JP5256384B2 - Multilayer carbide chip and manufacturing method thereof - Google Patents

Multilayer carbide chip and manufacturing method thereof Download PDF

Info

Publication number
JP5256384B2
JP5256384B2 JP2006312803A JP2006312803A JP5256384B2 JP 5256384 B2 JP5256384 B2 JP 5256384B2 JP 2006312803 A JP2006312803 A JP 2006312803A JP 2006312803 A JP2006312803 A JP 2006312803A JP 5256384 B2 JP5256384 B2 JP 5256384B2
Authority
JP
Japan
Prior art keywords
cemented carbide
carbide
chip
laminated
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006312803A
Other languages
Japanese (ja)
Other versions
JP2008127616A (en
Inventor
好美 服巻
Original Assignee
株式会社スターロイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社スターロイ filed Critical 株式会社スターロイ
Priority to JP2006312803A priority Critical patent/JP5256384B2/en
Publication of JP2008127616A publication Critical patent/JP2008127616A/en
Application granted granted Critical
Publication of JP5256384B2 publication Critical patent/JP5256384B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Earth Drilling (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、例えばシールド掘進機における掘削用工具であるカッタービットの硬質刃体や、切断刃、金型等を構成するに適した超硬チップ、及びその製造方法に関するものである。   The present invention relates to a hard cutting body of a cutter bit, which is a tool for excavation in a shield machine, for example, a cemented carbide chip suitable for constituting a cutting blade, a die, and the like, and a method for manufacturing the same.

例えば、シールド掘進機のカッタービットは、鋼材のシャンクに硬質刃体である超硬合金のチップ(以下「超硬チップ」という)を固着したものが一般的である。シールド掘進機は、地下でのトンネル掘進等に使用されるため、そのカッタービットは、土砂等の切削性能が高いだけではなく、掘削中での破損の生じにくい高強度のものを使用する必要がある。これは、掘削中に刃先が欠損すると、切削性能が著しく低下するのみならず、その破片によって他の刃体も損傷するからであり、地下での掘削中は、カッタービットを交換することができないので、刃体を構成する超硬チップは、特に優れた耐衝撃性が特に要求されるのである。   For example, a cutter bit of a shield machine generally has a cemented carbide chip (hereinafter referred to as “carbide chip”), which is a hard blade, fixed to a steel shank. Since the shield machine is used for tunnel tunneling underground, the cutter bit not only has high cutting performance such as earth and sand, but also needs to use a high-strength machine that does not easily break during excavation. is there. This is because, if the cutting edge is lost during excavation, not only the cutting performance is remarkably lowered, but also other blades are damaged by the fragments, and the cutter bit cannot be exchanged during excavation in the basement. Therefore, the carbide chip constituting the blade body is particularly required to have particularly excellent impact resistance.

超硬合金は、高硬度の金属炭化物粒子をバインダー金属のマトリックス中に分散させたものであり、金属炭化物粒子としては、WC,TiC,TaC等が用いられている。また、バインダー層を形成する金属としては、Co,Ni,Fe等が用いられているが、カッタービット用の超硬チップの組成としては、WC−Co合金が最も普通である。   The cemented carbide is obtained by dispersing high-hardness metal carbide particles in a binder metal matrix, and WC, TiC, TaC or the like is used as the metal carbide particles. In addition, Co, Ni, Fe, or the like is used as the metal forming the binder layer, and the WC-Co alloy is the most common as the composition of the cemented carbide tip for the cutter bit.

一般に、超硬合金は、炭化物(WC等)の粒子が細かく、バインダー層(コバルトCo層等)が少ないほど硬度が高く、耐摩耗性に優れ、炭化物の粒子が粗く、バインダー層が多いほど、靭性(強度)が向上し、耐衝撃性に優れて、欠損等が生じにくい傾向がある。すなわち、超硬合金における硬度と強度は概念的には相反するものであり、通常は、炭化物粒度とバインダー層の量を調節して、用途に応じた超硬合金チップを得ている。   In general, cemented carbide has finer particles of carbide (WC, etc.), and the smaller the binder layer (cobalt Co layer, etc.), the higher the hardness, the better the wear resistance, the coarser the particles of carbide, the more binder layer, There is a tendency that toughness (strength) is improved, impact resistance is excellent, and defects are hardly generated. That is, the hardness and strength of the cemented carbide are conceptually contradictory, and usually a cemented carbide chip according to the application is obtained by adjusting the carbide particle size and the amount of the binder layer.

上記カッタービットの切削性能と耐摩耗性は、刃体の硬度を上げることによって向上する。しかしながら、上記のとおり、硬度の高い超硬チップは、衝撃により欠損しやすいという欠点があるので、耐摩耗性と耐衝撃性を両立させるため種々の工夫がなされている。下記特許文献は、これらの例を表すものである。   The cutting performance and wear resistance of the cutter bit are improved by increasing the hardness of the blade. However, as described above, a hard chip having a high hardness has a drawback of being easily damaged by an impact, and therefore various measures have been made to achieve both wear resistance and impact resistance. The following patent documents represent these examples.

特開2006−241681号公報JP 2006-241681 A 特開平7−3306号公報Japanese Unexamined Patent Publication No. 7-3306 特開平9−78986号公報JP-A-9-78986 特開2005−36281号公報JP 2005-36281 A 実開平5−16897号公報Japanese Utility Model Publication No. 5-16897 実開平4−53879号公報Japanese Utility Model Publication No. 4-53879

上記特許文献1に記載のものは、超硬合金からなる軟性チップと硬性チップとを接合材を介在して母材にろう付けしたカッタービットであり、上記接合材としては、軟性チップの超硬合金に材質が近似し、該軟性チップよりも軟性の材質からなるものが使用される。このカッタービットは、硬性チップで耐摩耗性を維持し、軟性チップで衝撃を緩衝することにより、長寿命を図るものである。   The one described in Patent Document 1 is a cutter bit in which a soft tip made of a cemented carbide and a hard tip are brazed to a base material with a joining material interposed therebetween. A material similar to an alloy and made of a softer material than the soft tip is used. The cutter bit maintains wear resistance with a hard tip, and shocks are buffered with a soft tip, thereby achieving a long life.

また、上記特許文献2に記載のものは、高硬度の超硬合金と接合用超硬合金とが拡散接合されたもので、前記接合用超硬合金中の結合層の割合が、前記高硬度の超硬合金中の結合層の割合よりも10〜45重量%多いものである。   Moreover, the thing of the said patent document 2 is what the cemented carbide alloy and the cemented carbide alloy for joining were diffusion-bonded, and the ratio of the coupling layer in the said cemented carbide alloy for joining is the said high hardness. 10 to 45% by weight more than the proportion of the bonding layer in the cemented carbide.

さらに、上記特許文献3に記載のものはシールド掘進機等のカッタービットであって、硬さ、靭性等の材質が異なる複数層の超硬チップ片を銅板を挟んでろう付けしてなる多層チップを刃体とし、これを鋼材の台金にろう付けしたものである。   Further, the one described in Patent Document 3 is a cutter bit such as a shield machine, and is a multilayer chip formed by brazing a plurality of layers of carbide chip pieces having different materials such as hardness and toughness with a copper plate interposed therebetween. Is a blade body, which is brazed to a steel base metal.

上記特許文献4には、超硬合金部材同士を接合面で直接接触させて両合金部材間に圧力を加えながらパルス通電を行い一体化する技術が記載されている。また、上記特許文献5には、トンネル掘進機のカッタビットにおいて、硬質チップと軟質チップを交互に積層してろう付けにより一体化するとともに、カッタビット本体に固着したものが記載されている。さらに、上記特許文献6には、カッタービットチップの刃先部を超微粒子超硬合金で構成し、それ以外の部分を中粒もしくは粗粒の超硬合金により構成したものが記載されている。   Patent Document 4 describes a technique in which cemented carbide members are brought into direct contact with each other at a joining surface and pulsed energization is performed while applying pressure between the two alloy members to integrate them. Patent Document 5 describes a cutter bit of a tunnel machine, in which hard chips and soft chips are alternately stacked and integrated by brazing and fixed to the cutter bit body. Further, Patent Document 6 describes that the cutting edge portion of the cutter bit chip is made of an ultrafine cemented carbide and the other portion is made of a medium or coarse cemented carbide.

上記特許文献1に記載のものは、硬性チップと軟性チップと鋼材とをろう付けにより互いに固着一体化したものであるが、複数層のろう付けを同時に行うのは、煩雑な手間が必要であり、しかも超硬合金チップは、熱衝撃に弱いので、ろう付けによって微小な亀裂が入り、使用中に欠損する恐れがある。また、使用中にろう材層と超硬チップとの間の剥離が生じやすいという問題点もある。   Although the thing of the said patent document 1 is what fixedly integrated the hard chip | tip, the soft chip | tip, and steel materials mutually by brazing, it needs a troublesome trouble to braze several layers simultaneously. Moreover, since the cemented carbide chip is vulnerable to thermal shock, there is a possibility that a minute crack will be formed by brazing and it may be lost during use. There is also a problem that peeling between the brazing filler metal layer and the cemented carbide tip tends to occur during use.

上記特許文献2に記載のものは、高硬度の超硬チップと低硬度の超硬チップとを互いのバインダー層を拡散させることにより接合したものであるが、バインダーの少ない高硬度超硬チップ側へ低硬度超硬チップ側のバインダー層が拡散するので、高硬度超硬チップの硬度が低下し、低硬度超硬チップの靭性が低下するという問題点がある。また、所望の接合強度が得られるようにバインダー層をうまく拡散させるのは困難であり、カッタービットのような厳しい使用条件では、剥離や損傷が生じる恐れが高い。   In the above-mentioned Patent Document 2, a high-hardness cemented carbide chip and a low-hardness cemented carbide chip are joined by diffusing each other's binder layer. Since the binder layer on the low-hardness carbide tip side diffuses, there is a problem that the hardness of the high-hardness carbide tip is lowered and the toughness of the low-hardness carbide tip is lowered. Further, it is difficult to diffuse the binder layer well so that a desired bonding strength can be obtained, and peeling or damage is likely to occur under severe use conditions such as a cutter bit.

上記特許文献3及び特許文献5に記載のものは、特許文献1と同様に、複数の超硬チップをろう付けにより一体化したもので、これらも特許文献1に記載のものと同様な問題点を持っている。さらに、上記特許文献4に記載のものは、加圧とパルス通電により異種の超硬チップ同士を溶接で接合するものであるが、この手法では十分な強度を得ることが困難である。   As described in Patent Document 3 and Patent Document 5, a plurality of cemented carbide chips are integrated by brazing similarly to Patent Document 1, and these are also the same problems as those described in Patent Document 1. have. Furthermore, although the thing of the said patent document 4 joins different carbide | carbonized_metal chip | tips by welding by pressurization and pulse electricity supply, it is difficult to obtain sufficient intensity | strength by this method.

また、上記特許文献6に記載のものは、刃先部を硬度の高い超微粒子超硬合金で構成し、それ以外の部分を中粒もしくは粗粒の超硬合金により構成したものであるが、実際に製造しようとすると、燒結中に粒子の移動や結晶粒子の成長が生じて、組成が変化する恐れがあり、理想的な硬度傾斜状態を得ることは極めて困難である。   Moreover, the thing of the said patent document 6 is comprised by the ultra-fine-particle cemented carbide alloy with high hardness, and the other part was comprised by the medium grain or coarse grain cemented carbide, However, if it is intended to be manufactured, the movement of particles and the growth of crystal grains may occur during sintering, and the composition may change, and it is extremely difficult to obtain an ideal hardness gradient state.

そこで、本発明は、上記従来公知の技術を改良し、ろう付けよりも強度が優れた接合方法を採用することにより、耐摩耗性と耐衝撃性を合わせ備えた超硬チップを提供することを課題としている。   Therefore, the present invention provides a cemented carbide tip having both wear resistance and impact resistance by improving the above-mentioned conventionally known technique and adopting a joining method having strength superior to brazing. It is an issue.

上記課題を解決するために、本発明は次のような構成とした。すなわち、本発明に係る積層超硬チップの製造方法は、接合面を研磨したWC―Co系超硬合金からなる超硬チップ同士を、コバルト、ニッケル又は高コバルト超硬合金からなる薄板状の接合材を挟んで上下に重ね合わせた状態で、非酸化性雰囲気中で1300〜1400℃の温度に加熱し、接合材に液相を生じさせて前記超硬チップ中に浸透させることにより、超硬チップ同士を接合材を介して一体化することを特徴としている。 In order to solve the above problems, the present invention has the following configuration. That is, the manufacturing method of the laminated carbide inserts according to the present invention, the cemented carbide chips consisting of the junction plane Migaku Ken the WC-Co cemented carbide, cobalt, thin plate made of nickel or high-cobalt cemented carbide By superposing the bonding material on the top and bottom and heating to a temperature of 1300 to 1400 ° C. in a non-oxidizing atmosphere, a liquid phase is generated in the bonding material and penetrated into the cemented carbide chip. It is characterized in that hard chips are integrated with each other through a bonding material.

上記加熱は3〜10torrの真空中で行うのが好ましい。The heating is preferably performed in a vacuum of 3 to 10 torr.

また、本発明に係る積層超硬チップは、上記請求項1または2の製造方法により製造された積層超硬チップである。The laminated carbide chip according to the present invention is a laminated carbide chip manufactured by the manufacturing method according to claim 1 or 2.

本発明に係る多層超硬チップであって、材質の異なる複数種の超硬チップ、例えば耐摩耗性に優れた硬質の超硬合金チップと、靭性に富んだ軟質の超硬合金チップとを積層し、接合材を介して接合一体化したものは、耐摩耗性と耐衝撃性を一つのチップで両立させることが可能であり、例えばカッタービットの刃体として使用しても、長時間にわたって優れた切削性能を維持することができるのみならず、刃体の損傷が生じにくい。接合材は、両側の超硬チップに拡散浸透するので、ろう付け等に比べて高い接合強度が得られる。また、本発明に係る積層超硬チップの製造方法によれば、上記優れた性能の積層超硬チップを比較的簡単に製造することが可能であり、安定した品質を維持することが可能である。なお、同種の超硬チップ同士を接合一体化することにより、大寸法の超硬チップや、複雑な形状の超硬チップを製作することも可能である。   A multilayer cemented carbide tip according to the present invention, in which a plurality of different types of cemented carbide tips, for example, a hard cemented carbide tip excellent in wear resistance and a tough, soft cemented carbide tip are laminated. However, it is possible to achieve both wear resistance and impact resistance with a single tip, and it is excellent for a long time even when used as a cutter bit blade body. In addition to maintaining high cutting performance, the blade is less likely to be damaged. Since the bonding material diffuses and penetrates into the cemented carbide chips on both sides, a higher bonding strength can be obtained than brazing or the like. Moreover, according to the method for manufacturing a laminated carbide chip according to the present invention, it is possible to relatively easily produce the above-described excellent performance laminated carbide chip, and it is possible to maintain stable quality. . It is also possible to manufacture a large-sized carbide chip or a complex-shaped carbide chip by joining and integrating the same type of carbide chips together.

以下、本発明の実施形態について具体的に説明する。図1は、カッタービットの刃体として使用することのできる本発明に係る積層超硬チップの構造を模式的に表すもので、図1(a)に示す積層超硬チップ1は、高硬度の超硬チップAと、これよりも硬度の低い超硬チップBとを接合材Sを介して接合一体化した2層構造のチップであり、図1(2)に示す積層チップ1は、3種の超硬チップ、すなわち超硬チップA、超硬チップB、及び超硬チップCを接合材Sで接合一体化した3層構造のチップの例を表す。場合によっては、4種以上の超硬チップを接合一体化することも可能である。   Hereinafter, embodiments of the present invention will be specifically described. FIG. 1 schematically shows the structure of a laminated carbide tip according to the present invention that can be used as a blade of a cutter bit. The laminated carbide tip 1 shown in FIG. A chip having a two-layer structure in which a cemented carbide chip A and a cemented carbide chip B having a lower hardness than the cemented carbide chip B are bonded and integrated with each other through a bonding material S. The laminated chip 1 shown in FIG. This is an example of a chip having a three-layer structure in which a cemented carbide chip A, a cemented carbide chip B, a cemented carbide chip B, and a cemented carbide chip C are joined together by a joining material S. In some cases, four or more types of cemented carbide tips can be joined and integrated.

このように、材質の異なる複数種の超硬チップを積層一体化することにより、耐摩耗性と耐衝撃性を両立させることが可能であり、耐摩耗性が要求されるカッタービットの刃先部分には高硬度のチップAを使用して切削性能を良好に保つとともに、高硬度のチップだけでは耐衝撃性が低下するので、比較的硬度の低い高靭性のチップBをカッタービットの基部側に用いて耐衝撃性を確保するのである。   In this way, it is possible to achieve both wear resistance and impact resistance by laminating and integrating multiple types of cemented carbide tips of different materials, and at the edge of the cutter bit where wear resistance is required. Uses a high-hardness tip A to maintain good cutting performance, and impact resistance decreases with a high-hardness tip alone. Therefore, a high-toughness tip B with a relatively low hardness is used on the base side of the cutter bit. To ensure impact resistance.

上記特許文献に開示されているように、超硬チップの耐摩耗性と耐衝撃性とを両立させるため、材質の異なる複数種の超硬チップを接合一体化する方法は従来も採用されてきたが、本発明は、この接合一体化を接合材を用いて行う点に特徴がある。すなわち、従来公知の方法は、複数種の超硬チップをろう付け、相互拡散、加圧とパルス通電による溶接等であるが、上記のとおり、これらの方法にはそれぞれ問題点があり、厳しい使用条件にさらされるカッタービット用の超硬チップとしては、満足できるものではなかった。本発明は、これら従来の接合方法を改良したもので、複数種の超硬チップに拡散浸透する接合材を介在させることにより、異種チップを高強度に接合一体化させることができるようになったのである。   As disclosed in the above-mentioned patent document, in order to achieve both wear resistance and impact resistance of a cemented carbide tip, a method of joining and integrating a plurality of types of cemented carbide tips of different materials has been conventionally employed. However, the present invention is characterized in that this joining and integration is performed using a joining material. That is, conventionally known methods include brazing of multiple types of carbide tips, mutual diffusion, welding by pressurization and pulse energization, etc., but as described above, each of these methods has its own problems and is severely used. It was not satisfactory as a cemented carbide tip for a cutter bit exposed to the conditions. The present invention is an improvement of these conventional bonding methods, and by interposing a bonding material that diffuses and penetrates into a plurality of types of cemented carbide chips, different types of chips can be bonded and integrated with high strength. It is.

上記図示例のように、カッタービットの刃先部に使用される超硬チップAは、比較的硬度の高い超硬合金であり、具体的には、炭化物(WC)の平均粒度が2〜5ミクロンで、バインダー(Co)の量が、全体の7〜10%(重量%、以下同じ)程度のWC−Co系超硬合金が好ましい。また、上記刃先部の超硬チップを支持する耐衝撃用の超硬チップBの材質は、炭化物の平均粒度が2〜6ミクロンで、コバルト量が全体の11〜20%のWC−Co系超硬合金が好ましい。   As shown in the above example, the cemented carbide tip A used for the cutting edge portion of the cutter bit is a cemented carbide with a relatively high hardness. Specifically, the average particle size of carbide (WC) is 2 to 5 microns. Thus, a WC-Co cemented carbide having a binder (Co) amount of about 7 to 10% (% by weight, hereinafter the same) is preferable. Further, the material of the impact resistant carbide tip B that supports the carbide tip of the blade edge part is a WC-Co-based super-carbide carbide having an average particle size of 2 to 6 microns and a cobalt content of 11 to 20%. Hard alloys are preferred.

上記異種チップを接合する接合材としては、超硬合金のバインダーとして使用される金属、例えばコバルト、ニッケル等を使用できるが、通常は、接合する超硬チップのバインダー層と同種のものを使用するのが好ましい。なお、ニッケルは液相が出現する温度がコバルトよりも高いので、超硬合金の炭化物の粒成長が生じやすい。このため、接合材としてはコバルトを使用するのが好ましい。これらの接合材は、板状ないし箔状のものを使用することができる。なお、場合によっては、Co量が極めて多い高コバルト超硬合金(例えばCo量が20%以上)を接合材として使用することも可能である。この場合は、高コバルト合金のバインダー層であるコバルトが両側の超硬チップに浸透して接合が行われるのである。   As a joining material for joining the different types of chips, metals used as cemented carbide binders, such as cobalt and nickel, can be used, but usually the same kind as the cemented carbide binder layer to be joined is used. Is preferred. Since the temperature at which the liquid phase appears is higher than that of cobalt, nickel tends to cause carbide grain growth of cemented carbide. For this reason, it is preferable to use cobalt as the bonding material. These bonding materials can be plate-shaped or foil-shaped. In some cases, a high-cobalt cemented carbide with a very large amount of Co (for example, a Co amount of 20% or more) can be used as a bonding material. In this case, cobalt, which is a binder layer of a high cobalt alloy, permeates the cemented carbide chips on both sides and is joined.

本発明に係る積層超硬チップの製造方法は以下のとおりである。まず、複数種の組成の超硬チップを製造する。この超硬チップの製造は、炭化物粉末とバインダー金属粉末とを混合し、所定の形状、寸法にプレス成形して燒結する公知の粉末冶金法で製造することができる。得られた複数種の超硬チップの接合面を研磨し、板状の接合材を挟んで重ね合わせた状態で、非酸化性雰囲気、好ましくは真空中で所定温度に加熱する。接合材としてコバルト又はニッケルを使用する場合は、その厚みは1mm以下で十分であり、0.5mm以下とするのが好ましい。また、接合材として高コバルト超硬合金を使用する場合は、厚みは1〜3mm程度とするのが好ましく、2mm以下とするのがより好ましい。接合面の表面粗さは、細かいほど接合性が良好であるが、通常は25ミクロン以下とするのが好ましく、20ミクロン以下とするのがより好ましい。   The manufacturing method of the laminated cemented carbide chip according to the present invention is as follows. First, carbide chips having a plurality of types of compositions are manufactured. The cemented carbide chip can be manufactured by a known powder metallurgy method in which carbide powder and binder metal powder are mixed, pressed into a predetermined shape and size, and sintered. The bonded surfaces of the obtained multiple types of cemented carbide chips are polished and heated to a predetermined temperature in a non-oxidizing atmosphere, preferably in a vacuum, with the plate-shaped bonding material sandwiched therebetween. When cobalt or nickel is used as the bonding material, the thickness is preferably 1 mm or less, and preferably 0.5 mm or less. Moreover, when using a high cobalt cemented carbide as a bonding material, the thickness is preferably about 1 to 3 mm, and more preferably 2 mm or less. The finer the surface roughness of the joint surface, the better the bondability, but usually it is preferably 25 microns or less, more preferably 20 microns or less.

図2は、この加熱状態を表すもので、図示されているように、加熱に際しては、上側の超硬チップ上に適当な重しP(比重が高く耐熱性に優れたタングステン塊を用いるのが好ましい)を載置しておくのが好ましい。加熱温度は、接合材に液相が出現する温度以上であり、通常は燒結温度と同程度の1300〜1400℃である。この加熱温度が低過ぎると、十分な浸透が行われず、接合強度が不足する。また、加熱温度が高すぎると、粒成長が生じて、超硬チップの性能が低下するおそれがある。接合のための加熱は、真空炉を用いて行うのが好ましい。この場合の真空度は、接合材の蒸発を防ぐことのできる低真空度(3〜10torr)とするのが好ましい。接合のための加熱時間は、通常は30〜60分で十分である。   FIG. 2 shows this heating state. As shown in the figure, when heating, an appropriate weight P (a tungsten block having a high specific gravity and excellent heat resistance is used on the upper carbide chip. (Preferably) is preferably placed. The heating temperature is equal to or higher than the temperature at which the liquid phase appears in the bonding material, and is usually 1300 to 1400 ° C., which is about the same as the sintering temperature. If the heating temperature is too low, sufficient penetration is not performed and the bonding strength is insufficient. On the other hand, if the heating temperature is too high, grain growth occurs and the performance of the cemented carbide tip may be deteriorated. Heating for bonding is preferably performed using a vacuum furnace. In this case, the degree of vacuum is preferably a low degree of vacuum (3 to 10 torr) that can prevent evaporation of the bonding material. The heating time for joining is usually 30 to 60 minutes.

なお、図2は、複数の超硬チップだけを接合する様子を模式的に表しているが、積層一体化された超硬チップをカッタービット等の鋼材のシャンク(台金)に取り付けるには、ろう付けにより固着すればよい。場合によっては、上記積層された超硬チップの接合の際に、最下部の超硬チップの下面とシャンクとの間にニッケル等の接合材を挟んで超硬チップとシャンクとを重ね合わせておき、超硬チップ同士の接合とシャンクに対する接合とを同時に行うことも可能である。しかしながら、鋼材のシャンクを高温に加熱すると、組織が変化して、強度が低下する恐れがあるので、積層超硬チップ1をシャンクにろう付けするのが好ましい。   FIG. 2 schematically shows a state in which only a plurality of cemented carbide chips are joined. To attach a cemented carbide chip laminated to a steel shank (base metal) such as a cutter bit, What is necessary is just to adhere by brazing. In some cases, the cemented carbide chip and the shank are overlapped with a bonding material such as nickel sandwiched between the lower surface of the lowermost cemented carbide chip and the shank when bonding the laminated carbide chips. It is also possible to perform bonding between the carbide chips and bonding to the shank at the same time. However, if the steel shank is heated to a high temperature, the structure may change and the strength may be lowered. Therefore, it is preferable to braze the laminated carbide tip 1 to the shank.

[実施例1]炭化物平均粒度3.0ミクロン、コバルト量8%の超硬チップAと、炭化物平均粒度3.5ミクロン、コバルト量13%の超硬チップB(いずれもWC−Co合金)を接合材Sとしてコバルト板(厚さ0.1mm)を挟んで重ね合わせ、上側の超硬チップAの上に200gのタングステン塊Pを載せて真空炉で加熱した。超硬チップA,Bの形状、寸法は30x12.5x10mmの角型であり、接合側の面は、10ミクロンの表面粗さに研磨しておいた。加熱の際の真空度は5torr、加熱温度は1400℃、加熱時間は60分であった。   [Example 1] Carbide tip A with carbide average particle size of 3.0 microns and cobalt content of 8% and carbide tip B with carbide average particle size of 3.5 microns and cobalt content of 13% (all WC-Co alloy). As a bonding material S, a cobalt plate (thickness: 0.1 mm) was sandwiched therebetween, 200 g of tungsten block P was placed on the upper cemented carbide chip A, and heated in a vacuum furnace. The shapes and dimensions of the cemented carbide chips A and B were 30 × 12.5 × 10 mm square, and the bonding side surface was polished to a surface roughness of 10 microns. The degree of vacuum during heating was 5 torr, the heating temperature was 1400 ° C., and the heating time was 60 minutes.

これにより、上下2個の超硬チップA,Bが極めて薄い結合材S層を挟んで接合一体化した図4に示す2層構造の積層超硬チップが得られた。この接合部の組織写真を図3に示す。図3(a)は100倍であり、図3(b)は1000倍である。なお、得られた積層超硬チップの図4における各測定点における硬さ(HRA)はa点で88.1、b点で86.8であり、破線の位置で切り出した試験片の3点折り曲げ試験(中央部に接合層が存在する)による抵折力は3023N/mm2 であった。 As a result, a laminated cemented carbide chip having a two-layer structure shown in FIG. 4 was obtained in which the upper and lower cemented carbide chips A and B were joined and integrated with an extremely thin bonding material S layer interposed therebetween. A structural photograph of this joint is shown in FIG. 3A is 100 times, and FIG. 3B is 1000 times. In addition, the hardness (HRA) at each measurement point in FIG. 4 of the obtained laminated carbide chip is 88.1 at the point a and 86.8 at the point b, and three points of the test piece cut out at the position of the broken line The folding force according to a bending test (a bonding layer exists in the center) was 3023 N / mm 2 .

[実施例2]上記実施例1と同様な2種の超硬チップA,Bを用い、接合材Sとして厚み0.1mmのニッケル板を用いたほかは、実施例1と同様な条件で図4に示すような2層構造の積層超硬チップを製造し、同様な試験を行った。この場合のa点における硬さ(HRA)は88.0、b点における硬さは87.0であり、抗折力は2725N/mm2 であった。 [Example 2] The same conditions as in Example 1 except that two types of carbide tips A and B similar to Example 1 were used and a nickel plate having a thickness of 0.1 mm was used as the bonding material S. A laminated carbide chip having a two-layer structure as shown in FIG. In this case, the hardness at point a (HRA) was 88.0, the hardness at point b was 87.0, and the bending strength was 2725 N / mm 2 .

[実施例3]上記実施例1と同様な2種の超硬チップA,Bを用い、接合材Sとして厚さ2mmの高コバルト合金(WC−20%Co)を用いて同様な条件で図4に示すような2層構造の積層超硬チップを製造した。この場合のa点における硬さ(HRA)は88.2、b点における硬さは86.9であり、抗折力は2221N/mm2 であった。 [Example 3] Two types of carbide tips A and B similar to those in Example 1 were used, and a high cobalt alloy (WC-20% Co) having a thickness of 2 mm was used as the bonding material S under the same conditions. A laminated carbide chip having a two-layer structure as shown in FIG. In this case, the hardness (HRA) at point a was 88.2, the hardness at point b was 86.9, and the bending strength was 2221 N / mm 2 .

[実施例4]図5に示すように、材種の異なる3種の超硬チップA,B,C(いずれもWC−Co合金)を試作し、その硬度と抗折力を測定した。超硬チップの製造方法は、上記各実施例と同様である。この場合における超硬チップの組成は、超硬チップAがWC−8%Co、BがWC−11%Co、CがWC−13%Coであり、接合材Sは純コバルトであった。得られた積層超硬チップの各部の硬さ(HRA)は、超硬チップAにおける点aが88.0(接合前は89.4)、チップBにおける点bが87.4(接合前は87.8)、チップCにおけるcが87.1(接合前は86.7)であった。   [Example 4] As shown in FIG. 5, three types of carbide tips A, B, and C (all of which are WC-Co alloys) having different material types were made as prototypes, and their hardness and bending strength were measured. The manufacturing method of the cemented carbide chip is the same as that in each of the above embodiments. In this case, the composition of the cemented carbide chip was as follows: the cemented carbide chip A was WC-8% Co, B was WC-11% Co, C was WC-13% Co, and the bonding material S was pure cobalt. Regarding the hardness (HRA) of each part of the obtained laminated carbide chip, the point a in the carbide chip A is 88.0 (89.4 before bonding), and the point b in the chip B is 87.4 (before bonding). 87.8), and c in the chip C was 87.1 (86.7 before bonding).

[実施例5]図5に示すような3層構造の積層超硬チップを上記と同様な方法で製造した。各部の材質は、超硬チップAがWC−13%Co、チップBがWC−8%Co、チップCがWC−13%Coであり、接合材は純コバルトであった。また、図5中における各部の寸法は、高さHが36mm(各チップの高さh=12mm)、幅Wが20mmであった。得られた積層超硬チップの各部の硬度は、点aが87.0(接合前は86.7)、点bが88.2(接合前が89.4)、点cが86.7(接合前が86.7)であり、図5の破線の位置で切り出したテストピースT1,T2の抗折力は、T1(上側の接合部が中央部に位置)が2913N/mm2 、T2(下側の接合部が中央部に位置)が3007N/mm2 であった。 Example 5 A laminated carbide chip having a three-layer structure as shown in FIG. 5 was produced in the same manner as described above. The material of each part was WC-13% Co for the carbide chip A, WC-8% Co for the chip B, and WC-13% Co for the chip C, and the bonding material was pure cobalt. The dimensions of each part in FIG. 5 were a height H of 36 mm (height of each chip h = 12 mm) and a width W of 20 mm. As for the hardness of each part of the obtained laminated carbide chip, the point a is 87.0 (86.7 before joining), the point b is 88.2 (89.4 before joining), and the point c is 86.7 ( The bending strength of the test pieces T1 and T2 cut out at the position of the broken line in FIG. 5 is T13 (the upper joint is located at the center), 2913 N / mm 2 , and T2 ( The lower joint was located at the center) and was 3007 N / mm 2 .

以上に説明したように、本発明に係る積層超硬チップは、一つのチップで相異なる性質を両立させることが可能であり、しかも接合材のバインダー層への拡散浸透により接合一体化するので、高い接合強度が得られる。なお、以上の説明では、主として材質の異なる複数の異種超硬チップを接合する例について説明したが、必要な場合は、同組成の同種チップ同士を同様に接合一体化することができるのであり、この接合によって、例えば小寸法のチップ同士を接合して大寸法の超硬チップとすることや、複雑な形状の超硬チップを製作することも可能となる。また、本発明は、カッタービット用チップに限らず、切断刃等の切削工具、金型等に効果的に適用することができることは言うまでもない。   As described above, the laminated cemented carbide chip according to the present invention can be compatible with different properties in one chip, and since it is joined and integrated by diffusion and penetration into the binder layer of the joining material, High bonding strength can be obtained. In the above description, an example of joining a plurality of different types of cemented carbide chips mainly of different materials has been described, but if necessary, the same kind of chips of the same composition can be joined and integrated in the same manner. By this joining, for example, it is possible to join small-sized chips to make a large-sized carbide chip, or to manufacture a cemented carbide chip having a complicated shape. Needless to say, the present invention can be effectively applied not only to a cutter bit chip but also to a cutting tool such as a cutting blade, a die, and the like.

本発明に係る積層超硬チップは、耐摩耗性に優れた超硬チップと、耐衝撃性に優れた超硬チップとを高強度に接合一体化することが可能であり、例えばトンネル掘削用カッタービットの刃体等として効果的に使用することができる。   The laminated cemented carbide tip according to the present invention is capable of joining and integrating a cemented carbide tip excellent in wear resistance and a cemented carbide tip excellent in impact resistance with high strength. For example, a cutter for tunnel excavation It can be effectively used as a bit blade or the like.

本発明に係る2層型(a)及び3層型(b)の積層超硬チップの構造を模式的に表す外観図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an external view schematically showing the structure of a two-layer type (a) and three-layer type (b) laminated carbide chip according to the present invention. 製造方法の説明図である。It is explanatory drawing of a manufacturing method. 接合部の組織を表す顕微鏡組織写真である。It is a microscope picture showing the structure of a joined part. 接合部の組織を表す顕微鏡組織写真である。It is a microscope picture showing the structure of a joined part. 性質測定点を表す図である。It is a figure showing a property measuring point. 性質測定点を表す図である。It is a figure showing a property measuring point.

符号の説明Explanation of symbols

1 積層超硬チップ
A 超硬チップ
B 超硬チップ
S 接合材
1 Stacked carbide tip A Carbide tip B Carbide tip S Bonding material

Claims (3)

接合面を研磨したWC―Co系超硬合金からなる超硬チップ同士を、コバルト、ニッケル又は高コバルト超硬合金からなる薄板状の接合材を挟んで上下に重ね合わせた状態で、非酸化性雰囲気中で1300〜1400℃の温度に加熱し、接合材に液相を生じさせて前記超硬チップ中に浸透させることにより、超硬チップ同士を接合材を介して一体化することを特徴とする積層超硬チップの製造方法。 Carbide chips consisting of the junction plane Migaku Ken the WC-Co cemented carbide, cobalt, in a state superimposed vertically sandwich the thin plate-like bonding material made of nickel or high-cobalt cemented carbide, non-oxidizing The cemented carbide chips are integrated with each other through the bonding material by heating to a temperature of 1300 to 1400 ° C. in a neutral atmosphere, causing a liquid phase in the bonding material to penetrate into the cemented carbide chip. A method for manufacturing a laminated carbide chip. 上記加熱を3〜10torrの真空中で行う請求項1に記載の積層超硬チップの製造方法。 The method for producing a laminated cemented carbide chip according to claim 1, wherein the heating is performed in a vacuum of 3 to 10 torr. 上記請求項1または2の製造方法により製造された積層超硬チップ。 A laminated carbide chip produced by the production method according to claim 1 or 2.
JP2006312803A 2006-11-20 2006-11-20 Multilayer carbide chip and manufacturing method thereof Expired - Fee Related JP5256384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006312803A JP5256384B2 (en) 2006-11-20 2006-11-20 Multilayer carbide chip and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006312803A JP5256384B2 (en) 2006-11-20 2006-11-20 Multilayer carbide chip and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008127616A JP2008127616A (en) 2008-06-05
JP5256384B2 true JP5256384B2 (en) 2013-08-07

Family

ID=39553760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006312803A Expired - Fee Related JP5256384B2 (en) 2006-11-20 2006-11-20 Multilayer carbide chip and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5256384B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108104828A (en) * 2017-11-02 2018-06-01 上海市政建设有限公司 A kind of push-bench directly abrades the export & import method of portal

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8637127B2 (en) 2005-06-27 2014-01-28 Kennametal Inc. Composite article with coolant channels and tool fabrication method
WO2008051588A2 (en) 2006-10-25 2008-05-02 Tdy Industries, Inc. Articles having improved resistance to thermal cracking
US8790439B2 (en) 2008-06-02 2014-07-29 Kennametal Inc. Composite sintered powder metal articles
CN102112642B (en) * 2008-06-02 2013-11-06 Tdy工业有限责任公司 Cemented carbide-metallic alloy composites
JP6068161B2 (en) * 2013-01-25 2017-01-25 大成建設株式会社 Cutter bit and method of manufacturing the cutter bit
JP6281385B2 (en) * 2014-04-03 2018-02-21 日立金属株式会社 Method for manufacturing outer layer made of cemented carbide for rolling roll
JP6408362B2 (en) * 2014-12-02 2018-10-17 大成建設株式会社 Cutter bit
CN112756761B (en) * 2021-01-27 2022-08-26 安徽鑫亿成精密机械有限公司 Welding method for embedding hard alloy into spring chuck
CN113478140A (en) * 2021-07-08 2021-10-08 中铁工程装备集团有限公司 Robot welding system for welding shield machine cutter
CN114769638A (en) * 2022-05-16 2022-07-22 株洲肯特硬质合金股份有限公司 Cemented carbide or cermet indexable insert and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4875443A (en) * 1972-01-14 1973-10-11
JPS531609A (en) * 1976-06-29 1978-01-09 Chiaki Tamura Method of uniting sintered alloy pieces
JPS59136404A (en) * 1983-01-21 1984-08-06 Shizuo Togo Preparation of super-hard anti-wear and impact resistant tool
JP2611934B2 (en) * 1994-04-28 1997-05-21 住友石炭鉱業株式会社 Cemented carbide-based wear-resistant material and method for producing the same
JP4403286B2 (en) * 2005-03-15 2010-01-27 株式会社片桐製作所 Cemented carbide tool material and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108104828A (en) * 2017-11-02 2018-06-01 上海市政建设有限公司 A kind of push-bench directly abrades the export & import method of portal
CN108104828B (en) * 2017-11-02 2020-04-10 上海市政建设有限公司 Hole entering and exiting method for directly grinding hole door by pipe jacking machine

Also Published As

Publication number Publication date
JP2008127616A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP5256384B2 (en) Multilayer carbide chip and manufacturing method thereof
US9719308B2 (en) Polycrystalline diamond composite compact elements and tools incorporating same
US7435377B2 (en) Weldable ultrahard materials and associated methods of manufacture
US8821603B2 (en) Hard compact and method for making the same
US8061458B1 (en) Polycrystalline diamond compact (PDC) cutting element having multiple catalytic elements
US9931736B2 (en) Cutting elements for earth-boring tools, earth-boring tools including such cutting elements, and methods of forming cutting elements for earth-boring tools
CN102656128B (en) polycrystalline diamond composite compact
CN101605919B (en) Hard tip and method for producing the same
JPS61270271A (en) High hardness sintered body composite material having sandwich structure
US8415034B2 (en) High-toughness wear-resistant composite material and a method of manufacturing the same
JP2004060201A (en) Cutting edge piece of excavating tool for exhibiting superior fine chipping resistance under high speed rotary operation condition
US10280687B1 (en) Polycrystalline diamond compacts including infiltrated polycrystalline diamond table and methods of making same
JP2008144541A (en) Drilling bit
JP3660525B2 (en) Cutting tool manufacturing method
US10603719B2 (en) Cutting elements and methods for fabricating diamond compacts and cutting elements with functionalized nanoparticles
JP6716408B2 (en) Laminated structure sintered superabrasive composite material and manufacturing method thereof
JPH0798964B2 (en) Cubic boron nitride cemented carbide composite sintered body
JPS63295482A (en) High-hardness composite sintered body
JP4156749B2 (en) Cutting chip manufacturing method
JPS6141702A (en) Composite material containing sintered hard body
JP2018111108A (en) Composite member and cutting tool comprising the composite member
JPS63190132A (en) Temperature stable diamond molded body and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees