪みである嵌合凹部43が中間部材40と同軸に形成される。   3A is a side view of the intermediate member 40, and FIG. 3B is a cross-sectional view of the intermediate member 40 taken along the line IIIb-IIIb in FIG. 3A. In the forming step, the intermediate member 40 is fitted to the first end surface 41 which is the end surface on the side to be joined to the shank member 20 (see FIG. 2), which is a circular recess having a diameter of 10 mm and a depth of 3 mm. A recess 43 is formed coaxially with the intermediate member 40.

図2に戻って説明する。形成工程において、シャンク用部材20には、中間部材40に接合される側の端面である連結端面22に中間部材40の嵌合凹部43と凹凸を反転させた形状からなる被嵌合凸部23がシャンク用部材20の軸対称に形成される(図2(a)参照)。本実施形態では、被嵌合凸部23は、直径が嵌合凹部の直径(10mm)よりも若干大径に形成されると共に高さ3mmの円柱形状に形成される。   Returning to FIG. In the forming step, the shank member 20 has a fitting convex portion 23 having a shape obtained by inverting the fitting concave portion 43 of the intermediate member 40 and the concavity and convexity on the connecting end surface 22 which is the end surface to be joined to the intermediate member 40. Are formed symmetrically with respect to the shank member 20 (see FIG. 2A). In this embodiment, the to-be-fitted convex part 23 is formed in a cylindrical shape whose diameter is slightly larger than the diameter (10 mm) of the fitting concave part and having a height of 3 mm.

ここで、中間部材40が薄く形成されるほど、摩擦溶接の接合強度が向上する。本実施形態では、被嵌合凸部23の張出部が切削刃用部材30の平端面32と最接近するため、被嵌合凸部23及び嵌合凹部43の直径がシャンク用部材20及び中間部材40の外径に比較して大きいほど接合強度が向上する。そのため、被嵌合凸部23及び嵌合凹部43の直径は中間部材40の外径の50%以上の長さとされることが好ましく、更に好ましくは、中間部材40の外径の60%以上の長さとされることが好ましい(本実施形態では、約63%に設定される)。   Here, as the intermediate member 40 is formed thinner, the joint strength of friction welding is improved. In the present embodiment, since the overhanging portion of the mating convex portion 23 is closest to the flat end surface 32 of the cutting blade member 30, the diameters of the mating convex portion 23 and the mating concave portion 43 are the shank member 20 and As the outer diameter of the intermediate member 40 is larger, the bonding strength is improved. Therefore, the diameters of the fitted convex portion 23 and the fitting concave portion 43 are preferably 50% or more of the outer diameter of the intermediate member 40, and more preferably 60% or more of the outer diameter of the intermediate member 40. The length is preferably set (in the present embodiment, it is set to about 63%).

上述したように、被嵌合凸部23の直径が嵌合凹部43の直径よりも若干大径に形成されるので、被嵌合凸部23と嵌合凹部43とを嵌合させる嵌合工程において、中間部材40をシャンク用部材20に圧入固定することができる。これにより、中間部材40及びシャンク用部材20を一体化させて搬送することができる。また、シャンク用部材20及び中間部材40の回転把持装置3への取り付け作業をしやすくできると共に摩擦溶接の最中にシャンク用部材20に対して中間部材40が軸垂直方向に位置ずれすることを抑制できる。   As described above, since the diameter of the fitted convex portion 23 is formed to be slightly larger than the diameter of the fitted concave portion 43, the fitting step of fitting the fitted convex portion 23 and the fitted concave portion 43 together. The intermediate member 40 can be press-fitted and fixed to the shank member 20. Thereby, the intermediate member 40 and the shank member 20 can be integrated and conveyed. Further, it is possible to easily attach the shank member 20 and the intermediate member 40 to the rotary gripping device 3, and the intermediate member 40 is displaced in the axis-perpendicular direction with respect to the shank member 20 during the friction welding. Can be suppressed.

なお、本実施形態において嵌合とは、シャンク用部材20と中間部材40とを当接させた状態で、軸垂直方向に相対的に移動させる場合に互いに当接される箇所があることを意味し、以降の実施形態でも同様である。例えば、圧入固定(しまりばめ)による嵌合であれば、シャンク用部材20と中間部材40とを一体で搬送できる効果があり、例えば、すきまばめによる嵌合であれば、シャンク用部材20と中間部材40とを特別な道具を使わずに容易に一体化させることができるため嵌合工程の作業をしやすくできるという効果があり、例えば、ローレット加工であれば、接触面積を増大させて駆動力の伝達を確実にするという効果がある。   In the present embodiment, the term “fitting” means that there are locations where the shank member 20 and the intermediate member 40 are in contact with each other when the shank member 20 and the intermediate member 40 are in contact with each other when moving relative to each other in the direction perpendicular to the axis. The same applies to the following embodiments. For example, if the fitting is performed by press-fitting (shrink fit), the shank member 20 and the intermediate member 40 can be conveyed integrally. For example, if the fitting is performed by clearance fit, the shank member 20 is effective. And the intermediate member 40 can be easily integrated without using a special tool, so that the work of the fitting process can be facilitated. For example, in the case of knurling, the contact area is increased. This has the effect of ensuring the transmission of the driving force.

当接工程および接合工程を含む摩擦溶接の手順について説明する。図2(a)に示すように、切削刃用部材30は、非回転把持装置5に固定される。また、シャンク用部材20は、被嵌合凸部23が中間部材40の嵌合凹部43に圧入固定により嵌合された状態で、被嵌合凸部23の形成される端部の反対側の端部が回転把持装置3に把持される。   A friction welding procedure including the contact step and the joining step will be described. As shown in FIG. 2A, the cutting blade member 30 is fixed to the non-rotating gripping device 5. Moreover, the member 20 for shank is the state on the opposite side of the edge part in which the to-be-fitted convex part 23 is formed in the state by which the to-be-fitted convex part 23 was fitted by the press-fit fixation to the fitting recessed part 43 of the intermediate member 40. The end is gripped by the rotary gripping device 3.

これにより、中間部材40を介在させてシャンク用部材20及び切削刃用部材30を摩擦溶接する場合において、中間部材40とシャンク用部材20とを嵌合により結合させておくことができる。   Thereby, when the intermediate member 40 is interposed and the shank member 20 and the cutting blade member 30 are friction welded, the intermediate member 40 and the shank member 20 can be coupled by fitting.

本実施形態では、シャンク用部材20に中間部材40を嵌合させることで自然に軸合わせがされるので、従来、シャンク用部材20を把持する装置と中間部材40を把持する装置との間で行っていた中間部材40の軸合わせ工程を省くことができる。更に、従来必要であった中間部材40の切断工程を省くことができる。   In the present embodiment, since the shaft is naturally aligned by fitting the intermediate member 40 to the shank member 20, conventionally, between the device for gripping the shank member 20 and the device for gripping the intermediate member 40. The axial alignment process of the intermediate member 40 which has been performed can be omitted. Furthermore, the cutting process of the intermediate member 40 conventionally required can be omitted.

即ち、従来のように2段階で摩擦溶接する場合、中間部材40を回転把持装置3又は非回転把持装置5で把持する必要があり、中間部材40に掴み代が必要であった。そのため、1段階目の摩擦溶接と2段階目の摩擦溶接との間に、中間部材40を切断する工程が必要であった。一方、本実施形態における摩擦溶接では、中間部材40に掴み代が不要であり、中間部材40を初めから短くしておくことができるため、中間部材40の切断工程を省くことができる。   That is, when the friction welding is performed in two steps as in the prior art, the intermediate member 40 needs to be gripped by the rotary gripping device 3 or the non-rotary gripping device 5, and the intermediate member 40 needs a grip allowance. Therefore, a process of cutting the intermediate member 40 between the first stage friction welding and the second stage friction welding is necessary. On the other hand, in the friction welding in the present embodiment, the intermediate member 40 does not require a grip margin, and the intermediate member 40 can be shortened from the beginning, so that the cutting step of the intermediate member 40 can be omitted.

図2(b)に示すように、中間部材40と切削刃用部材30とを当接させる当接工程において、回転軸2を回転させて、シャンク用部材20及び中間部材40を回転させると共に回転把持装置3をクランプ台4側にスライド移動させる。切削刃用部材30の平端面32に中間部材40の第1端面41の反対側の端面である第2端面42を同心的に推力P1で押し付けることで摩擦熱が発生する。このとき、切削刃用部材30と中間部材40とは全面的に接触した状態で回転される。また、中間部材40はシャンク用部材20に圧入固定されるため、回転軸2が回転されることにより発生する駆動力が中間部材40へ伝達される。   As shown in FIG. 2B, in the contact step in which the intermediate member 40 and the cutting blade member 30 are contacted, the rotating shaft 2 is rotated to rotate and rotate the shank member 20 and the intermediate member 40. The gripping device 3 is slid to the clamp base 4 side. Frictional heat is generated by concentrically pressing the second end surface 42 opposite to the first end surface 41 of the intermediate member 40 against the flat end surface 32 of the cutting blade member 30 with the thrust P1. At this time, the cutting blade member 30 and the intermediate member 40 are rotated in a state of being in full contact. Further, since the intermediate member 40 is press-fitted and fixed to the shank member 20, the driving force generated when the rotating shaft 2 is rotated is transmitted to the intermediate member 40.

図2(c)に示すように、シャンク用部材20、切削刃用部材30及び中間部材40の接合を行う接合工程において、切削刃用部材30と中間部材40との間に発生した摩擦熱により、中間部材40の第2端部42が十分に軟化し切削刃用部材30に回り込んだときに、回転軸2の回転を急停止させ、回転軸2の軸方向への推力を高めるいわゆる二次加圧(アプセット加圧)を行う。本実施形態では、中間部材40を切削刃用部材30に推力P2(P2>P1)で強く圧接させる。これによって、中間部材40が十分塑性変形してシャンク用部材20及び切削刃用部材30が接合される。   As shown in FIG. 2C, in the joining process for joining the shank member 20, the cutting blade member 30, and the intermediate member 40, frictional heat generated between the cutting blade member 30 and the intermediate member 40 is used. When the second end portion 42 of the intermediate member 40 is sufficiently softened and goes around the cutting blade member 30, the rotation of the rotary shaft 2 is suddenly stopped, and the thrust in the axial direction of the rotary shaft 2 is increased. Next pressurization (upset pressurization) is performed. In the present embodiment, the intermediate member 40 is strongly pressed against the cutting blade member 30 with a thrust P2 (P2> P1). As a result, the intermediate member 40 is sufficiently plastically deformed to join the shank member 20 and the cutting blade member 30 together.

接合工程におけるシャンク用部材20及び中間部材40の接合について説明する。シャンク用部材20及び中間部材40は圧入により相対回転不能に固定されるので、シャンク用部材20及び中間部材40の当接面では摩擦熱は発生しない。一方で、上述したように、切削刃用部材30の平端面32と中間部材40との当接面において摩擦熱が発生し、その摩擦熱は、中間部材40とシャンク用部材20との当接面まで熱伝導により伝達される。これにより、中間部材40の連結端面22に当接される箇所が十分に軟化されるので、上述した二次加圧によりシャンク用部材20と中間部材40とが接合される。   The joining of the shank member 20 and the intermediate member 40 in the joining process will be described. Since the shank member 20 and the intermediate member 40 are fixed so as not to rotate relative to each other by press-fitting, no frictional heat is generated on the contact surfaces of the shank member 20 and the intermediate member 40. On the other hand, as described above, frictional heat is generated on the contact surface between the flat end surface 32 of the cutting blade member 30 and the intermediate member 40, and the frictional heat is contacted between the intermediate member 40 and the shank member 20. It is transmitted to the surface by heat conduction. Thereby, since the location contact | abutted to the connection end surface 22 of the intermediate member 40 is fully softened, the member 20 for shank and the intermediate member 40 are joined by the secondary pressurization mentioned above.

このように、一対の当接面の溶接を一度の加圧で行うことができるので、中間部材40が変質した後に摩擦溶接させる従来の方法と比較して、中間部材40がシャンク用部材20及び切削刃用部材30に十分に回り込み、均一な接合が可能となる。従って、溶接不良の発生を抑制することができる。   As described above, since the pair of contact surfaces can be welded by a single pressurization, the intermediate member 40 has the shank member 20 and the intermediate member 40 in comparison with the conventional method of friction welding after the intermediate member 40 is altered. It can sufficiently wrap around the cutting blade member 30 and can be uniformly joined. Therefore, the occurrence of poor welding can be suppressed.

本実施形態では、切削刃用部材30及び中間部材40が当接される状態から、切削刃用部材30及び中間部材40の接合が完了するまでに(図2(c)参照)、クランプ台4が回転保持装置3へ向けて移動される距離(即ち、中間部材40の圧縮量)が約6mmに設定される。なお、本実施形態ではアプセット量(アプセット加圧時の圧縮量)≒6mmとされる。これにより、切削刃用部材30及び中間部材40の接合完了後の中間部材40の厚さtが1mm(=(円板の厚さ10mm)−(嵌合凹部43の深さ3mm)−(中間部材40の圧縮量6mm))とされるため、十分な接合強度を発揮することができる。   In this embodiment, from the state in which the cutting blade member 30 and the intermediate member 40 are in contact with each other until the joining of the cutting blade member 30 and the intermediate member 40 is completed (see FIG. 2C), the clamp base 4 Is moved toward the rotation holding device 3 (that is, the compression amount of the intermediate member 40) is set to about 6 mm. In the present embodiment, the upset amount (compression amount at the time of upset pressurization) ≈6 mm. Accordingly, the thickness t of the intermediate member 40 after the joining of the cutting blade member 30 and the intermediate member 40 is completed is 1 mm (= (thickness of the disc 10 mm) − (depth of the fitting recess 43 3 mm)) − (intermediate) Since the compression amount of the member 40 is 6 mm)), sufficient bonding strength can be exhibited.

ここで、例えば、中間部材40がシャンク用部材20に対して軸垂直方向へ偏心すると、中間部材40が均一に圧縮されない事態が生じる。即ち、圧縮方向の軸がずれることで、中間部材40に負荷される圧縮力が不均一になり、中間部材40から反作用としてシャンク用部材20及び切削刃用部材30に負荷される力によりシャンク用部材20及び切削刃用部材30が相対的に傾けられるおそれがある。この場合、シャンク用部材20及び切削刃用部材30が直接当接するおそれがある。これに対し、本実施形態では、中間部材40がシャンク用部材20に対して偏心することを嵌合により防止できるので、中間部材40の圧縮量(アプセット量)を当接面の全範囲で均一にでき、圧縮量を安定化させることができる。   Here, for example, when the intermediate member 40 is decentered in the axis-perpendicular direction with respect to the shank member 20, the intermediate member 40 may not be uniformly compressed. That is, the compressive force applied to the intermediate member 40 becomes non-uniform due to the displacement of the axis in the compression direction, and the force applied to the shank member 20 and the cutting blade member 30 as a reaction from the intermediate member 40 is used for the shank. The member 20 and the cutting blade member 30 may be relatively inclined. In this case, the shank member 20 and the cutting blade member 30 may directly contact each other. On the other hand, in this embodiment, since the intermediate member 40 can be prevented from being eccentric with respect to the shank member 20, the compression amount (upset amount) of the intermediate member 40 is uniform over the entire range of the contact surface. And the amount of compression can be stabilized.

図2(d)に示すように、二次加圧後、接合が完了した時点で、炉内で低温徐冷却を行い、発生したバリを切削加工して、切削工具素材が製造される。図2(d)に示す切削工具素材に切れ刃31を形成することで、切削工具10(図1参照)が完成する。   As shown in FIG. 2 (d), after the secondary pressurization, when the joining is completed, low-temperature slow cooling is performed in the furnace, and the generated burrs are cut to produce a cutting tool material. The cutting tool 10 (refer FIG. 1) is completed by forming the cutting edge 31 in the cutting tool raw material shown in FIG.2 (d).

本実施形態における切削工具10の、拡散接合による試験片およびろう付け接合による試験片に対する接合強度の比較を行うために、接合強度を測定した。なお、拡散接合の試験片には、本実施形態と同一組成のシャンク用部材20、切削刃用部材30及び中間部材40を使用すると共に上述した推力P2で圧接し、ろう付け接合には、中間部材40は使用せず、本実施形態と同一組成のシャンク用部材20及び切削刃用部材30を使用した。結果として、本実施形態における切削工具10は、ろう付け接合による試験片に対して接合強度が155%向上し、拡散接合による試験片に対してほぼ同等の接合強度が認められた。   In order to compare the bonding strength of the cutting tool 10 according to this embodiment with respect to a test piece by diffusion bonding and a test piece by brazing bonding, the bonding strength was measured. Note that the shank member 20, the cutting blade member 30, and the intermediate member 40 having the same composition as in the present embodiment are used for the diffusion bonding test piece, and are pressed with the thrust P2 described above. The member 40 was not used, but the shank member 20 and the cutting blade member 30 having the same composition as the present embodiment were used. As a result, the cutting tool 10 according to the present embodiment has a bonding strength that is 155% higher than that of the test piece obtained by brazing joining, and a substantially equivalent joining strength is recognized for the test piece obtained by diffusion bonding.

また、端面加工、接合時の段取り及び接合処理時間を含む加工時間については、本実施形態における切削工具素材は1本の接合に約10分かかり、拡散接合の試験片は1本の接合に約26分かかった。即ち、本実施形態の切削工具素材は、拡散接合の試験片に比較して生産効率が260%向上した。   In addition, with respect to the processing time including end face processing, setup at the time of joining, and joining processing time, the cutting tool material in this embodiment takes about 10 minutes to join, and the specimen for diffusion joining takes about 10 minutes to join. It took 26 minutes. That is, the production efficiency of the cutting tool material of this embodiment is improved by 260% compared to the diffusion bonding test piece.

次いで、図3(c)及び図3(d)を参照して、第2実施形態における中間部材240について説明する。第1実施形態では、中間部材40がシャンク用部材20に圧入固定される場合を説明したが、第2実施形態における中間部材240は、シャンク用部材20に仮止め保持され、相対回転可能とされる。なお、上述した第1実施形態と同一の部分には同一の符号を付して、その説明は省略する。   Next, the intermediate member 240 in the second embodiment will be described with reference to FIGS. 3C and 3D. In the first embodiment, the case where the intermediate member 40 is press-fitted and fixed to the shank member 20 has been described. However, the intermediate member 240 in the second embodiment is temporarily held by the shank member 20 and can be relatively rotated. The In addition, the same code | symbol is attached | subjected to the part same as 1st Embodiment mentioned above, and the description is abbreviate | omitted.

図3(c)は、第2実施形態における中間部材240の側面図であり、図3(d)は、図3(c)のIIId−IIId線における中間部材240の断面図である。なお、本実施形態におけるシャンク用部材(図示せず)は、第1実施形態におけるシャンク用部材20(図1参照)と連結端面22(図2(a)参照)の形状のみが異なる。詳細には、被嵌合凸部23(図2(a)参照)は形成されず、中間部材240の嵌合凹部243と凹凸を反転した形状の被嵌合凸部(図示せず)が形成される。   FIG. 3C is a side view of the intermediate member 240 in the second embodiment, and FIG. 3D is a cross-sectional view of the intermediate member 240 taken along line IIId-IIId in FIG. In addition, the member for shank (not shown) in this embodiment differs only in the shape of the member 20 for shank (refer FIG. 1) in 1st Embodiment, and the connection end surface 22 (refer FIG. 2 (a)). Specifically, the fitted convex portion 23 (see FIG. 2A) is not formed, but the fitted concave portion 243 of the intermediate member 240 and the fitted convex portion (not shown) having an inverted shape are formed. Is done.

図3(c)及び図3(d)に示すように、中間部材240は、断面円形の窪み及びその窪みと同軸に形成されるリング状窪みから形成される嵌合凹部243を備える。ここで、第1実施形態における嵌合凹部43は被嵌合凸部23に径方向内側から当接されるのみである。その一方で、本実施形態における嵌合凹部243は、断面円形の窪みで被嵌合凸部に径方向内側から当接されると共に、リング状窪みで被嵌合凸部に径方向内側および外側から当接される。そのため、シャンク用部材と嵌合凹部243との間に生ずる摩擦力を向上させることができ、シャンク用部材から中間部材240が脱落することを防止することができる。   As shown in FIGS. 3C and 3D, the intermediate member 240 includes a recess having a circular cross section and a fitting recess 243 formed coaxially with the recess. Here, the fitting concave portion 43 in the first embodiment is merely brought into contact with the fitting convex portion 23 from the radially inner side. On the other hand, the fitting recess 243 in the present embodiment is a recess having a circular cross section and is brought into contact with the fitting convex portion from the inside in the radial direction. It is contacted from. Therefore, the frictional force generated between the shank member and the fitting recess 243 can be improved, and the intermediate member 240 can be prevented from falling off from the shank member.

嵌合凹部243はシャンク用部材の被嵌合凸部に対してすきまばめの寸法公差で形成される。そのため、当接工程および接合工程(図2(c)参照)において中間部材240とシャンク用部材とが相対回転可能とされる。   The fitting recess 243 is formed with a dimensional tolerance of a clearance fit with respect to the fitting protrusion of the shank member. Therefore, the intermediate member 240 and the shank member can be relatively rotated in the contact step and the joining step (see FIG. 2C).

中間部材240がシャンク用部材に対して相対回転する場合、中間部材240及びシャンク用部材の当接面か、又は中間部材240及び切削刃用部材30(図1参照)の当接面か、の少なくともどちらか一方の当接面で摩擦熱が発生する。その摩擦熱が熱伝導によりもう一方の当接面まで伝達され、それにより両方の当接面付近が共に軟化され、上述した二次加圧によりシャンク用部材、切削刃用部材30及び中間部材40が接合される。   When the intermediate member 240 rotates relative to the shank member, the contact surface between the intermediate member 240 and the shank member or the contact surface between the intermediate member 240 and the cutting blade member 30 (see FIG. 1). Frictional heat is generated on at least one of the contact surfaces. The frictional heat is transmitted to the other abutting surface by heat conduction, whereby both of the abutting surfaces are softened together, and the shank member, the cutting blade member 30 and the intermediate member 40 are subjected to the secondary pressure described above. Are joined.

次いで、図3(e)及び図3(f)を参照して、第3実施形態における中間部材340について説明する。第1実施形態では中間部材40の第1端面41に嵌合凹部43が形成される場合を説明したが、第3実施形態における中間部材340は、第1端面41に嵌合凸部343が形成される。なお、上述した各実施形態と同一の部分には同一の符号を付して、その説明は省略する。   Next, the intermediate member 340 in the third embodiment will be described with reference to FIGS. 3 (e) and 3 (f). In the first embodiment, the case where the fitting concave portion 43 is formed on the first end surface 41 of the intermediate member 40 has been described. However, in the intermediate member 340 according to the third embodiment, the fitting convex portion 343 is formed on the first end surface 41. Is done. In addition, the same code | symbol is attached | subjected to the part same as each embodiment mentioned above, and the description is abbreviate | omitted.

図3(e)は、第3実施形態における中間部材340の側面図であり、図3(f)は、図3(e)のIIIf−IIIf線における中間部材340の断面図である。なお、本実施形態におけるシャンク用部材(図示せず)は、第1実施形態におけるシャンク用部材20(図1参照)と連結端面22(図2(a)参照)の形状のみが異なる。詳細には、被嵌合凸部23(図2(a)参照)は形成されず、中間部材340の嵌合凸部343と凹凸を反転した形状から形成される被嵌合凹部(図示せず)が形成される。   FIG.3 (e) is a side view of the intermediate member 340 in 3rd Embodiment, FIG.3 (f) is sectional drawing of the intermediate member 340 in the IIIf-IIIf line | wire of FIG.3 (e). In addition, the member for shank (not shown) in this embodiment differs only in the shape of the member 20 for shank (refer FIG. 1) in 1st Embodiment, and the connection end surface 22 (refer FIG. 2 (a)). In detail, the fitting convex part 23 (refer FIG. 2A) is not formed, but the fitting concave part (not shown) formed from the shape which reversed the fitting convex part 343 of the intermediate member 340 and the unevenness | corrugation. ) Is formed.

シャンク用部材および切削刃用部材30が最接近する領域、即ち、中間部材340の第1端面41の嵌合凸部343を除く領域で、シャンク用部材および切削刃用部材30の接合強度を担うことになるので、嵌合凸部343の直径は、中間部材340の直径の40%以下に設定されることが好ましく、更に好ましくは、中間部材340の直径の25%以下に設定されることが好ましい。本実施形態では嵌合凸部343の直径が4mm(中間部材340の直径の25%)に設定されるので、接合強度を十分に確保することができる。   In the region where the shank member and the cutting blade member 30 are closest to each other, that is, the region excluding the fitting convex portion 343 of the first end surface 41 of the intermediate member 340, the bonding strength between the shank member and the cutting blade member 30 is assumed. Therefore, the diameter of the fitting convex portion 343 is preferably set to 40% or less of the diameter of the intermediate member 340, and more preferably set to 25% or less of the diameter of the intermediate member 340. preferable. In this embodiment, since the diameter of the fitting convex part 343 is set to 4 mm (25% of the diameter of the intermediate member 340), sufficient bonding strength can be ensured.

次いで、図4(a)及び図4(b)を参照して、第4実施形態における中間部材440について説明する。第1実施形態では中間部材40の第1端面41に嵌合凹部43が軸対称に形成される場合を説明したが、第4実施形態における中間部材440は、第1端面41に一対の嵌合凸部443が軸から離間して形成される。なお、上述した各実施形態と同一の部分には同一の符号を付して、その説明は省略する。   Next, the intermediate member 440 in the fourth embodiment will be described with reference to FIGS. 4 (a) and 4 (b). In the first embodiment, the case has been described in which the fitting recess 43 is formed on the first end surface 41 of the intermediate member 40 in an axisymmetric manner. However, the intermediate member 440 in the fourth embodiment has a pair of fittings on the first end surface 41. A convex portion 443 is formed away from the shaft. In addition, the same code | symbol is attached | subjected to the part same as each embodiment mentioned above, and the description is abbreviate | omitted.

図4(a)は、第4実施形態における中間部材440の側面図であり、図4(b)は、図4(a)のIVb−IVb線における中間部材440の断面図である。なお、本実施形態におけるシャンク用部材(図示せず)は、第1実施形態におけるシャンク用部材20(図1参照)と連結端面22(図2(a)参照)の形状のみが異なる。詳細には、被嵌合凸部23(図2(a)参照)は形成されず、中間部材440の嵌合凸部443と凹凸を反転した形状からなる被嵌合凹部(図示せず)が形成される。   FIG. 4A is a side view of the intermediate member 440 in the fourth embodiment, and FIG. 4B is a cross-sectional view of the intermediate member 440 taken along the line IVb-IVb in FIG. In addition, the member for shank (not shown) in this embodiment differs only in the shape of the member 20 for shank (refer FIG. 1) in 1st Embodiment, and the connection end surface 22 (refer FIG. 2 (a)). Specifically, the fitted convex portion 23 (see FIG. 2A) is not formed, but the fitted convex portion 443 of the intermediate member 440 and the fitted concave portion (not shown) having a shape obtained by inverting the concave and convex portions. It is formed.

嵌合凸部443は中間部材440の軸から離れて一対が形成されるため、中間部材440とシャンク用部材が嵌合されている場合において、中間部材440とシャンク用部材との相対回転が機械的に防止される。そのため、中間部材440をシャンク用部材に圧入固定しなくとも、回転軸2が回転されることにより発生する駆動力を中間部材440へ確実に伝達させることができる。   Since the pair of fitting projections 443 are formed away from the axis of the intermediate member 440, when the intermediate member 440 and the shank member are fitted, the relative rotation between the intermediate member 440 and the shank member is mechanical. Is prevented. Therefore, even if the intermediate member 440 is not press-fitted and fixed to the shank member, the driving force generated when the rotating shaft 2 is rotated can be reliably transmitted to the intermediate member 440.

次いで、図4(c)及び図4(d)を参照して、第5実施形態における中間部材540について説明する。第1実施形態では中間部材40の第1端面41に断面円形状の嵌合凹部43が形成される場合を説明したが、第5実施形態における中間部材540は、第1端面41に断面多角形状(本実施形態では正八角形状)の窪みである嵌合凹部543が形成される。なお、上述した各実施形態と同一の部分には同一の符号を付して、その説明は省略する。   Next, the intermediate member 540 in the fifth embodiment will be described with reference to FIGS. 4C and 4D. In the first embodiment, the case where the fitting recess 43 having a circular cross section is formed on the first end surface 41 of the intermediate member 40 has been described. However, the intermediate member 540 in the fifth embodiment has a polygonal cross section on the first end surface 41. A fitting recess 543 is formed which is a depression (regular octagonal shape in this embodiment). In addition, the same code | symbol is attached | subjected to the part same as each embodiment mentioned above, and the description is abbreviate | omitted.

図4(c)は、第5実施形態における中間部材540の側面図であり、図4(d)は、図4(c)のIVd−IVd線における中間部材540の断面図である。なお、本実施形態におけるシャンク用部材(図示せず)は、第1実施形態におけるシャンク用部材20(図1参照)と連結端面22(図2(a)参照)の形状のみが異なる。詳細には、被嵌合凸部23(図2(a)参照)は形成されず、中間部材540の嵌合凹部543と凹凸を反転した形状の被嵌合凸部(図示せず)が形成される。   FIG. 4C is a side view of the intermediate member 540 in the fifth embodiment, and FIG. 4D is a cross-sectional view of the intermediate member 540 taken along line IVd-IVd in FIG. In addition, the member for shank (not shown) in this embodiment differs only in the shape of the member 20 for shank (refer FIG. 1) in 1st Embodiment, and the connection end surface 22 (refer FIG. 2 (a)). Specifically, the fitted convex portion 23 (see FIG. 2A) is not formed, but the fitted concave portion 543 of the intermediate member 540 and the fitted convex portion (not shown) having an inverted shape are formed. Is done.

中間部材540の嵌合凹部543の内側面とシャンク用部材の被嵌合凸部の外側面とが回転方向で当接されることで、相対回転が防止される。これにより、回転軸2が回転されることにより発生する駆動力を中間部材540へ確実に伝達させることができる。   Relative rotation is prevented by the inner surface of the fitting recess 543 of the intermediate member 540 coming into contact with the outer surface of the fitting projection of the shank member in the rotational direction. As a result, the driving force generated by rotating the rotating shaft 2 can be reliably transmitted to the intermediate member 540.

次いで、図4(e)及び図4(f)を参照して、第6実施形態における中間部材640について説明する。第1実施形態では中間部材40の第1端面41に断面円形状の嵌合凹部43が形成される場合を説明したが、第6実施形態における中間部材640は、第1端面41にローレット加工により形成される嵌合凹部643を備える。なお、上述した各実施形態と同一の部分には同一の符号を付して、その説明は省略する。   Next, the intermediate member 640 in the sixth embodiment will be described with reference to FIGS. 4 (e) and 4 (f). In the first embodiment, the case where the fitting recess 43 having a circular cross section is formed on the first end surface 41 of the intermediate member 40 has been described. However, the intermediate member 640 in the sixth embodiment is formed by knurling the first end surface 41. A fitting recess 643 is formed. In addition, the same code | symbol is attached | subjected to the part same as each embodiment mentioned above, and the description is abbreviate | omitted.

図4(e)は、第6実施形態における中間部材640の側面図であり、図4(f)は、図4(e)のIVf−IVf線における中間部材640の断面図である。なお、本実施形態におけるシャンク用部材(図示せず)は、第1実施形態におけるシャンク用部材20(図1参照)と連結端面22(図2(a)参照)の形状のみが異なる。詳細には、被嵌合凸部23(図2(a)参照)は形成されず、中間部材640の嵌合凹部643と当接されるシャンク用部材(図示せず)の端面には平面が形成される。   FIG. 4E is a side view of the intermediate member 640 in the sixth embodiment, and FIG. 4F is a cross-sectional view of the intermediate member 640 taken along line IVf-IVf in FIG. In addition, the member for shank (not shown) in this embodiment differs only in the shape of the member 20 for shank (refer FIG. 1) in 1st Embodiment, and the connection end surface 22 (refer FIG. 2 (a)). Specifically, the fitted convex portion 23 (see FIG. 2A) is not formed, and a flat surface is formed on the end surface of the shank member (not shown) that comes into contact with the fitting concave portion 643 of the intermediate member 640. It is formed.

なお、本実施形態では、中間部材640がシャンク用部材に嵌合されず、摩擦溶接の準備の段階(図2(a)参照)で中間部材640が落下してしまうので、その落下を防止するために、別の治具で中間部材640を保持することが好ましい。また、シャンク用部材の端面は、嵌合凹部643と凹凸を反転した形状からなる被嵌合凸部(図示せず)が形成されても良い。   In the present embodiment, the intermediate member 640 is not fitted to the shank member, and the intermediate member 640 falls at the stage of friction welding preparation (see FIG. 2A), so that the fall is prevented. Therefore, it is preferable to hold the intermediate member 640 with another jig. The end surface of the shank member may be formed with a fitting convex portion (not shown) having a shape obtained by inverting the fitting concave portion 643 and the concave and convex portions.

本実施形態の中間部材640は、嵌合凹部643がローレット加工により形成され、切削加工が不要とされるので、中間部材640の加工を容易とすることができる。   In the intermediate member 640 of the present embodiment, the fitting recess 643 is formed by knurling, and cutting is not necessary, so that the intermediate member 640 can be easily processed.

以上、上記各実施形態に基づき本発明を説明したが、本発明は上記各実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の変形改良が可能であることは容易に推察できるものである。   Although the present invention has been described based on the above embodiments, the present invention is not limited to the above embodiments, and various modifications and improvements can be made without departing from the spirit of the present invention. Can be easily guessed.

上記各実施形態において、一の実施形態における構成の一部または全部を、他の実施形態における構成の一部または全部の構成と組み合わせて或いは置き換えて、別の実施形態としても良い。   In each of the above-described embodiments, a part or all of the configuration in one embodiment may be combined with or replaced with a part or all of the configuration in the other embodiments to form another embodiment.

上記各実施形態では、シャンク用部材20と中間部材40,240,340,440,540とを嵌合させる場合を説明したが、必ずしもこれに限られるものではない。例えば、切削刃用部材30を加工し、中間部材40,240,340,440,540と嵌合させても良い。   In each of the above embodiments, the case where the shank member 20 and the intermediate members 40, 240, 340, 440, and 540 are fitted together has been described, but the present invention is not necessarily limited thereto. For example, the cutting blade member 30 may be processed and fitted with the intermediate members 40, 240, 340, 440, and 540.

上記各実施形態では、シャンク用部材20、切削刃用部材30及び中間部材40,240,340,440,540,640がそれぞれ同径とされる場合を説明したが、必ずしもこれに限られるものではない。例えば、中間部材40の直径をシャンク用部材20及び切削刃用部材30よりも大径にしても良い。これにより、中間部材40とシャンク用部材20とが軸垂直方向に若干ずれた場合でも、中間部材40の圧縮量(アプセット量)を均一に保つことができる。   In each of the above embodiments, the case where the shank member 20, the cutting blade member 30, and the intermediate members 40, 240, 340, 440, 540, and 640 have the same diameter has been described, but the present invention is not necessarily limited thereto. Absent. For example, the diameter of the intermediate member 40 may be larger than that of the shank member 20 and the cutting blade member 30. As a result, even when the intermediate member 40 and the shank member 20 are slightly displaced in the direction perpendicular to the axis, the compression amount (upset amount) of the intermediate member 40 can be kept uniform.

上記各実施形態では、回転軸2が回転されることでシャンク用部材20が回転される場合を説明したが、必ずしもこれに限られるものではない。例えば、切削刃用部材30が回転されても良いし、シャンク用部材20及び切削刃用部材30が共に回転されても良い。   In each of the above embodiments, the case where the shank member 20 is rotated by rotating the rotating shaft 2 has been described, but the present invention is not necessarily limited thereto. For example, the cutting blade member 30 may be rotated, or both the shank member 20 and the cutting blade member 30 may be rotated.

上記第各実施形態では、嵌合凹部43,243,543,643及び嵌合凸部343,443が様々な形状で形成される場合を説明したが、必ずしもこれに限られるものではない。例えば、嵌合凹部43,243,543,643及び嵌合凸部343,443が、十字形状、長方形状、円錐形状、多角錐形状および凹凸が混在する形状などで形成されても良い。   In each said embodiment, although the case where the fitting recessed parts 43,243,543,643 and the fitting convex parts 343,443 were formed in various shapes was demonstrated, it is not necessarily restricted to this. For example, the fitting concave portions 43, 243, 543, 643 and the fitting convex portions 343, 443 may be formed in a cross shape, a rectangular shape, a conical shape, a polygonal pyramid shape, and a shape in which unevenness is mixed.

上記各実施形態では、圧入や、すきまばめ等で中間部材40,240,340,440,540とシャンク用部材20との寸法関係を規定したが、必ずしもこれに限るものではない。例えば、圧入固定されると規定した実施形態(例えば、第1実施形態)の中間部材40をシャンク用部材20にすきまばめで嵌合させても良いし、すきまばめで嵌合されると規定した実施形態(例えば、第2実施形態)の中間部材240をシャンク用部材に圧入固定しても良い。   In each of the above embodiments, the dimensional relationship between the intermediate members 40, 240, 340, 440, 540 and the shank member 20 is defined by press fitting, clearance fitting, or the like, but this is not necessarily limited thereto. For example, the intermediate member 40 of the embodiment (for example, the first embodiment) that is specified to be press-fitted and fixed may be fitted to the shank member 20 by clearance fit, or it is specified that the intermediate member 40 is fitted by clearance fit. The intermediate member 240 of the embodiment (for example, the second embodiment) may be press-fitted and fixed to the shank member.

上記第4実施形態では、一対の嵌合凸部443が軸から離間して形成される場合を説明したが、必ずしもこれに限られるものではない。例えば、嵌合凸部443が3,4箇所形成されても良いし、その内の1の嵌合凸部443が中間部材440の軸上に形成されても良い。なお、軸から離間して形成される嵌合凸部443は、回転方向で嵌合凸部443が受ける力を均等に分散させるために、周方向等間隔で形成されることが好ましい。   In the fourth embodiment, the case where the pair of fitting convex portions 443 are formed apart from the shaft has been described. However, the present invention is not necessarily limited thereto. For example, three or four fitting protrusions 443 may be formed, and one of the fitting protrusions 443 may be formed on the axis of the intermediate member 440. In addition, it is preferable that the fitting convex part 443 formed away from the shaft is formed at equal intervals in the circumferential direction in order to evenly distribute the force received by the fitting convex part 443 in the rotation direction.

上記第5実施形態では、嵌合凹部543が断面正八角形状の窪みである場合を説明したが、必ずしもこれに限られるものではない。例えば、三角形や四角形などの窪みであっても良いし、星形状の窪みであっても良い。   In the fifth embodiment, the case where the fitting recess 543 is a depression having a regular octagonal cross section has been described. However, the present invention is not necessarily limited thereto. For example, a depression such as a triangle or a rectangle may be used, or a star-shaped depression may be used.

10 切削工具
20 シャンク用部材(第2部材)
21 シャンク部
23 被嵌合凸部(被嵌合部)
30 切削刃用部材(第1部材)
31 切れ刃
32 平端面(軸方向端面)
40 中間部材
42 第2端面(軸方向端面)
43,243,543,643 嵌合凹部(嵌合部)
343,443 嵌合凸部(嵌合部)
10 Cutting tool 20 Shank member (second member)
21 Shank part 23 Fitting convex part (fitting part)
30 Cutting blade member (first member)
31 Cutting edge 32 Flat end face (Axial end face)
40 Intermediate member 42 Second end face (end face in the axial direction)
43, 243, 543, 643 Fitting recess (fitting part)
343,443 Fitting convex part (fitting part)

Claims (7)

超硬合金から形成され切れ刃を有する第1部材と、鋼材から形成されシャンク部を有する第2部材と、それら第1部材および第2部材の軸方向端面の間に介在される中間部材とを備えた切削工具において、
前記中間部材は、軸方向端面に形成される嵌合部を備えると共に、前記第1部材または第2部材のうちの一方は、前記中間部材における嵌合部に嵌合可能に軸方向端面に形成される被嵌合部を備え、
前記中間部材における嵌合部と前記第1部材または第2部材のうちの一方における被嵌合部とが嵌合されると共に前記嵌合部が形成される側とは反対側の前記中間部材の軸方向端面に前記第1部材または第2部材のうちの他方における軸方向端面が当接された状態で、前記第1部材および第2部材が軸まわりに相対回転された後に軸方向に圧接されることで、前記第1部材および中間部材の接合と前記中間部材および第2部材の接合とが行われていることを特徴とする切削工具。
A first member made of cemented carbide and having a cutting edge; a second member made of steel and having a shank portion; and an intermediate member interposed between axial end surfaces of the first member and the second member. In the provided cutting tool,
The intermediate member includes a fitting portion formed on an axial end surface, and one of the first member and the second member is formed on the axial end surface so as to be fitted to the fitting portion of the intermediate member. Provided with a fitted portion,
The fitting portion of the intermediate member and the fitted portion of one of the first member and the second member are fitted, and the intermediate member on the side opposite to the side on which the fitting portion is formed. With the axial end surface of the other of the first member and the second member in contact with the axial end surface, the first member and the second member are pressed in the axial direction after being relatively rotated about the axis. Thus, the cutting tool, wherein the first member and the intermediate member are joined and the intermediate member and the second member are joined.
超硬合金から形成され切れ刃を有する第1部材と、鋼材から形成されシャンク部を有する第2部材と、それら第1部材および第2部材の軸方向端面の間に介在される中間部材とを備えた切削工具の製造方法において、
前記中間部材の軸方向端面に嵌合部を形成すると共に、前記第1部材または第2部材のうちの一方の軸方向端面に前記中間部材における嵌合部に嵌合可能な被嵌合部を形成する形成工程と、
その形成工程により形成された前記中間部材における嵌合部と前記第1部材または第2部材のうちの一方における被嵌合部とを嵌合させる嵌合工程と、
その嵌合工程により前記第1部材または第2部材のうちの一方における被嵌合部と前記中間部材における前記嵌合部とを嵌合させた後、前記中間部材の前記嵌合部が形成される側とは反対側の軸方向端面と前記第1部材または第2部材のうちの他方における軸方向端面とを当接させる当接工程と、
その当接工程により前記中間部材の前記嵌合部が形成される側とは反対側の軸方向端面と前記第1部材または第2部材のうちの他方の軸方向端面とを当接させた状態から、前記第1部材および第2部材を軸まわりに相対回転させた後に軸方向に圧接することで、前記第1部材および中間部材の接合と前記中間部材および第2部材の接合とを行う接合工程と、を備えることを特徴とする切削工具の製造方法。
A first member made of cemented carbide and having a cutting edge; a second member made of steel and having a shank portion; and an intermediate member interposed between axial end surfaces of the first member and the second member. In the manufacturing method of the provided cutting tool,
A fitting portion is formed on the axial end surface of the intermediate member, and a fitted portion that can be fitted to the fitting portion of the intermediate member on one axial end surface of the first member or the second member. Forming process to form;
A fitting step of fitting a fitting portion in the intermediate member formed by the forming step and a fitted portion in one of the first member and the second member;
After the fitting process, the fitted portion in one of the first member and the second member and the fitting portion in the intermediate member are fitted, and then the fitting portion of the intermediate member is formed. An abutting step of abutting an axial end surface opposite to the first side and an axial end surface of the other of the first member and the second member;
A state in which the axial end surface of the intermediate member opposite to the side on which the fitting portion is formed is brought into contact with the other axial end surface of the first member or the second member by the contact step. Then, the first member and the second member are rotated relative to each other around the axis, and then pressed in the axial direction, thereby joining the first member and the intermediate member and joining the intermediate member and the second member. And a cutting tool manufacturing method comprising: a step.
前記嵌合部が前記中間部材と同軸の円柱状の凸部として形成され、かつ、前記被嵌合部が前記第1部材または第2部材のうちの一方と同軸であって前記凸部の外径よりも小さな内径の断面円形の凹部として形成される、又は、前記嵌合部が前記中間部材と同軸の断面円形の凹部として形成され、かつ、前記被嵌合部が前記第1部材または第2部材のうちの一方と同軸であって前記凹部の内径よりも大きな外形の円柱状の凸部として形成されることを特徴とする請求項1記載の切削工具または請求項2記載の切削工具の製造方法。   The fitting portion is formed as a cylindrical convex portion coaxial with the intermediate member, and the fitted portion is coaxial with one of the first member or the second member and outside the convex portion. A recess having a circular cross section having an inner diameter smaller than the diameter, or the fitting portion being formed as a circular recess having a circular cross section coaxial with the intermediate member, and the fitted portion being the first member or the first 3. The cutting tool according to claim 1, wherein the cutting tool is formed as a cylindrical convex portion that is coaxial with one of the two members and has an outer shape larger than an inner diameter of the concave portion. Production method. 前記嵌合部が凹部として形成され、かつ、前記被嵌合部が凸部として形成されることを特徴とする請求項3記載の切削工具または切削工具の製造方法。   The method for manufacturing a cutting tool or a cutting tool according to claim 3, wherein the fitting portion is formed as a concave portion, and the fitted portion is formed as a convex portion. 前記被嵌合部は前記第2部材に形成されることを特徴とする請求項1から4のいずれかに記載の切削工具または切削工具の製造方法。   The said fitting part is formed in the said 2nd member, The manufacturing method of the cutting tool or cutting tool in any one of Claim 1 to 4 characterized by the above-mentioned. 前記超硬合金は、WCを主成分とし、Co含有量が5wt%以上かつ16wt%以下に設定されると共に、硬さが89HRA以上かつ95HRA以下に設定されることを特徴とする請求項1から5のいずれかに記載の切削工具または切削工具の製造方法。   The cemented carbide is mainly composed of WC, the Co content is set to 5 wt% or more and 16 wt% or less, and the hardness is set to 89 HRA or more and 95 HRA or less. 6. The cutting tool according to any one of 5 or a method for producing a cutting tool. 前記中間部材は、Co−Ni−Fe合金から形成され、少なくともCo含有量が5wt%以上かつ40wt%以下に、Ni含有量が20wt%以上かつ50wt%以下に、それぞれ設定されることを特徴とする請求項6記載の切削工具または切削工具の製造方法。
The intermediate member is formed of a Co-Ni-Fe alloy, and at least the Co content is set to 5 wt% to 40 wt%, and the Ni content is set to 20 wt% to 50 wt%. The manufacturing method of the cutting tool or cutting tool of Claim 6.
JP2014088338A 2014-04-22 2014-04-22 Cutting tool that bonds superhard alloy and steel material, and method of manufacturing the cutting tool Withdrawn JP2015205329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014088338A JP2015205329A (en) 2014-04-22 2014-04-22 Cutting tool that bonds superhard alloy and steel material, and method of manufacturing the cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014088338A JP2015205329A (en) 2014-04-22 2014-04-22 Cutting tool that bonds superhard alloy and steel material, and method of manufacturing the cutting tool

Publications (1)

Publication Number Publication Date
JP2015205329A true JP2015205329A (en) 2015-11-19

Family

ID=54602632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014088338A Withdrawn JP2015205329A (en) 2014-04-22 2014-04-22 Cutting tool that bonds superhard alloy and steel material, and method of manufacturing the cutting tool

Country Status (1)

Country Link
JP (1) JP2015205329A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018172668A (en) * 2017-03-31 2018-11-08 積水化学工業株式会社 Acrylic adhesive composition and adhesive sheet
JPWO2018092187A1 (en) * 2016-11-15 2019-10-10 住友電工ハードメタル株式会社 Cutting tools
CN113950384A (en) * 2019-07-04 2022-01-18 西铁城时计株式会社 Machine tool and machining method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281454A (en) * 1995-04-06 1996-10-29 Ishikawajima Harima Heavy Ind Co Ltd Method for joining titanium-aluminide and low alloy steel or plain steel
JPH11320132A (en) * 1998-05-07 1999-11-24 Mitsubishi Heavy Ind Ltd Joining method for titanium-aluminum alloy member and constructive steel member, and joined part
JP2000015513A (en) * 1998-06-30 2000-01-18 Hitachi Tool Engineering Ltd Cemented carbide twist drill
JP2004216410A (en) * 2003-01-14 2004-08-05 Takeshi Honda Cutting tool and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281454A (en) * 1995-04-06 1996-10-29 Ishikawajima Harima Heavy Ind Co Ltd Method for joining titanium-aluminide and low alloy steel or plain steel
JPH11320132A (en) * 1998-05-07 1999-11-24 Mitsubishi Heavy Ind Ltd Joining method for titanium-aluminum alloy member and constructive steel member, and joined part
JP2000015513A (en) * 1998-06-30 2000-01-18 Hitachi Tool Engineering Ltd Cemented carbide twist drill
JP2004216410A (en) * 2003-01-14 2004-08-05 Takeshi Honda Cutting tool and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018092187A1 (en) * 2016-11-15 2019-10-10 住友電工ハードメタル株式会社 Cutting tools
JP2018172668A (en) * 2017-03-31 2018-11-08 積水化学工業株式会社 Acrylic adhesive composition and adhesive sheet
JP7112227B2 (en) 2017-03-31 2022-08-03 積水化学工業株式会社 Acrylic pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet
CN113950384A (en) * 2019-07-04 2022-01-18 西铁城时计株式会社 Machine tool and machining method
CN113950384B (en) * 2019-07-04 2024-03-01 西铁城时计株式会社 Machine tool and machining method

Similar Documents

Publication Publication Date Title
EP3260230B1 (en) Joining method and method for manufacturing composite rolled material
US9745855B2 (en) Linear friction welding apparatus and method
JP2015205329A (en) Cutting tool that bonds superhard alloy and steel material, and method of manufacturing the cutting tool
JP2000301364A (en) Rotation friction agitation joining method of dissimiliar metal material
US7469569B2 (en) Wire drawing die and method of making
JPH0647570A (en) Friction welding method for different material
JP5234505B2 (en) Method and apparatus for joining metal members
JP5846525B2 (en) Composite member manufacturing method and composite member
JP7223064B2 (en) Shaft manufacturing method
JP2671757B2 (en) Mandrel bar manufacturing method for seamless pipe manufacturing
JP6329720B2 (en) Composite member manufacturing method, composite member and composite member manufacturing apparatus
JP2004216410A (en) Cutting tool and its manufacturing method
JP6795124B2 (en) Joining structure, joining method and automobile parts
JP4732559B2 (en) Manufacturing method of joint
EP4019180A1 (en) Coupling joint, automobile member, and method for manufacturing coupling joint
EP3287225A1 (en) Rotary friction welding process ; axisymmetric workpiece for use in such rotary friction welding process
JP7297813B2 (en) Manufacturing method of cylindrical member
JP2005271016A (en) Friction welding method of steel tube and aluminum alloy hollow member
WO2023176178A1 (en) Punch for riveting, device in which punch for riveting is disposed, and method for joining members
JP2004034140A (en) Method of producing butt joint, butt joint and friction stirring joining method
JP4781804B2 (en) Machine element joining method
JPS6360081A (en) Manufacture of fuel jet high pressure pipe
JP2005230888A (en) Manufacturing method of excavating tool
JP2004298935A (en) Friction pressure joining method
JP2016068127A (en) Jointing method, and joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20171012