JP2008144541A - Drilling bit - Google Patents

Drilling bit Download PDF

Info

Publication number
JP2008144541A
JP2008144541A JP2006335627A JP2006335627A JP2008144541A JP 2008144541 A JP2008144541 A JP 2008144541A JP 2006335627 A JP2006335627 A JP 2006335627A JP 2006335627 A JP2006335627 A JP 2006335627A JP 2008144541 A JP2008144541 A JP 2008144541A
Authority
JP
Japan
Prior art keywords
cemented carbide
tip
chip
carbide
excavation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006335627A
Other languages
Japanese (ja)
Inventor
Yoshimi Fukumaki
好美 服巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STARLOY KK
Obayashi Corp
Original Assignee
STARLOY KK
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STARLOY KK, Obayashi Corp filed Critical STARLOY KK
Priority to JP2006335627A priority Critical patent/JP2008144541A/en
Publication of JP2008144541A publication Critical patent/JP2008144541A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drilling bit which is used in the fields of civil engineering, construction, etc., and has a blade having superior impact resistance, abrasion resistance, brazing property, etc. <P>SOLUTION: The drilling bit is constructed by fixing the blade made of a cemented carbide tip (3) to the front end of a steel shank (2). The cemented carbide tip (3) is a laminated cemented carbide tip made by bonding together a plurality of types of cemented carbide tips having different compositions via a bond (5) infiltrating through a binder metal of the cemented carbide tips. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えばシールド掘進機におけるカッタービット等の掘削用ビットに関するものである。   The present invention relates to an excavation bit such as a cutter bit in a shield machine.

例えば、シールド掘進機のカッタービットは、鋼材で作られたシャンク(台金)に硬質刃体として超硬合金のチップ(以下「超硬チップ」もしくは「チップ」という)を固着したものが一般的である。シールド掘進機は、地下でのトンネル掘進等に使用されるため、そのカッタービットは、土砂等の切削性能が高いだけではなく、掘削中で破損しにくい高強度のものを使用する必要がある。これは、掘削中に刃体が欠損すると、切削性能が著しく低下するのみならず、その破片によって他の刃体も損傷するからであり、地下での掘削中は、カッタービットを容易に交換することができないので、刃体を構成する超硬チップは、優れた耐衝撃性と耐摩耗性が特に要求されるのである。   For example, a cutter bit of a shield machine is generally a cemented carbide chip (hereinafter referred to as “carbide chip” or “chip”) as a hard blade to a shank (base metal) made of steel. It is. Since the shield machine is used for underground tunnel excavation and the like, it is necessary that the cutter bit not only has high cutting performance such as earth and sand but also has a high strength that is not easily damaged during excavation. This is because if the blade is lost during excavation, not only the cutting performance is remarkably lowered, but also other blades are damaged by the fragments, and the cutter bit is easily replaced during excavation in the basement. Therefore, the cemented carbide tip constituting the blade body is particularly required to have excellent impact resistance and wear resistance.

超硬合金は、高硬度の金属炭化物粒子をバインダー金属のマトリックス中に分散させたものである。この金属炭化物粒子としては、WC,TiC,TaC等が用いられ、バインダー層を形成する金属としては、Co,Ni,Fe等が用いられるのが一般的であり、土木工事用のカッタービットに使われる超硬チップとしては、比較的靭性の高いWC−Co合金が最も広く採用されている。   The cemented carbide is obtained by dispersing hard metal carbide particles in a binder metal matrix. As the metal carbide particles, WC, TiC, TaC or the like is used, and as the metal forming the binder layer, Co, Ni, Fe, or the like is generally used, which is used for a civil engineering cutter bit. As the cemented carbide tip, a WC-Co alloy having relatively high toughness is most widely adopted.

一般に、超硬合金は、炭化物(WC等)の粒子が細かく、バインダー層(コバルトCo層等)が少ないほど硬度が高く、耐摩耗性に優れ、逆に炭化物の粒子が粗く、バインダー層が多いほど、靭性(強度)が高く、耐衝撃性に優れる傾向がある。すなわち、超硬合金における硬度と強度とは概念的には相反するものであり、通常は、炭化物粒度とバインダー層の量を調節して、用途に応じた超硬合金チップを得ている。   In general, cemented carbide has finer carbide particles (WC, etc.), and the smaller the binder layer (cobalt Co layer, etc.), the higher the hardness and the better the wear resistance. Conversely, the carbide particles are coarser and there are many binder layers. The higher the toughness (strength), the better the impact resistance. That is, the hardness and strength of the cemented carbide are conceptually contradictory, and usually a cemented carbide chip according to the application is obtained by adjusting the carbide particle size and the amount of the binder layer.

上記カッタービットの切削性能と耐摩耗性は、刃体の硬度を上げることによって向上する。しかしながら、上記のとおり、硬度の高い超硬チップは、衝撃により欠損しやすいという欠点があるので、複数種の超硬チップを組み合わせる等、耐摩耗性と耐衝撃性を両立させるため種々の工夫がなされている。その例を挙げれば、下記特許文献に示すようなものがある。   The cutting performance and wear resistance of the cutter bit are improved by increasing the hardness of the blade. However, as described above, a hard tip with high hardness has a drawback that it is easily damaged by impact, so various measures have been taken to achieve both wear resistance and impact resistance, such as combining multiple types of carbide tips. Has been made. Examples thereof include those shown in the following patent documents.

特開2006−241681号公報JP 2006-241681 A 特許第3780941号公報Japanese Patent No. 3780941 特開平9−78986号公報JP-A-9-78986 実開平5−16897号公報Japanese Utility Model Publication No. 5-16897

上記特許文献1に記載のものは、超硬合金からなる軟性チップと硬性チップとを接合材を介在して母材にろう付けしたカッタービットであり、上記接合材としては、軟性チップの超硬合金に材質が近似し、該軟性チップよりも軟性の材質からなるものが使用される。このカッタービットは、硬性チップで耐摩耗性を維持し、軟性チップで衝撃を緩衝することにより、長寿命を図るものである。   The one described in Patent Document 1 is a cutter bit in which a soft tip made of a cemented carbide and a hard tip are brazed to a base material with a joining material interposed therebetween. A material similar to an alloy and made of a softer material than the soft tip is used. The cutter bit maintains wear resistance with a hard tip, and shocks are buffered with a soft tip, thereby achieving a long life.

また、上記特許文献2に記載のものは、先端部に硬質のチップを備えた掘削カッタービットにおいて、前記チップは、先端部から基端部に向けて、複数段に植設されたもので、その少なくとも一部の段のチップが他の段と異なる材種及び硬度とされ、他の段とは異なる長さとされたものである。   Further, the one described in Patent Document 2 is an excavation cutter bit provided with a hard tip at the tip, and the tip is implanted in a plurality of stages from the tip to the base end. At least some of the chips in the steps have different grades and hardnesses from those of the other steps, and have different lengths from the other steps.

さらに、上記特許文献3に記載のものは、シールド掘進機等のカッタービットであって、硬さ、靭性等の材質が異なる複数層の超硬チップ片を銅板を挟んでろう付けしてなる多層チップを刃体とし、これを鋼材の台金にろう付けしたものである。   Further, the one described in Patent Document 3 is a cutter bit such as a shield machine, and is a multilayer formed by brazing a plurality of layers of carbide chip pieces having different materials such as hardness and toughness with a copper plate interposed therebetween. A chip is used as a blade, which is brazed to a steel base metal.

また、上記特許文献4に記載のものは、トンネル掘進機のカッタビットにおいて、硬質チップと軟質チップとを交互に積層してカッタビット本体に固着したものである。   Further, the one described in Patent Document 4 is a cutter bit of a tunnel digging machine in which hard chips and soft chips are alternately stacked and fixed to the cutter bit body.

上記特許文献1に記載のものは、硬性チップと軟性チップと鋼材とをろう付けにより互いに固着一体化したものであるが、複数層のろう付けを同時に行うのは、煩雑な手間が必要であり、しかも超硬合金チップは、熱衝撃に弱いので、ろう付けによって微小な亀裂が入る恐れがある。また、ろう付けによる残留応力で、使用中に欠損しやすく、ろう材層と超硬チップとの間の剥離も生じやすいという問題点もある。   Although the thing of the said patent document 1 is what fixedly integrated the hard chip | tip, the soft chip | tip, and steel materials mutually by brazing, it needs a troublesome trouble to braze several layers simultaneously. Moreover, since the cemented carbide chip is vulnerable to thermal shock, there is a possibility that micro cracks may be caused by brazing. In addition, there is a problem that residual stress due to brazing is liable to be lost during use and peeling between the brazing material layer and the cemented carbide tip is likely to occur.

例えば、超硬チップを台金にろう付けする場合、台金と超硬チップに同じ大きさの圧縮応力と引張応力が作用するが、超硬チップの材質が軟質である場合は、これを台金と超硬チップとが分担して吸収し、残りの応力がろう層に残って釣合がとれることになる。一方、超硬チップの材質が硬質である場合は、応力の吸収が少なくなるので、超硬チップが割れることにより釣合がとれることになる。このため、硬質の超硬チップを損傷せずにろう付けするのは困難である。このような問題に対処するため、あらかじめ超硬チップを小さく分割してろう付けすることも考えられているが、この場合はろう付け部分から脱落する等の欠陥が生じやすい。このように、超硬チップのろう付けには種々の問題がある。   For example, when brazing a cemented carbide tip to a base metal, the same amount of compressive stress and tensile stress are applied to the base metal and the carbide tip. The gold and the cemented carbide chip share and absorb, and the remaining stress remains in the brazing layer and can be balanced. On the other hand, when the material of the cemented carbide tip is hard, since the absorption of stress is reduced, the cemented carbide tip can be balanced by being broken. For this reason, it is difficult to braze a hard carbide chip without damaging it. In order to cope with such a problem, it is considered to divide the carbide chip into smaller pieces and braze in advance, but in this case, defects such as dropping off from the brazed portion are likely to occur. Thus, there are various problems in brazing a cemented carbide tip.

つぎに、上記特許文献2に記載のものは、台金にあけた穴に材種の異なる複数のチップを段状に植設したもので、段状に重ねられた各チップの端部同士がろう付けされているものである。具体的には、円形の穴に丸棒状のチップを挿入している。しかしながら、この構成では、重ねられた各チップを同芯に配置してろう付けし、さらにこれを台金の穴底にろう付けして固定するか、圧入により固定するので、煩雑な手間が必要であり、各チップをろう付けして固定する場合は、亀裂や残留応力による問題が生じるおそれもある。   Next, the thing of the said patent document 2 is the thing which transplanted the several chip | tip from which a material kind differs in the step shape in the hole drilled in the base metal, It is what is brazed. Specifically, a round bar-like chip is inserted into the circular hole. However, in this configuration, the stacked chips are concentrically arranged and brazed, and then fixed to the bottom of the base metal by brazing or by press-fitting. In the case where each chip is fixed by brazing, there may be a problem due to cracks or residual stress.

上記特許文献3及び特許文献4に記載のものは、特許文献1と同様に、複数の超硬チップをろう付けにより一体化したもので、これらも特許文献1に記載のものと同様な問題点を持っている。以上の他にも、パルス通電によって複数のチップ同士を固着する方法等が考えられているが、いずれも強度的な問題があり、掘削用ビットのような厳しい使用条件には適していない。   Similar to Patent Document 1, those described in Patent Document 3 and Patent Document 4 are obtained by integrating a plurality of carbide chips by brazing, and these are also the same problems as those described in Patent Document 1 have. In addition to the above, a method of fixing a plurality of chips by pulse energization has been considered, but all have strength problems and are not suitable for severe use conditions such as excavation bits.

そこで、本発明は、上記従来公知の技術を改良し、ろう付けよりも強度が優れた接合方法を採用することにより、耐摩耗性と耐衝撃性を合わせ備えた超硬チップを作製し、これを刃体とした高寿命の掘削用ビットを提供することを課題としている。   Therefore, the present invention improves the above-mentioned conventionally known technique and adopts a joining method that is superior in strength to brazing to produce a cemented carbide tip having both wear resistance and impact resistance. It is an object to provide a long-life excavation bit with a blade.

上記課題を解決するために、本発明は次のような構成とした。すなわち、本発明に係る掘削用ビットは、鋼製シャンクの先端部に超硬チップを固着してなる掘削用ビットであって、前記超硬チップが、互いに組成の異なる複数種の超硬チップを当該超硬チップのバインダー金属中に浸透する接合材を介して接合一体化した積層超硬チップであることを特徴としている。   In order to solve the above problems, the present invention has the following configuration. That is, the excavation bit according to the present invention is an excavation bit in which a cemented carbide tip is fixed to the tip of a steel shank, and the cemented carbide tip includes a plurality of types of cemented carbide tips having different compositions. The cemented carbide chip is characterized by being a laminated cemented carbide chip bonded and integrated through a bonding material that penetrates into the binder metal of the cemented carbide chip.

上記超硬チップとしては、WC−Co合金を用いるのが好ましい。また、超硬チップ同士を接合する接合材としては、当該超硬合金のマトリクスを形成するバインダー金属が好ましく、なかでもコバルトを用いるのがより好ましい。   As the cemented carbide tip, it is preferable to use a WC-Co alloy. Further, as a bonding material for bonding the cemented carbide chips to each other, a binder metal that forms a matrix of the cemented carbide alloy is preferable, and cobalt is more preferable.

本発明に係る掘削用ビットは、その刃先に材種の異なる複数のチップを積層固着した積層超硬チップを刃体として固着したものであるから、積層するチップの材種の選択により、耐摩耗性と耐衝撃性を合わせ備えたものとすることが可能である。また、ろう付けではなく、接合材として超硬合金で使用されるバインダー金属を用いてチップ同士を固着するので、ろう付けでチップ同士を固着する場合に比べて強度的にすぐれ、残留応力による亀裂発生等の問題も生じにくい。さらに、チップ同士の固着は、電気炉等の加熱装置を用いて行うことができるので、ろう付け作業等の煩雑な手間が不要であり、安定した固着を行うことができる。   The excavation bit according to the present invention is obtained by adhering a laminated carbide chip in which a plurality of chips of different material types are laminated and fixed to the blade edge as a blade body. And impact resistance can be provided. In addition, since the chips are fixed using a binder metal used in cemented carbide as a bonding material instead of brazing, they are superior in strength compared to the case where the chips are fixed together by brazing and cracks due to residual stress. Problems such as occurrence are less likely to occur. Further, since the chips can be fixed to each other by using a heating device such as an electric furnace, a troublesome work such as brazing work is not required, and stable fixing can be performed.

以下、本発明の実施形態について具体的に説明する。図1は、掘削用ビットの1種であるカッタービットを表すもので、このビット1は、鋼材で作られたシャンク(台金)2の先端部に刃体として積層超硬チップ3が固着されている。積層超硬チップ3は、シャンク2の先端部に形成した段状の切欠凹部2aに嵌め込んだ状態で底面と後面がシャンク2にろう付けされている。この図示例では、積層超硬チップ3が平面視で3個並べて固着されているが、これは、シャンク2にろう付けしたときの各チップの残留応力を小さくするためであり、さらに多くのチップに分割して刃体を形成してもよく、刃体の寸法が小さい場合は1個又は2個のチップで刃体を構成してもよい。   Hereinafter, embodiments of the present invention will be specifically described. FIG. 1 shows a cutter bit which is a kind of excavation bit. In this bit 1, a laminated cemented carbide chip 3 is fixed as a blade body to a tip portion of a shank (base metal) 2 made of steel. ing. The laminated carbide chip 3 is brazed to the shank 2 at the bottom and the rear surface in a state where the laminated carbide chip 3 is fitted in a stepped notch recess 2 a formed at the tip of the shank 2. In this illustrated example, three laminated carbide chips 3 are fixed side by side in a plan view, but this is to reduce the residual stress of each chip when brazed to the shank 2, and more chips. The blade body may be formed by being divided into two, and when the size of the blade body is small, the blade body may be constituted by one or two chips.

図1に示す積層超硬チップ3の材種は、いずれもWC−Co系超硬合金であり、高硬度の超硬チップ3aと、これよりも硬度の低い超硬チップ3bとを重ね合わせて接合一体化した2層構造のチップである。図1の実施形態においては、掘削用ビット1の刃先部に使用される超硬チップ3aの材種は、JISで規定されているE3種等、比較的硬度の高いWC−Co系超硬合金である。また、上記刃先部の超硬チップを支持する耐衝撃用の超硬チップ3bの材種は、JISで規定されているE5種等、比較的靭性が高いWC−Co系超硬合金である。このように、材質の異なる複数種の超硬チップを積層一体化することにより、耐摩耗性と耐衝撃性を両立させることが可能である。   All the grades of the laminated cemented carbide chip 3 shown in FIG. 1 are WC-Co based cemented carbide, and a superhard cemented chip 3a is superposed on a cemented carbide chip 3b having a lower hardness. It is a chip having a two-layer structure which is joined and integrated. In the embodiment of FIG. 1, the material type of the cemented carbide tip 3a used for the cutting edge portion of the excavating bit 1 is a WC-Co based cemented carbide having a relatively high hardness, such as E3 type defined by JIS. It is. Further, the material type of the impact resistant cemented carbide tip 3b that supports the cemented carbide tip of the blade edge portion is a WC-Co based cemented carbide having relatively high toughness, such as E5 class defined by JIS. As described above, it is possible to achieve both wear resistance and impact resistance by laminating and integrating a plurality of types of carbide chips of different materials.

図1の例では、耐摩耗性が要求される掘削用ビット1の刃先部分に高硬度のチップ3aを使用して切削性能と耐摩耗性を良好に保つとともに、高硬度のチップだけではろう付け性や耐衝撃性が低下するので、比較的硬度の低い高靭性のチップ3bをビット1の基部側に用いてろう付け性と耐衝撃性を確保しているのである。逆に、上側(刃先側)の超硬チップを軟質のチップ3bとし、下側のチップを硬質のチップ3aとすると、掘削開始時における衝撃に強く、掘削中に礫等に衝突した場合でも損傷しにくい。また、掘削が進行した後に衝突の危険がない作業条件において、上側のチップ3bが摩耗した後は、下側のチップ3aにより長時間にわたって掘削することができる。   In the example of FIG. 1, the cutting edge and the wear resistance are kept good by using a high hardness tip 3a at the cutting edge portion of the excavation bit 1 that requires wear resistance, and brazing is performed only with the high hardness tip. Therefore, brazing and impact resistance are ensured by using a relatively tough tip 3b having a relatively low hardness on the base side of the bit 1. Conversely, if the upper (blade edge) cemented carbide tip is a soft tip 3b and the lower tip is a hard tip 3a, it is resistant to impact at the start of excavation and is damaged even if it collides with gravel during excavation. Hard to do. Moreover, after the excavation has progressed, the work can be excavated for a long time with the lower chip 3a after the upper chip 3b is worn under the working condition where there is no risk of collision.

本発明では、上記のとおり、複数の超硬チップを重ね合わせて接合一体化する方法として、ろう付けではなく、超硬チップ同士の間に接合材5を挟んで真空炉等で加熱する方法を採用する点に特徴がある。すなわち、所望の性質を有する組成の超硬チップを複数個接合材を挟んで重ね合わせ、当該接合材の融点以上の温度に加熱することにより、該接合材をその両側の超硬チップのバインダー層(マトリクス)中に拡散浸透させる。これにより、両側の超硬チップが接合材層を介して接合一体化される。接合状態における接合材層の厚みは、0.1〜2mm程度とするのが好ましい(金属箔の使用可)。接合材層の厚みが大き過ぎるのは無駄であり、接合強度も低下する。なお、図1の実施形態では、2個の超硬チップを接合一体化しているが、3個以上の超硬チップの場合も同様に接合材を挟んで加熱することにより接合することができる。   In the present invention, as described above, as a method of superimposing a plurality of cemented carbide chips by overlapping and joining and integrating, a method of heating in a vacuum furnace or the like by sandwiching the bonding material 5 between the cemented carbide chips instead of brazing. There is a feature in the point to adopt. That is, by superposing a plurality of cemented carbide chips having a desired property on both sides of a bonding material and heating to a temperature equal to or higher than the melting point of the bonding material, the bonding material is bonded to the cemented carbide chip on both sides of the bonding material. It diffuses and penetrates into the (matrix). Thereby, the cemented carbide chips on both sides are joined and integrated via the joining material layer. The thickness of the bonding material layer in the bonded state is preferably about 0.1 to 2 mm (a metal foil can be used). It is useless that the thickness of the bonding material layer is too large, and the bonding strength also decreases. In the embodiment of FIG. 1, two cemented carbide chips are joined and integrated. However, in the case of three or more cemented carbide chips, the cemented material can be similarly joined by heating.

上記接合材5としては、超硬合金で炭化物粒子を保持するために使用されるバインダー金属、例えばコバルト、ニッケル、鉄等を使用することができる。この接合材5は、加熱により溶融して超硬合金のマトリクス中に浸透して行くものであるから、接合する超硬チップに用いられているバインダー金属と同種のものを使用するが好ましい。図示例の場合は、超硬チップの材種がWC−Co系超硬合金であるから、接合材5としてコバルトを使用するのが好ましい。   As the bonding material 5, a binder metal used for holding carbide particles with a cemented carbide, for example, cobalt, nickel, iron, or the like can be used. Since the bonding material 5 is melted by heating and penetrates into the matrix of the cemented carbide, it is preferable to use the same type of binder metal used for the cemented carbide chip to be bonded. In the case of the illustrated example, it is preferable to use cobalt as the bonding material 5 because the material type of the cemented carbide chip is a WC-Co based cemented carbide.

参考までに、接合により得られた積層超硬チップの靭性を調べるため、JISに規定されているテストピースを切り出し、接合部を中央に配置して3点折り曲げによる抗折力を調べたところ、E3種のチップとE5種のチップを接合したものでは、抗折力が2913N/mm2 〜3007N/mm2 であった。これに対し、単体の抗折力が3000N/mm2 の超硬チップ同士を従来のようなろう付けで接合したテストピースの抗折力は、ろう付け部の強度が弱いため、830〜1100N/mm2 であった。本発明におけるように、超硬合金のバインダー金属を結合材として超硬チップを接合した場合に、従来のろう付け法よりも優れた強度が得られることがわかる。 For reference, in order to investigate the toughness of the laminated cemented carbide chip obtained by bonding, a test piece specified in JIS was cut out, and the bending strength by three-point bending was examined by placing the bonding portion in the center. When the E3 type chip and the E5 type chip were joined, the bending strength was 2913 N / mm 2 to 3007 N / mm 2 . On the other hand, the bending strength of a test piece in which cemented carbide chips having a single bending strength of 3000 N / mm 2 are joined together by conventional brazing is 830 to 1100 N / It was mm 2. As in the present invention, when cemented carbide chips are joined using a cemented carbide binder metal as a binder, it can be seen that strength superior to that of the conventional brazing method can be obtained.

つぎに、図2に記載の掘削用ビット1は、図1と同様に平面視で3個の超硬チップを並べて刃先が構成されているが、各チップは側面視で示されているように、先端側(前側)Sと基部側(後側)Kとに分割され、接合材で接合一体化されている。上下に重ね合わせてはいない。接合面は、傾斜面Tとなっており、各チップの厚みが小さくても、上面と垂直の面で接合する場合に比べて接合面積が広くなるので、接合強度が大きくなっている。この構成において、先端側のチップSを軟質の超硬チップ3bとし、基部側のチップKを硬質のチップ3aとすると、掘削スタート(発進)時に礫等と衝突の危険がある場合に有利である。先端側のチップSの大きさは、掘削すべき距離によって調節すればよい。逆に、先端側のチップSを硬質の超硬チップ3aとし、基部側のチップKを軟質チップ3bとすると、掘削スタート時に衝突の危険が無く、掘進が進行した場合に衝突の危険がある場合に有利である。   Next, the excavation bit 1 shown in FIG. 2 is configured with three carbide tips arranged in a plan view in the same manner as in FIG. 1, and each tip is shown in a side view. The front end side (front side) S and the base side (rear side) K are divided and integrated by a bonding material. They are not stacked one above the other. The bonding surface is an inclined surface T, and even if the thickness of each chip is small, the bonding area is larger than the case of bonding on a surface perpendicular to the upper surface, so that the bonding strength is increased. In this configuration, if the tip S is a soft carbide tip 3b and the base K is a hard tip 3a, it is advantageous when there is a risk of collision with gravel at the start of excavation (start). . The size of the tip S on the tip side may be adjusted according to the distance to be excavated. On the contrary, if the tip S is a hard carbide tip 3a and the base tip K is a soft tip 3b, there is no risk of collision at the start of excavation, and there is a risk of collision when the excavation progresses Is advantageous.

図3は、複数の積層超硬チップを間隔をおいて配置した例を表す。図示例のビットは、先端側Sに硬質のチップ3aを配置し、基部側Kに軟質のチップ3bを配置していて、両者は接合材で一体化されている。この場合も、掘削スタート(発進)時に衝突の危険が無く、後に衝突の危険がある場合に有利である。逆に、先端側Sに軟質のチップ3bを配置し、基部側Kに硬質のチップ3aを配置しておくと、発進時に衝突の危険があり、後は衝突の危険が無いと予測される場合に有利である。   FIG. 3 shows an example in which a plurality of laminated carbide chips are arranged at intervals. In the illustrated bit, a hard chip 3a is arranged on the tip side S and a soft chip 3b is arranged on the base side K, and both are integrated by a bonding material. This is also advantageous when there is no risk of collision at the start of excavation (start) and there is a risk of collision later. Conversely, if a soft tip 3b is arranged on the tip side S and a hard tip 3a is arranged on the base side K, there is a risk of collision at the start, and it is predicted that there is no risk of collision thereafter. Is advantageous.

図4の実施形態は、先端側のチップ3aと基部側のチップ3bとを傾斜した接合面で接合した以外は図3の図示例と同じである。この場合は、接合面積が大きくなるので、比較的大きな接合強度がえられる。図5は、さらに、間隔をおいて配置された複数の超硬チップ3のうち、硬質の超硬チップ3aのまわりを軟質の超硬チップ3bで囲んだ例を表す。この例でも、発進時に衝突の危険があり、掘進が進むと衝突の危険が無い場合に有利である。   The embodiment of FIG. 4 is the same as the illustrated example of FIG. 3 except that the tip side tip 3a and the base side tip 3b are joined at an inclined joining surface. In this case, since the bonding area becomes large, a relatively large bonding strength can be obtained. FIG. 5 shows an example in which a hard carbide chip 3a is surrounded by a soft carbide chip 3b among a plurality of carbide chips 3 arranged at intervals. This example is also advantageous when there is a danger of a collision at the start and there is no danger of a collision when the excavation progresses.

以上に説明したように、本発明に係る掘削用ビットは、刃体となる超硬チップが、複数の異種の超硬チップを当該超硬チップのバインダー金属中に浸透する接合材により接合一体化した積層超硬チップであるから、耐摩耗性と靭性を兼ね合わせたものとすることができ、掘削中に地盤の条件が変化する場合にもうまく適応することが可能となった。   As described above, the excavation bit according to the present invention has a cemented carbide tip, which is a blade body, bonded and integrated with a bonding material that penetrates a plurality of different types of carbide tips into the binder metal of the carbide tip. The laminated carbide tip thus made can be combined with wear resistance and toughness, and can be adapted well even when the ground conditions change during excavation.

本発明に係る掘削用ビットは、例えばトンネル掘削用カッタービットの刃体等として効果的に使用することができる。   The excavation bit according to the present invention can be effectively used as a blade body of a cutter bit for tunnel excavation, for example.

本発明に係る掘削用ビットの1例を表す平面図(a)及び側面図(b)である。It is the top view (a) and side view (b) showing an example of the bit for excavation concerning this invention. 上記と異なる掘削用ビットの平面図(a)及び側面図(b)である。It is the top view (a) and side view (b) of the bit for excavation different from the above. さらに異なる掘削用ビットの平面図(a)及び側面図(b)である。Furthermore, it is the top view (a) and side view (b) of another excavation bit. さらに異なる掘削用ビットの平面図(a)及び側面図(b)である。Furthermore, it is the top view (a) and side view (b) of another excavation bit. さらに異なる掘削用ビットのの平面図(a)及び側面図(b)である。Furthermore, it is the top view (a) and side view (b) of another excavation bit.

符号の説明Explanation of symbols

1 掘削用ビット
2 シャンク
3 超硬チップ
5 接合材
1 Drilling bit 2 Shank 3 Carbide tip 5 Bonding material

Claims (2)

鋼製シャンクの先端部に超硬チップを固着してなる掘削用ビットであって、前記超硬チップが、互いに組成の異なる複数種の超硬チップを当該超硬チップのバインダー金属中に浸透する接合材を介して接合一体化した積層超硬チップであることを特徴とする掘削用ビット。 A drilling bit comprising a cemented carbide tip fixed to the tip of a steel shank, wherein the cemented carbide chip penetrates a plurality of types of cemented carbide chips having different compositions into the binder metal of the cemented carbide chip. A drill bit characterized in that it is a laminated cemented carbide chip bonded and integrated through a bonding material. 積層超硬チップを構成する超硬チップの組成がWC−Co系超硬合金であり、接合材がコバルトである請求項1に記載の積層超硬チップ。 The laminated cemented carbide chip according to claim 1, wherein the composition of the cemented carbide chip constituting the laminated cemented carbide chip is a WC-Co based cemented carbide and the bonding material is cobalt.
JP2006335627A 2006-12-13 2006-12-13 Drilling bit Pending JP2008144541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006335627A JP2008144541A (en) 2006-12-13 2006-12-13 Drilling bit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006335627A JP2008144541A (en) 2006-12-13 2006-12-13 Drilling bit

Publications (1)

Publication Number Publication Date
JP2008144541A true JP2008144541A (en) 2008-06-26

Family

ID=39605003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006335627A Pending JP2008144541A (en) 2006-12-13 2006-12-13 Drilling bit

Country Status (1)

Country Link
JP (1) JP2008144541A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109103A (en) * 2012-11-30 2014-06-12 Nakada Kensetsu Kougyou Corp Cutter head for reconstruction jacking method of existing embedded pipe
JP2014141846A (en) * 2013-01-25 2014-08-07 Taisei Corp Cutter bit and method of manufacturing the same
JP6344519B1 (en) * 2017-11-07 2018-06-20 株式会社タンガロイ Drilling bit
CN110439581A (en) * 2019-09-04 2019-11-12 郑州机械研究所有限公司 Wear-resistant material, wear-resisting cutter ring and shield machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4875443A (en) * 1972-01-14 1973-10-11
JPH01164386U (en) * 1988-05-10 1989-11-16
JPH0978986A (en) * 1995-09-14 1997-03-25 Mitsubishi Heavy Ind Ltd Cutter bit with layer tip
JP2000144300A (en) * 1998-11-12 2000-05-26 Sumitomo Electric Ind Ltd Cutting edge for ic lead frame, and its manufacture
JP2005230888A (en) * 2004-02-23 2005-09-02 Takeshi Honda Manufacturing method of excavating tool
JP2006241681A (en) * 2005-02-28 2006-09-14 Shimizu Corp Cutter bit and method of manufacturing cutter bit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4875443A (en) * 1972-01-14 1973-10-11
JPH01164386U (en) * 1988-05-10 1989-11-16
JPH0978986A (en) * 1995-09-14 1997-03-25 Mitsubishi Heavy Ind Ltd Cutter bit with layer tip
JP2000144300A (en) * 1998-11-12 2000-05-26 Sumitomo Electric Ind Ltd Cutting edge for ic lead frame, and its manufacture
JP2005230888A (en) * 2004-02-23 2005-09-02 Takeshi Honda Manufacturing method of excavating tool
JP2006241681A (en) * 2005-02-28 2006-09-14 Shimizu Corp Cutter bit and method of manufacturing cutter bit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109103A (en) * 2012-11-30 2014-06-12 Nakada Kensetsu Kougyou Corp Cutter head for reconstruction jacking method of existing embedded pipe
JP2014141846A (en) * 2013-01-25 2014-08-07 Taisei Corp Cutter bit and method of manufacturing the same
JP6344519B1 (en) * 2017-11-07 2018-06-20 株式会社タンガロイ Drilling bit
CN110439581A (en) * 2019-09-04 2019-11-12 郑州机械研究所有限公司 Wear-resistant material, wear-resisting cutter ring and shield machine

Similar Documents

Publication Publication Date Title
US5533582A (en) Drill bit cutting element
CN101611210B (en) Intermetallic aluminide polycrystalline diamond compact (pdc) cutting elements
CN104712252B (en) Polycrystalline diamond abrasive compact with high toughness and high wearability
US8360176B2 (en) Brazing methods for PDC cutters
US9284790B2 (en) Innovative cutting element and cutting structure using same
US20070131459A1 (en) Thermally stable polycrystalline ultra-hard constructions
CN101605919B (en) Hard tip and method for producing the same
US7946362B2 (en) Matrix drill bits with back raked cutting elements
JP5256384B2 (en) Multilayer carbide chip and manufacturing method thereof
ITTO20000623A1 (en) CARBIDE SUBSTRATE OF TWO QUALITIES DIFFERENT FOR CUTTING ELEMENTS OF SOIL DRILLING, DRILLING DRILLS EQUIPPED WITH SUCH ELEMENTS AND PROCEDURES FOR THE MANUFACTURE OF SUCH SUBSTRATE
JP4413800B2 (en) Cutter bit
US20110067930A1 (en) Enhanced secondary substrate for polycrystalline diamond compact cutting elements
JP2008144541A (en) Drilling bit
US9328565B1 (en) Diamond-enhanced carbide cutting elements, drill bits using the same, and methods of manufacturing the same
US8336648B1 (en) Mechanical attachment of thermally stable diamond to a substrate
JP2004060201A (en) Cutting edge piece of excavating tool for exhibiting superior fine chipping resistance under high speed rotary operation condition
US10316592B2 (en) Cutter for use in well tools
US10240398B2 (en) Thermally stable polycrystalline diamond with enhanced attachment joint
JP2901202B2 (en) Wear-resistant material
JP6344519B1 (en) Drilling bit
JP2004291040A (en) Bonding method between cemented carbide member and diamond member, bonding structure, cutting blade chip for drilling tool, cutting blade member, and drilling tool
IE64021B1 (en) Improvements in or relating to cutting elements for rotary drill bits
JPH0612597U (en) Composite chip for bits
JP2004291039A (en) Bonding method for cemented carbide member and diamond member, bonding structure, cutting blade chip for drilling tool, cutting blade member, and drilling tool
JP2004291037A (en) Bonding method for cemented carbide member and diamond member, bonding structure, cutting blade chip for drilling tool, cutting blade member, and drilling tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130520

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130612

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130830