JP2005230888A - Manufacturing method of excavating tool - Google Patents

Manufacturing method of excavating tool Download PDF

Info

Publication number
JP2005230888A
JP2005230888A JP2004045740A JP2004045740A JP2005230888A JP 2005230888 A JP2005230888 A JP 2005230888A JP 2004045740 A JP2004045740 A JP 2004045740A JP 2004045740 A JP2004045740 A JP 2004045740A JP 2005230888 A JP2005230888 A JP 2005230888A
Authority
JP
Japan
Prior art keywords
bit
shank
excavation
end surface
rear end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004045740A
Other languages
Japanese (ja)
Inventor
Takeshi Honda
武士 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004045740A priority Critical patent/JP2005230888A/en
Publication of JP2005230888A publication Critical patent/JP2005230888A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an excavating tool, which can efficiently produce the excavating tool with an excavating bit made of cemented carbide. <P>SOLUTION: A rod-like intermediate member to connect an excavating bit member made of cemented carbide with a shank member made of steel, and the shank member made of steel are bonded utilizing friction heat generated by forcibly pressing them coaxially while one member is rotated and the other is fixed. Then a composite member thus obtained and the excavating bit member made of cemented carbide are similarly friction-bonded to compose the excavating tool material, and then subjected to a surface treatment to complete the excavating tool. An Fe-Ni-Co alloy is desirable for the intermediate member material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、超硬合金製の掘削ビットを有する、トンネルの掘削に適した工具の製造方法に関する。   The present invention relates to a method for manufacturing a tool having a drill bit made of cemented carbide and suitable for tunnel excavation.

従来トンネル掘削などに用いる掘削機の刃先であるラウンドビットには、超硬合金製の先端部分を有するコニカルビットが用いられている。
このコニカルビットは、鋼材シャンク部に掘削する先端に超硬ビットをシャンク孔に圧入またはロウ付けにより接合され、製造されている。この場合、超硬ビットが衝撃のために脱落したり、シャンクの磨耗が早い。この要因として超硬ビットと鋼材シャンクとの密着性が悪く、ロー付けのためにシャンクの硬度に制限があり、耐摩耗性に欠ける。またロー付けのための超硬部の長さ・洗浄・穴あけ加工・熱源等、コスト高になる。
Conventionally, a conical bit having a tip portion made of cemented carbide is used for a round bit which is a cutting edge of an excavator used for tunnel excavation or the like.
This conical bit is manufactured by joining a carbide bit to a tip of a steel material shank portion by press-fitting or brazing into a shank hole. In this case, the carbide bit falls off due to impact or the shank wears quickly. As a factor, the adhesion between the carbide bit and the steel shank is poor, the hardness of the shank is limited due to brazing, and the wear resistance is lacking. In addition, the length of the cemented carbide part for brazing, cleaning, drilling, heat source, etc. will be expensive.

掘削ビットが超硬合金製であり、シャンク部が鋼材製の一体的な掘削工具を構成するには、超硬合金製の掘削ビット部材と、鋼材製のシャンク用部材とを準備し、この掘削ビット部材とシャンク用部材とをロウ付けまたは圧入により接合し、その後、掘削用工具が形成され、熱処理・研削加工を施すといった方法が広く用いられている。   A drill bit made of cemented carbide and a steel shank member are prepared and the drill bit is made of cemented carbide and the shank portion is made of steel. A method is widely used in which a bit member and a shank member are joined by brazing or press-fitting, and then an excavation tool is formed, followed by heat treatment and grinding.

より詳細に従来の掘削ビットの製造方法を説明する。従来の超硬合金のロウ付け作業は次のように行っていた。
先ずビットの刃先となる超硬合金と支持体となる鋼材シャンクを接合するためにロウ付け作業は、ストレート又はテーパ孔加工を行う。次にロウ付けする超硬合金と鋼材シャンクを、溶剤を使って十分洗浄してロウ材と専用のフラックスを塗布する。その後に銅ロウ又は銀ロウを挟んで固定して、加熱炉(電気炉・コークス炉・ガスバーナー・高周波等)で加熱する。ロウが溶けて一面に拡散したら、加熱を止めて細い棒で超硬合金を動かすか、又は軽く叩きその後で正常な位置に固定加圧しロウの固まるのを待つ。ロウの厚さはなるべく薄く、各部均一にロウが廻るようにした後、石灰木灰などを使用して徐冷する。また接合を完全にするために銅ロウと銀ロウを二重にロウ付けすることもある。
しかしながら、従来のロウ付け作業においては、このように時間と手間をかけても、超硬合金と鋼材シャンクのロウ付けの際発生する残留応力のために超硬合金にしばしばクラックが起き易いので、加工費以外の重大な難点がある。さらにこの方法では鋼材の硬度を上げられず、磨耗しやすく、衝撃に弱いため脱落することもある。
A conventional method for manufacturing a drill bit will be described in more detail. Conventional cemented carbide brazing operations were performed as follows.
First, in order to join a cemented carbide that is a cutting edge of a bit and a steel shank that is a support, a brazing operation is performed by straight or tapered holes. Next, the cemented carbide and steel shank to be brazed are thoroughly cleaned using a solvent, and the brazing material and a special flux are applied. Thereafter, it is fixed with copper or silver solder, and heated in a heating furnace (electric furnace, coke oven, gas burner, high frequency, etc.). When the wax melts and spreads across the surface, stop heating and move the cemented carbide with a thin rod, or tap it lightly, then fix and press at a normal position and wait for the wax to harden. The thickness of the wax is as thin as possible, and after each wax is made to rotate uniformly, it is gradually cooled using lime wood ash or the like. In order to complete the bonding, copper brazing and silver brazing may be double brazed.
However, in the conventional brazing operation, even if it takes time and effort in this way, the cemented carbide often tends to crack due to the residual stress generated when brazing the cemented carbide and the steel shank. There are serious difficulties other than processing costs. Further, this method cannot increase the hardness of the steel material, is easily worn out, and may fall off because it is vulnerable to impact.

従来のロウ付け又は圧入によるビットの製造方法においては、ビット用部材とシャンク用部材との間にロウ材を配置し、有害の溶剤洗浄や加熱装置、またビットは外径の2〜3倍の長さが必要である。特に従来品は磨耗が早く、しばしば溶接による肉盛りをしながら使用している状況である。その加工コスト、材料費、耐磨耗性等、すべてに問題であった。   In the conventional method of manufacturing a bit by brazing or press-fitting, a brazing material is arranged between the bit member and the shank member, and the harmful solvent cleaning and heating device, and the bit is 2 to 3 times the outer diameter. Length is needed. In particular, conventional products wear quickly and are often used while being welded. The processing cost, material cost, wear resistance, etc. were all problems.

そこで本発明は超硬合金製のビット部を有する掘削ビットを効率的に、且つ信頼性の高い掘削ビットの製造方法を提供することを目的としている。   SUMMARY OF THE INVENTION An object of the present invention is to provide a drill bit having a bit portion made of cemented carbide that is efficient and highly reliable.

本発明は、超硬ビット部を1/3程度の長さの傘状にして、シャンク部の孔加工を無くし、固相拡散接合によりコスト削減し、なおかつこの接合技術により、外周は硬化し内部は軟化して、耐衝撃性に富む理想的なラウンドビットが製造できることに着目し、また鋼材シャンクの表面硬度は焼き入れ限界まで可能で、耐摩耗性にも格段に優れるという知見を得て完成したものである。   The present invention makes the carbide bit part an umbrella shape of about 1/3 length, eliminates the hole processing of the shank part, reduces the cost by solid phase diffusion bonding, and further, the outer periphery is hardened by this joining technique. Focusing on the fact that it can soften and produce ideal round bits with high impact resistance, and the surface hardness of steel shanks can reach the limit of quenching, and it is completed with the knowledge that it has outstanding wear resistance It is a thing.

本発明の掘削ビットの他の製造方法は、軸方向とほぼ直交するように広がる先端面をもつ鋼材製の棒状シャンク用部材と、軸方向とほぼ直交するように広がる後端面をもつ接合用の棒状中間材用部材をそれぞれ準備し、前記シャンク用部材及び前記中間材部材の一方を回転させ、他方を固定すると共に、前記シャンク用部材の先端面と前記中間材部材の後端面とを押し付けることによって、前記シャンク用部材と前記中間材部材との間に、前記シャンク用部材の先端部及び前記中間材部材の後端部を軟化させるのに十分な摩擦熱を発生させ、前記摩擦熱によって前記シャンク用部材または中間材用部材の回転を停止し、圧力をかけて前記シャンク用部材の先端面と前記中間材用部材の後端面とを圧接させて前期シャンク用部材と前記中間材部材とを接合する工程と、
得られた複合部材と、超硬合金製の傘状のビットとを準備し、前記部材及び前記ビット用部材の一方を回転させ、他方を固定するとともに、前記複合部材の中間材側を円錐状に加工した先端面と前記ビット用部材の後端面を軟化させるのに十分な摩擦熱を発生させ、前記摩擦熱によって前記複合部材の中間材先端部及び前記ビット用部材の後端部が十分に軟化したときに、前記複合部材または前記ビット用部材の回転を停止し、圧力をかけ前記複合部材の中間材先端面と前記ビット部材の後端面とを圧接させて前記複合部材と前記ビット用部材とを接合し、得られた掘削ビット部材を低温徐冷却して、前記掘削用ビットとこれに接合した鋼材シャンク材からなる掘削用工具を製造するものである。
また、その後、必要な表面塗装や表面研磨などの処理を施すこともできる。
Another manufacturing method of the excavation bit of the present invention is for joining a steel rod-shaped shank member having a tip surface extending so as to be substantially orthogonal to the axial direction and a rear end surface extending so as to be substantially orthogonal to the axial direction. Preparing each of the rod-shaped intermediate member, rotating one of the shank member and the intermediate member, fixing the other, and pressing the front end surface of the shank member and the rear end surface of the intermediate member To generate frictional heat sufficient to soften the front end of the shank member and the rear end of the intermediate member between the shank member and the intermediate member, and the frictional heat causes the Stop the rotation of the shank member or intermediate member and apply pressure to bring the front end surface of the shank member and the rear end surface of the intermediate member into pressure contact with each other. And bonding the bets,
Preparing the obtained composite member and a cemented carbide umbrella-shaped bit, rotating one of the member and the bit member and fixing the other, and concentrating the intermediate member side of the composite member Friction heat sufficient to soften the front end surface processed into a bit and the rear end surface of the bit member is generated, and the intermediate material front end portion of the composite member and the rear end portion of the bit member are sufficiently generated by the friction heat. When softened, the rotation of the composite member or the bit member is stopped, pressure is applied to press the intermediate material front end surface of the composite member and the rear end surface of the bit member, and the composite member and the bit member , And the obtained excavation bit member is slowly cooled at a low temperature to produce an excavation tool comprising the excavation bit and a steel shank material bonded to the excavation bit.
Thereafter, necessary processing such as surface coating and surface polishing can be performed.

また、上記本発明において、前記シャンク用複合部材とビットとを摩擦圧接した後、十分に低温徐冷却することが重要である。   In the present invention, it is important that the shank composite member and the bit are friction-welded and then cooled sufficiently at a low temperature.

この方法によれば、熱膨張率差の大きな超硬合金製傘状ビット用部材と鋼材製棒状シャンク部材を用いた場合においても、クラックなどによる破損のない耐圧、耐磨耗に優れた掘削用ラウンドビットを製造することができる。   According to this method, even when a cemented carbide umbrella bit member and a steel rod-shaped shank member with a large difference in thermal expansion coefficient are used, excavation is excellent in pressure resistance and wear resistance without damage due to cracks, etc. Round bits can be manufactured.

以上説明したように、本発明によれば、先端側に超硬合金製のビット部を有する掘削用工具を工程中においてクラック等による破損もなく、効率的に製造することができしかも、超硬合金製の掘削ビット用部材と鋼材製のシャンク用部材との接合強度を、ロウ付けによる接合の場合と比較してかなり大きくすることができる。   As described above, according to the present invention, an excavation tool having a cemented carbide bit portion on the tip side can be efficiently manufactured without breakage due to cracks or the like during the process. The joining strength between the alloy excavation bit member and the steel shank member can be considerably increased as compared with the joining by brazing.

[掘削工具]
まず、本発明のコニカルビットは、その正面図である図1に見られるように、鋼材などで形成される把持部53を有するシャンク材52と、その先端部に結合されたビット本体である超硬合金製のような刃先部51とからなっている。そして、このシャンク材と、刃先部とは、極薄い中間材54で接合されている。この中間材の詳細については、後述する。
[Drilling tools]
First, as shown in FIG. 1 which is a front view of the conical bit of the present invention, a shank material 52 having a gripping portion 53 formed of steel or the like, and a bit body coupled to the tip portion of the conical bit It consists of a cutting edge 51 made of hard alloy. And this shank material and the blade edge | tip part are joined by the very thin intermediate material 54. FIG. Details of the intermediate material will be described later.

[掘削工具の製造方法]
以下、上記掘削工具を製造する方法について説明する。
[Drilling tool manufacturing method]
Hereinafter, a method for manufacturing the excavation tool will be described.

(中間材を使用した接合)
この実施の形態は、超硬合金製ビット用部材と鋼材シャンク用部材とを中間材を用いて接合する例を示すものである。以下、本発明の実施の形態を、図面を参照して説明する。
(Join using intermediate material)
This embodiment shows an example in which a cemented carbide bit member and a steel shank member are joined using an intermediate material. Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図2〜6が、本発明に関わる掘削工具の製造方法のプロセスを概念的に説明する図である。   2-6 is a figure which illustrates notionally the process of the manufacturing method of the excavation tool in connection with this invention.

掘削ビットの製造方法を実施するために、ここでは、回転軸1の先端に取り付けられた回転挟み装置(チャック)3と、この回転挟み装置3と離接する方向にクランプ台5に回転挟み装置3と同軸的に取り付けられた非回転挟み装置(バイス)7とを備えた摩擦圧接機構9を用いている。   In order to carry out the manufacturing method of the excavation bit, here, a rotary pinch device (chuck) 3 attached to the tip of the rotary shaft 1 and a rotary pinch device 3 on the clamp table 5 in a direction to be in contact with and away from the rotary pinch device 3 are used. And a friction welding mechanism 9 including a non-rotating pinching device (vise) 7 that is coaxially mounted.

まず、適当な径と長さを有する棒状の中間材部材25と、この中間材用部材25とほぼ同径で、適当な長さと形状の鋼材製シャンク部材13とを準備し、中間材用部材25を回転挟み装置3で挟んで回転軸1側に固定し、シャンク用部材13を非回転挟み装置7で挟んでクランプ台5側に固定する(図2)。   First, a rod-shaped intermediate member 25 having an appropriate diameter and length, and a steel shank member 13 having an appropriate length and shape that is substantially the same diameter as the intermediate member 25 are prepared. 25 is clamped by the rotary pinch device 3 and fixed to the rotary shaft 1 side, and the shank member 13 is pinched by the non-rotary pinch device 7 and fixed to the clamp base 5 side (FIG. 2).

この状態で、回転軸1を回転させて中間材部材25を回転させると共に、中間材用部材25をクランプ台5側にスライド移動させ、中間材部材25の後端面27にシャンク用部材13の先端面17を同心的に押し付けて、中間材部材13との間に摩擦熱を発生させる。(図3)中間材用部材25の後端面27及びシャンク用部材13の先端面17はともに、軸方向とほぼ直交して広がるように形成されているので、中間材用部材25の後端面27とシャンク用部材13に先端面17とは全面的に接触した状態で回転することになる。   In this state, the rotation shaft 1 is rotated to rotate the intermediate member 25, and the intermediate member 25 is slid to the clamp base 5 side, and the tip of the shank member 13 is placed on the rear end surface 27 of the intermediate member 25. The surface 17 is pressed concentrically to generate frictional heat with the intermediate member 13. (FIG. 3) Since both the rear end surface 27 of the intermediate member 25 and the front end surface 17 of the shank member 13 are formed so as to extend substantially orthogonal to the axial direction, the rear end surface 27 of the intermediate member 25 is formed. Thus, the tip member 17 rotates with the shank member 13 in full contact with the tip end surface 17.

摩擦熱を発生させる過程で、回転軸1の回転数は一定に維持されるが、クランプ台5の押圧による中間材用部材の後端面27とシャンク用部材13の先端面17との押し付け力は漸次大きくなるように構成されている。回転軸1の一定に維持される回転数は、毎分1000回転乃至10000回転の範囲内で選択される。   In the process of generating frictional heat, the rotational speed of the rotary shaft 1 is kept constant, but the pressing force between the rear end surface 27 of the intermediate member and the front end surface 17 of the shank member 13 due to the pressing of the clamp base 5 is It is comprised so that it may become large gradually. The number of rotations of the rotating shaft 1 that is maintained constant is selected within a range of 1000 to 10,000 rotations per minute.

中間材部材25とシャンク用部材13との間に発生した摩擦熱により、シャンク用部材13の先端部17及び中間材部材25の後端部が十分に軟化したときに、回転軸1の回転を急停止させ、クランプ台5による押圧力を高めるいわゆる二次加圧(アプセット加圧)を行い、シャンク用部材13の先端面17を中間材部材25の後端面27に強く圧接させる。これによって、中間材用部材25の後端部27及びシャンク用部材13の先端部が十分塑性変形して接合することとなる(図3)。   When the front end portion 17 of the shank member 13 and the rear end portion of the intermediate member 25 are sufficiently softened by the frictional heat generated between the intermediate member 25 and the shank member 13, the rotation of the rotary shaft 1 is caused. A so-called secondary pressurization (upset pressurization) for increasing the pressing force by the clamp base 5 is performed suddenly, and the front end surface 17 of the shank member 13 is strongly pressed against the rear end surface 27 of the intermediate member 25. As a result, the rear end portion 27 of the intermediate member 25 and the front end portion of the shank member 13 are sufficiently plastically deformed and joined (FIG. 3).

この工程において、中間材部材25の後端面27とシャンク用部材13の先端面17とは全面的に接触した状態で回転しているので、中間材用部材25の後端部とシャンク用部材13の先端部は全面的に又は全体的に必要な温度まで短時間で加熱されて十分軟化し、したがって、中間材用部材25とシャンク用部材13との固相拡散接合によって強固なものとなる。二次加圧後、得られた中間材用部材25とシャンク用部材13とで形成された複合部材31を炉内に収容し、低温徐冷却を行い、発生したバリを切削加工して、複合シャンク部材31とする。また、この中間材用部材25の厚さは0〜1.0mmとすることが望ましく、そのためには、この複合シャンク用部材31を以下、超硬合金製ビット用部材と摩擦圧接する際、寄り代と微振動防止のための切削加工を行う。   In this step, the rear end surface 27 of the intermediate member 25 and the front end surface 17 of the shank member 13 rotate in a state where they are in full contact with each other, so that the rear end portion of the intermediate member 25 and the shank member 13 are rotated. The front end portion is heated to the required temperature entirely or entirely in a short time and is sufficiently softened, and thus becomes solid by solid phase diffusion bonding between the intermediate member 25 and the shank member 13. After the secondary pressurization, the composite member 31 formed by the obtained intermediate member 25 and the shank member 13 is housed in a furnace, subjected to low-temperature slow cooling, and the generated burrs are cut and processed. The shank member 31 is used. The thickness of the intermediate member 25 is preferably 0 to 1.0 mm. For this purpose, when the composite shank member 31 is friction-welded with the cemented carbide bit member, Cutting for cost and prevention of micro-vibration.

次いで、こうして得られた中間材用部材25とシャンク用部材13とで形成された複合シャンク部材31を、回転挟み付け装置(チャック)3で挟んで回転軸1側に固定し、一方、超硬合金製ビット用部材11側端部が回転軸1側に近接するように非回転挟み付け装置7(コレットチャック)を挟んでクランプ台5側に固定する(図4)。   Next, the composite shank member 31 formed by the intermediate member 25 and the shank member 13 obtained in this manner is sandwiched by the rotational clamping device (chuck) 3 and fixed to the rotary shaft 1 side, while the carbide The non-rotating pinching device 7 (collet chuck) is sandwiched and fixed to the clamp table 5 side so that the end portion on the alloy bit member 11 side is close to the rotating shaft 1 side (FIG. 4).

この状態で、回転軸1を回転させて複合シャンク部材31を回転させると共に、超硬合金製ビット11をクランプ台5をスライド移動させ、ビット11の後端面15に複合シャンク用部材31の先端面29を同心的に押し付けて、ビット用部材11と複合シャンク部材31との間に摩擦熱を発生させる(図5)。ビット用部材11の後端面15及び複合シャンク部材31の先端面29はともに、軸方向とほぼ直交して広がるように形成されているので、ビット用部材11の後端面15と複合シャンク部材31の先端面29とは全面的に接触した状態で回転することになる。   In this state, the rotary shaft 1 is rotated to rotate the composite shank member 31, and the cemented carbide bit 11 is slid on the clamp base 5, so that the front end surface of the composite shank member 31 is placed on the rear end surface 15 of the bit 11. 29 is pressed concentrically to generate frictional heat between the bit member 11 and the composite shank member 31 (FIG. 5). Since both the rear end surface 15 of the bit member 11 and the front end surface 29 of the composite shank member 31 are formed so as to extend substantially perpendicular to the axial direction, the rear end surface 15 of the bit member 11 and the composite shank member 31 The tip end surface 29 rotates while being in full contact.

摩擦熱を発生させる過程で、回転軸1の回転数は一定に維持されるが、クランプ台5の押圧によるビット用部材11の後端面15と複合シャンク部材31の先端面29との押し付け力は漸次大きくなるように構成されている。回転軸1の一定に維持される回転数は、毎分1000回転乃至10000回転の範囲内で選択される。   In the process of generating frictional heat, the rotational speed of the rotary shaft 1 is kept constant, but the pressing force between the rear end surface 15 of the bit member 11 and the front end surface 29 of the composite shank member 31 due to the pressing of the clamp base 5 is It is comprised so that it may become large gradually. The number of rotations of the rotating shaft 1 that is maintained constant is selected within a range of 1000 to 10,000 rotations per minute.

ビット用部材11と複合シャンク部材31との間に発生した摩擦熱により、複合シャンク用部材31の先端部及びビット用部材11の後端部が十分に軟化したときに、回転軸1の回転を急停止させ、スライド部材5による押圧力を高めるいわゆる二次加圧(アプセット加圧)を行い、複合シャンク部材31の先端面29をビット用部材11の後端面15に強く圧接させる。これによって、ビット用部材11の後端部及び複合シャンク部材31の先端部が十分塑性変形して固相拡散接合することになる(図5)。   When the front end portion of the composite shank member 31 and the rear end portion of the bit member 11 are sufficiently softened by frictional heat generated between the bit member 11 and the composite shank member 31, the rotation shaft 1 is rotated. A so-called secondary pressurization (upset pressurization) for increasing the pressing force by the slide member 5 is performed suddenly, and the front end surface 29 of the composite shank member 31 is pressed strongly against the rear end surface 15 of the bit member 11. As a result, the rear end portion of the bit member 11 and the front end portion of the composite shank member 31 are sufficiently plastically deformed and solid phase diffusion bonded (FIG. 5).

この工程において、ビット用部材11の後端面15と複合部材31の先端面29とは全面的に接触した状態で回転しているので、ビット用部材11の後端部と複合部材31の先端部は全面的に又は全体的に必要な温度まで短時間に加熱されて十分軟化し、したがってビット用部材11と複合部材31との接合は強固なものとなる。
二次加工後、軸方向の寸法決めをし、接合が完了した時点で、炉内で低温徐冷却を行い、発生したバリを切削加工して、掘削用ビットを製造する。
In this step, the rear end surface 15 of the bit member 11 and the front end surface 29 of the composite member 31 rotate in a state where they are in full contact with each other, so that the rear end portion of the bit member 11 and the front end portion of the composite member 31 are rotated. Is heated to a necessary temperature over the entire surface or the entire surface in a short time and sufficiently softened, so that the bonding between the bit member 11 and the composite member 31 becomes strong.
After the secondary processing, the axial dimension is determined, and when joining is completed, low-temperature slow cooling is performed in the furnace, and the generated burrs are cut to manufacture a drilling bit.

次に、ビット用部材11及び複合部材31の接合により構成された掘削ビット用部材19を摩擦圧接機構9から取り外し、この掘削ビット用部材に19に必要な表面処理を行い、掘削用ラウンドビット23が製造される(図6)。   Next, the excavation bit member 19 formed by joining the bit member 11 and the composite member 31 is removed from the friction welding mechanism 9, and the surface treatment necessary for the excavation bit member 19 is performed, and the excavation round bit 23 Is manufactured (FIG. 6).

この実施形態で用いている中間材としては、鉄−ニッケル−コバルト系合金が適している。これらの構成元素の比率は、ニッケル25〜40重量%、コバルト15〜30重量%及び残部鉄からなるものであり、具体的には、コバールと呼ばれているニッケル29重量%、コバルト17重量%、及び主に残部鉄からなるものが好ましい。この合金には、不可避的に少量の炭素、珪素、マンガンなどが含まれていても差し支えない。   As the intermediate material used in this embodiment, an iron-nickel-cobalt alloy is suitable. The ratio of these constituent elements is composed of nickel 25 to 40% by weight, cobalt 15 to 30% by weight and the balance iron, specifically, nickel 29% by weight called cobalt, 17% by weight cobalt. And what consists mainly of remainder iron is preferable. This alloy may inevitably contain a small amount of carbon, silicon, manganese or the like.

この中間材は、最終的に製造された掘削用ラウンドビットにおいて、0〜1mm程度の範囲で存在していることが好ましく、0.05〜0.10mmであることが望ましい。この中間材の長さが1mm以上になった場合、接合強度が弱くなることもある。ただし、接合しようとする超硬合金の成分とシャンク用鋼材の成分に応じた中間材の選択が最も重要である。   This intermediate material is preferably present in the range of about 0 to 1 mm in the finally produced round bit for excavation, and preferably 0.05 to 0.10 mm. When the length of the intermediate material is 1 mm or more, the bonding strength may be weakened. However, it is most important to select an intermediate material according to the components of the cemented carbide to be joined and the components of the steel material for shank.

なお、上記説明では、シャンク用部材と中間材部材との接合を行った後、得られた複合部材と超硬合金製部材との接合を行った例を示したが、逆に超硬合金製部材と中間材部材との接合を行った後、シャンク用部材との接合を行っても差し支えない。
In the above description, the example in which the obtained composite member and the cemented carbide member are joined after joining the shank member and the intermediate member is shown. After the member and the intermediate member are joined, the shank member may be joined.

本発明の掘削工具の正面図である。It is a front view of the excavation tool of the present invention. 本発明に関わる掘削工具の製造方法のプロセスを概念的に説明する図であり、中間材用部材及びシャンク用部材を摩擦圧接機構に取り付けた状態を示す図である。It is a figure which illustrates notionally the process of the manufacturing method of the excavation tool concerning this invention, and is a figure which shows the state which attached the member for intermediate materials, and the member for shank to the friction welding mechanism. 本発明に関わる掘削工具の製造方法のプロセスを概念的に説明する図であり、中間材用部材とシャンク用部材との間に摩擦熱を発生させ、中間材用部材の後端部とシャンク用部材の先端部とを接合させる工程を示す図である。It is a figure which illustrates notionally the process of the manufacturing method of the excavation tool in connection with this invention, generate | occur | produces friction heat between the member for intermediate materials, and the member for shank, and is used for the rear-end part of a member for intermediate materials, and a shank It is a figure which shows the process of joining the front-end | tip part of a member. 本発明に関わる掘削工具の製造方法のプロセスを概念的に説明する図であり、中間材用部材とシャンク用部材からなる複合部材と超硬合金製部材を摩擦圧接機構に取り付けた状態を示す図である。It is a figure which illustrates notionally the process of the manufacturing method of the excavation tool concerning this invention, and is the figure which shows the state which attached the composite member which consists of the member for intermediate | middle materials and the member for shank, and the member made from a cemented carbide to the friction welding mechanism. It is. 本発明に関わる掘削工具の製造方法のプロセスを概念的に説明する図であり、中間材用部材とシャンク用部材からなる複合部材と超硬合金製部材との間に摩擦熱を発生させる工程を示す図である。It is a figure which illustrates notionally the process of the manufacturing method of the excavation tool concerning this invention, and the process of generating friction heat between the composite member which consists of the member for intermediate | middle materials and the member for shank, and the member made from a cemented carbide. FIG. 本発明に関わる掘削工具の製造方法のプロセスを概念的に説明する図であり、中間用部材とシャンク用部材の先端部とが接合した複合部材と掘削用部材を接合させた状態を示す図である。It is a figure which illustrates notionally the process of the manufacturing method of the excavation tool concerning this invention, and is the figure which shows the state which joined the member for excavation, and the composite member which the intermediate member and the front-end | tip part of the member for shank joined. is there.

符号の説明Explanation of symbols

1 回転軸
3 回転挟み付け装置
5 クランプ台
7 非回転挟み付け装置
9 摩擦圧接機構
11 掘削用部材
13 シャンク用部材
15 掘削用部材の後端面
17 シャンク用部材の先端面
19 掘削工具素材
21 掘削用ビット
23 掘削工具
25 中間材用部材
27 中間材用部材の後端面
29 複合部材の中間材側先端面
31 中間材用部材とシャンク用部材の複合部材
51 刃先部
52 シャンク用部材
53 把持部
54 中間材
1 Rotating shaft
3 Rotary pinching device
5 Clamp stand
7 Non-rotating pinching device
DESCRIPTION OF SYMBOLS 9 Friction welding mechanism 11 Excavation member 13 Shank member 15 Rear end surface of excavation member 17 Front end surface of shank member 19 Excavation tool material 21 Excavation bit 23 Excavation tool 25 Intermediate material member 27 Rear end surface of intermediate material member 29 Composite member-side front end surface 31 Composite member of intermediate member and shank member 51 Cutting edge portion 52 Shank member 53 Holding portion 54 Intermediate material

Claims (5)

先端側に掘削ビット部が形成されたビットの製造方法であって、軸方向とほぼ直交するように広がる先端面をもつ鋼材製の棒状シャンク用部材と、軸方向とほぼ直交するように広がる後端面をもつ接合中間材の棒状部材とをそれぞれ準備する工程と、
前記シャンク用部材及び前記中間材用棒状部材の一方を回転させ、他方を固定すると共に、前記シャンク用部材の前記先端面と前記中間材用部材の前記後端面とを押し付けることによって、前記シャンク用部材と前記中間材用部材との間に、前記シャンク用部材の先端部及び前記掘削用ビット部材の後端部を軟化させるのに十分な摩擦熱を発生させる工程と、
前記摩擦熱によって前記シャンク用部材の前記先端部及び前記中間材用部材の前記後端部が十分に軟化したときに、前記シャンク用部材の前記先端面と前記中間材用部材の前記後端面とを圧接させて前記シャンク用部材と前記中間材用部材とを接合して複合部材を形成する工程と、
前記工程によって得られた複合部材と、超硬合金製の円錐状ビットとを準備する工程と、
前記複合部材及び前記掘削用ビットの一方を回転させ、他方を固定すると共に、前記複合部材の中間材側先端面と前記掘削用ビットの後端面とを押し付けることによって、前記複合部材の中間材と前記掘削用ビットとの間に、前記複合部材の先端部及び前記掘削用ビットの後端部を軟化させるのに十分な摩擦熱を発生させる工程と、
前記摩擦熱によって前記複合部材の前記中間材先端部及び前記掘削用ビットの前記後端部が十分に軟化したときに、前記複合部材の前記中間材先端面と前記堀削用ビットの前記後端面とを圧接させて前記複合材と前記掘削用ビットとを接合して掘削用工具素材を形成する工程と、
前記掘削用工具素材を低温徐冷却する工程とを備えたことを特徴とする掘削工具の製造方法。
A method of manufacturing a bit in which a drilling bit portion is formed on the tip side, and a steel rod-shaped shank member having a tip surface extending so as to be substantially orthogonal to the axial direction, and after spreading so as to be substantially orthogonal to the axial direction A step of preparing a rod-shaped member of a joining intermediate material having end faces,
One of the shank member and the intermediate member rod-like member is rotated, the other is fixed, and the front end surface of the shank member and the rear end surface of the intermediate member are pressed against each other. Generating a frictional heat sufficient to soften a tip portion of the shank member and a rear end portion of the excavation bit member between a member and the intermediate member;
When the front end of the shank member and the rear end of the intermediate member are sufficiently softened by the frictional heat, the front end surface of the shank member and the rear end surface of the intermediate member Forming a composite member by pressure-contacting the shank member and the intermediate material member;
A step of preparing the composite member obtained by the above-described step and a cemented carbide conical bit;
One of the composite member and the excavation bit is rotated, the other is fixed, and the intermediate member-side front end surface of the composite member and the rear end surface of the excavation bit are pressed, Generating frictional heat sufficient to soften the front end portion of the composite member and the rear end portion of the excavation bit between the excavation bit;
When the intermediate material front end portion of the composite member and the rear end portion of the excavation bit are sufficiently softened by the frictional heat, the intermediate material front end surface of the composite member and the rear end surface of the excavation bit Forming a tool material for excavation by joining the composite material and the excavation bit by pressure welding,
And a step of slowly cooling the excavation tool material at a low temperature.
前記シャンク用部材と前記中間材用部材とを接合して形成した複合部材を、さらに低温徐冷却することを特徴とする請求項1記載の掘削工具の製造方法。   The method for manufacturing an excavation tool according to claim 1, wherein the composite member formed by joining the shank member and the intermediate member is further cooled at a low temperature. 前記中間材が、鉄−ニッケル−コバルト合金であることを特徴とする請求項1記載の掘削工具の製造方法。   The method for manufacturing an excavating tool according to claim 1, wherein the intermediate material is an iron-nickel-cobalt alloy. 前記中間材である鉄−ニッケル−コバルト合金の組成が、ニッケル29〜34質量%、コバルト17〜22質量%、及び残部の鉄からなるものであることを特徴とする請求項3記載の掘削工具の製造方法。   The composition of the iron-nickel-cobalt alloy which is the said intermediate material consists of nickel 29-34 mass%, cobalt 17-22 mass%, and the remainder iron, The excavation tool of Claim 3 characterized by the above-mentioned. Manufacturing method. 前記中間材と前記シャンク部材と接合した後、中間材の軸方向長さを、0〜1mmとなるように調整し、次いで前記中間材端部に超硬合金ビットを接合することを特徴とする請求項4記載の掘削工具の製造方法。
After joining the intermediate material and the shank member, the axial length of the intermediate material is adjusted to be 0 to 1 mm, and then a cemented carbide bit is joined to the end of the intermediate material. The manufacturing method of the excavation tool of Claim 4.
JP2004045740A 2004-02-23 2004-02-23 Manufacturing method of excavating tool Pending JP2005230888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004045740A JP2005230888A (en) 2004-02-23 2004-02-23 Manufacturing method of excavating tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004045740A JP2005230888A (en) 2004-02-23 2004-02-23 Manufacturing method of excavating tool

Publications (1)

Publication Number Publication Date
JP2005230888A true JP2005230888A (en) 2005-09-02

Family

ID=35014363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004045740A Pending JP2005230888A (en) 2004-02-23 2004-02-23 Manufacturing method of excavating tool

Country Status (1)

Country Link
JP (1) JP2005230888A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144541A (en) * 2006-12-13 2008-06-26 Ohbayashi Corp Drilling bit
WO2009107594A1 (en) * 2008-02-29 2009-09-03 マニー株式会社 Method for connecting cemented carbide and stainless steel
CN112317947A (en) * 2020-09-08 2021-02-05 兰州理工大学 Continuous driving friction welding method for aluminum bar and steel bar with outer conical end face

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144541A (en) * 2006-12-13 2008-06-26 Ohbayashi Corp Drilling bit
WO2009107594A1 (en) * 2008-02-29 2009-09-03 マニー株式会社 Method for connecting cemented carbide and stainless steel
CN112317947A (en) * 2020-09-08 2021-02-05 兰州理工大学 Continuous driving friction welding method for aluminum bar and steel bar with outer conical end face

Similar Documents

Publication Publication Date Title
US6739327B2 (en) Cutting tool with hardened tip having a tapered base
JP5818819B2 (en) Bars and how to make bars
US20060043152A1 (en) Fracture resistant friction stir welding tools
JP4219671B2 (en) Thin plate joining method
JP6497451B2 (en) Friction stir welding method and apparatus
JP2003326372A (en) Tool for friction-stirring joining
JP2004522591A (en) Friction stir welding tool
JP2011527979A (en) Method for bonding SiC-diamond
JP2000301364A (en) Rotation friction agitation joining method of dissimiliar metal material
JP4017992B2 (en) Cutting tool manufacturing method
JP2005230888A (en) Manufacturing method of excavating tool
JP2004082144A (en) Tool and method for friction stir welding
TW201615543A (en) Diamond-containing brazing material and diamond-bonded tools utilizing same
JP7460872B2 (en) Expansion clamp device and its manufacturing method
JP2015205329A (en) Cutting tool that bonds superhard alloy and steel material, and method of manufacturing the cutting tool
JPH07187835A (en) Method and clamping metal for joining body by brazing
JPH05207708A (en) Method for joining rotor iron core with rotor bar
JPH11320129A (en) Joining method of chip against shaft end of engine valve
WO2009107594A1 (en) Method for connecting cemented carbide and stainless steel
US3377696A (en) Bonding diamond to molybdenum
KR100899413B1 (en) The manufacturing method of cemented carbide knife
JPS60259306A (en) Composite tool and preparation thereof
JP2693973B2 (en) Diffusion bonding method for tubular laminated materials
JP2003053558A (en) Producing method for cutting tool
JPH11294058A (en) Brazed cutting tool excellent in bonding strength