JPS63295482A - High-hardness composite sintered body - Google Patents

High-hardness composite sintered body

Info

Publication number
JPS63295482A
JPS63295482A JP12791787A JP12791787A JPS63295482A JP S63295482 A JPS63295482 A JP S63295482A JP 12791787 A JP12791787 A JP 12791787A JP 12791787 A JP12791787 A JP 12791787A JP S63295482 A JPS63295482 A JP S63295482A
Authority
JP
Japan
Prior art keywords
sintered body
hardness
alloy
cemented carbide
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12791787A
Other languages
Japanese (ja)
Other versions
JP2550070B2 (en
Inventor
Shinji Kashima
加島 慎治
Akira Sanekata
真方 顕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP62127917A priority Critical patent/JP2550070B2/en
Publication of JPS63295482A publication Critical patent/JPS63295482A/en
Application granted granted Critical
Publication of JP2550070B2 publication Critical patent/JP2550070B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a high-hardness composite sintered body having high joint strength and high rigidity as a composite body by joining metal, alloy or sintered hard alloy layers having through-holes to in a specific form to both faces of a high-hardness sintered body essentially consisting of diamond and/or high-pressure phase boron nitride. CONSTITUTION:This high-hardness composite sintered body is constituted by joining the metal, alloy or sintered hard alloy layers having the through-holes to both faces of the high-hardness sintered body layer 1 essentially consisting of the diamond and/or high-pressure phase boron nitride and packing the above- mentioned high-hardness sintered body into the above-mentioned through-holes. Sheets consisting of a metal selected from molybdenum, tungsten, tantalumn, and niobium or an alloy essentially consisting thereof are preferably interposed as the intermediate layers 3 between the high-hardness sintered body layer 1 and the metal, alloy or sintered hard alloy layers 2. The deterioration in the heat resistance and the wear resistance of the high-hardness sintered body layer 1 and the deterioration in the strength of the joint boundary thereof are thereby prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はダイヤモンド、高圧相窒化ほう素、又は両者共
に含有する高硬度複合焼結体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-hardness composite sintered body containing diamond, high-pressure phase boron nitride, or both.

更に詳しくはドリルやエンドミル等の回転刃具としてシ
ャンクに両面ろう付けして、チップとして使用される高
硬度複合焼結体に関する。
More specifically, the present invention relates to a high-hardness composite sintered body that is used as a tip by brazing both sides of the shank of a rotary tool such as a drill or an end mill.

〔従来の技術〕[Conventional technology]

ドリル用に供されるダイヤモンドおよび(または)高圧
相窒化ほう素を主体とする高硬度焼結体(以下D713
N焼結体という)はその片面に超硬合金、又は金属が接
合されている二層構造のタイプ、又はその両面に中間層
を介して超硬合金が接合されている多層構造のタイプが
あり、これらをシャンクにろう付けして回転刃具として
使用されている。
A high-hardness sintered body (hereinafter referred to as D713) mainly composed of diamond and/or high-pressure phase boron nitride used for drilling
There are two types of N sintered bodies: a two-layer structure in which cemented carbide or metal is bonded to one side, and a multi-layer structure in which cemented carbide is bonded to both sides through an intermediate layer. These are brazed to the shank and used as rotating cutting tools.

D/BN焼結体をろう付は可能にし、かつ補強とじての
支持材である超硬合金は通常、均質な平板が使用されて
いる。
The cemented carbide that makes it possible to braze the D/BN sintered body and serves as a supporting material for reinforcement is usually a homogeneous flat plate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

片面が超硬合金であるものはろう付けが一面であるので
ろう付けの接合強度が不充分であシ、負荷の大きい穴あ
け加工ではシャンクより剥れてしまう場合がある。片面
が金属や合金の場合では、ろう付は面での接合強度はさ
らに弱くなり、かつD/BN焼結体との接合は超硬合金
より劣っている。
Since one side is made of cemented carbide, the brazing is only done on one side, so the joint strength of the brazing is insufficient, and it may peel off from the shank during heavy-duty drilling. When one side is made of metal or alloy, the joint strength of the surface is further weakened by brazing, and the joint with the D/BN sintered body is inferior to that of cemented carbide.

そこで特開昭57−66805号公報で開示されるD/
B N焼結体の両面に超硬合金を接着するタイプが提案
された。ところが本件発明者は特開昭57−66805
号にあるようにD/BN焼結体を2枚の超硬合金層の間
に介在接着せしめてなる3層の積層焼結体を試作してみ
たが、ホットプレス後の冷却過程において概ねD/BN
焼結体に水平クラックが入り、安定した品質を確保する
ことは大変難しいことが判明した。これはD/BN焼結
体と超硬合金の熱膨張係数がかなり相異しているため接
合面に垂直な方向に引張力が働くためと考えられる。
Therefore, the D/
A type was proposed in which cemented carbide was bonded to both sides of a BN sintered body. However, the inventor of this case is JP-A-57-66805.
As described in the issue, we tried to make a three-layer laminated sintered body made by intervening and adhering a D/BN sintered body between two cemented carbide layers, but the D /BN
Horizontal cracks appeared in the sintered body, making it extremely difficult to ensure stable quality. This is thought to be because the D/BN sintered body and the cemented carbide have significantly different coefficients of thermal expansion, which causes a tensile force to act in a direction perpendicular to the joint surface.

そこで特開昭61−270271号公報に開示されてい
るようにダイヤモンド焼結体と熱膨張係数が近似してい
る超硬合金全選択し、かつ両者の層の間に鉄族金属を透
過させない中間層を設けて接合したサンドインチ構造体
が提案された。しかしかかる複合体は当然、中間層およ
びその外側に接合する金属、超硬合金がダイヤモンド焼
結体に近い熱膨張係数を有するものに限定される不都合
がある。特に複合体を大径で製造する場合、超高圧・高
温に置かれた反応容器内では避は難い圧力と温度の不均
一な分布により上記選択された超硬合金は靭性が劣るの
で割れやすく、又中間層と超硬合金との接合強度も不充
分で満足すべき複合体は得られない。又両面が金属であ
る構造の複合体も試作してみたが金属のヤング率は超硬
合金と比べて小さいので、ホットプレス後、反りを生じ
やすく、又刃具にした場合も加工中の衝撃に対して歪み
が大きくなる欠点があった。
Therefore, as disclosed in Japanese Patent Application Laid-Open No. 61-270271, we selected all cemented carbide alloys whose coefficient of thermal expansion is similar to that of the diamond sintered body, and an intermediate layer between the two layers that does not allow iron group metals to pass through. A layered and bonded sandwich structure has been proposed. However, such a composite naturally has the disadvantage that the metal and cemented carbide bonded to the intermediate layer and the outside thereof are limited to those having a coefficient of thermal expansion close to that of the diamond sintered body. Particularly when manufacturing a composite with a large diameter, the cemented carbide selected above has poor toughness and is prone to cracking due to the uneven distribution of pressure and temperature that is difficult to avoid in a reaction vessel placed at ultra-high pressure and high temperature. Furthermore, the bonding strength between the intermediate layer and the cemented carbide is insufficient, making it impossible to obtain a satisfactory composite. We also tried to make a composite structure with metal on both sides, but since the Young's modulus of metal is smaller than that of cemented carbide, it tends to warp after hot pressing, and if it is made into a cutting tool, it will be susceptible to shock during processing. On the other hand, it had the disadvantage of increasing distortion.

てらに特開昭60−44204号公報にあげられるよう
に45X106psi以下のヤング率を有するソフトメ
タルを両面に接合した場合は、超硬合金の場合と比較し
、高硬度焼結体内の水平クラックや接合界面近くのクラ
ックは発生しにくくはなるが完全に防止することはでき
なかった。又ヤング率が超硬合金と比べ小さいため、製
造時に反りや歪みが生じ、工具に加工する際に支障があ
る。さらに剛性や耐熱性が低下するので工具としての加
工条件に制限がある。
Furthermore, as mentioned in JP-A No. 60-44204, when a soft metal having a Young's modulus of 45 x 106 psi or less is bonded to both sides, horizontal cracks and the like in a hard sintered body are less likely to occur than in the case of cemented carbide. Cracks near the bonding interface were less likely to occur, but could not be completely prevented. Furthermore, since the Young's modulus is smaller than that of cemented carbide, warping and distortion occur during manufacturing, which poses a problem when processing into tools. Furthermore, since the rigidity and heat resistance are reduced, there are restrictions on the processing conditions as a tool.

本件発明の目的は イ)  D/BN焼結体と金属5合金又は超硬合金(以
下基板という)とが強固に接合される 口)  D/BN焼結体の組織内および基板との界面に
剥離やクラックが生じない ハ)シャンクとのろう付は面の接着強度が工具用途とし
て十分である 二)複合体としての剛性が高い 高硬度複合焼結体を提供することにある。
The purpose of the present invention is (a) to firmly bond the D/BN sintered body and the metal 5 alloy or cemented carbide (hereinafter referred to as the substrate). The purpose is to provide a high-hardness composite sintered body that does not cause peeling or cracking, 3) brazes with the shank, and has sufficient adhesion strength for use as a tool, and 2) has high rigidity as a composite body.

〔問題点を解決するための手段〕[Means for solving problems]

本件発明者は種々改良を重ねた結果、金属や合金、ある
いは超硬合金を両面から単に直接接合すると前者は剛性
の点から難点があり、後者はヤング率が大きく支持材と
しては好適であるが、前述のとと(D/BN焼結体に単
に平板として接合するとクラックを生じてしまうが、基
板に貫通孔を多数あけD/BN焼結体をこの孔の中に充
填させる形ではさみ込み高温、超高圧で焼結して複合焼
結体を形成する方法が、両面にどのような金属、合金、
超硬合金を使用してもクラックを生じないことを発見し
て本件発明を完成した。すなわち本件発明の要旨はダイ
ヤモンドおよび(または)高圧相窒化ほう素を主体とす
る高硬度焼結体層の両面に貫通孔を有する金属、合金又
は超硬合金層が接合している複合焼結体であって該貫通
孔には前記高硬度焼結体が充填されていることを特徴と
する高硬度複合焼結体にある。
As a result of various improvements, the inventor of the present invention found that when metals, alloys, or cemented carbide are simply directly joined from both sides, the former has a difficulty in terms of rigidity, while the latter has a large Young's modulus and is suitable as a support material. , as mentioned above (if the D/BN sintered body is simply bonded as a flat plate, cracks will occur, but the D/BN sintered body is inserted by making many through holes in the substrate and filling the holes). What kind of metal, alloy,
The present invention was completed by discovering that no cracks occur even when cemented carbide is used. In other words, the gist of the present invention is a composite sintered body in which metal, alloy, or cemented carbide layers having through holes are bonded to both sides of a high-hardness sintered body layer mainly composed of diamond and/or high-pressure phase boron nitride. The high-hardness composite sintered body is characterized in that the through hole is filled with the high-hardness sintered body.

〔発明の構成〕[Structure of the invention]

以下本件発明の詳細な説明する。 The present invention will be explained in detail below.

D/BN焼結体はダイヤモンドおよび(または)高圧相
窒化ほう素を主体とする高硬度焼結体であるが、高圧相
窒化ほう素には立方晶系窒化ほう素およびウルシ鉱型窒
化ほう素が含まれる。ダイヤモンドおよび(ま几は)高
圧相窒化ほう素の焼結体は周知のように結合相が必要で
あり、この結合相としてはAt、Ni 、 Co 、 
Mn等の金属及び(または)3b、4a、4b、5a、
6a族の元素の窒化物、炭化物、炭窒化物、ほう化物、
酸化物からなるセラミックスが使用される。セしてD/
BN焼結体中の結合相の割合は5〜80重量%である。
The D/BN sintered body is a high hardness sintered body mainly composed of diamond and/or high-pressure phase boron nitride. is included. As is well known, sintered bodies of diamond and high-pressure phase boron nitride require a binder phase, and this binder phase may include At, Ni, Co,
Metals such as Mn and/or 3b, 4a, 4b, 5a,
Nitride, carbide, carbonitride, boride of group 6a elements,
Ceramics consisting of oxides are used. Set and D/
The proportion of the binder phase in the BN sintered body is 5 to 80% by weight.

D/BN焼結体と接合される外側の基板の材質としては
超硬合金、鉄族金属及びその合金、4a、5a、6aの
金属、金、銀、銅やその合金、チタン及びその合金等が
挙げられる。このうち工具シャンクに銀ろう付けした場
合、強度やろう付は性を満足するものとして、超硬合金
、鉄族金属及びその合金、モリブデン及びその合金、タ
ングステン及びその合金等が好ましい。
The material of the outer substrate to be joined to the D/BN sintered body includes cemented carbide, iron group metals and their alloys, 4a, 5a, and 6a metals, gold, silver, copper and its alloys, titanium and its alloys, etc. can be mentioned. Among these, when silver brazing is applied to the tool shank, cemented carbide, iron group metals and alloys thereof, molybdenum and alloys thereof, tungsten and alloys thereof, etc. are preferable, as long as the strength and brazing properties are satisfied.

なおり/BN焼結体の両側に接合される基板の材質は必
ずしも同じものではなくてもよい。例えば一方が超硬合
金で他方がモリブデン、あるいは一方が超硬合金で他方
が鉄族金属の合金のように組み合わせることができる。
The materials of the substrates bonded to both sides of the Naori/BN sintered body do not necessarily have to be the same. For example, one may be a cemented carbide and the other molybdenum, or one may be a cemented carbide and the other may be an alloy of an iron group metal.

D/BN焼結体と基板との構成は図を用いて説明すれば
例えば第1図及び第2図に示す態様で、第1図のI −
I’の矢印で示される断面が第2図である。すなわちD
/BN焼結体焼結体側に基板2が接合しており基板2に
は貫通孔があり、この貫通孔にはD/B N焼結体が充
填されている。このようにすると基板2に用いられる金
属、合金又は超硬合金は、その熱膨張係数を特に限定す
る必要はなく、超硬合金の場合Co含有率が5〜15重
量−の幅広い範囲で使用できる。そして工具として要求
される種々条件、例えば複合体の大きさ、厚さ、D/B
N焼結体の硬度や厚さに鑑みて、基板の組成、孔の大き
さや数が適宜選択されうる。孔の形状は特に限定はしな
いが円形が一般に加工しやすい。又径については直径1
〜4■が好ましい。これ未満では原料が孔の中に均一に
充填されに<<、又あまり大きいと応力分布がマクロ的
に不均一になるし。
The structure of the D/BN sintered body and the substrate can be explained using the drawings, for example, as shown in FIGS. 1 and 2, and as shown in FIG.
The cross section indicated by the arrow I' is shown in FIG. That is, D
/BN sintered body A substrate 2 is bonded to the sintered body side, and the substrate 2 has a through hole, and this through hole is filled with the D/BN sintered body. In this way, the metal, alloy, or cemented carbide used for the substrate 2 does not need to be particularly limited in its coefficient of thermal expansion, and in the case of cemented carbide, it can be used in a wide range of Co content ranging from 5 to 15% by weight. . Various conditions required for the tool, such as composite size, thickness, D/B
The composition of the substrate and the size and number of holes can be appropriately selected in consideration of the hardness and thickness of the N sintered body. The shape of the hole is not particularly limited, but a circular hole is generally easy to process. Also, regarding the diameter, diameter 1
~4■ is preferable. If it is less than this, the raw material will not be uniformly filled into the holes, and if it is too large, the stress distribution will become macroscopically non-uniform.

細分化した時に種々の不均一性が生じてしまう。When subdivided, various non-uniformities occur.

基板全体に占める孔の面積比は20〜80チが好ましい
。この割合が小さいとD/B N焼結体の組織内に水平
クラックが入りやすく、逆に大きすぎるとろう付は時の
接着強度が小さくなり不適当である。
The area ratio of the holes to the entire substrate is preferably 20 to 80 inches. If this ratio is small, horizontal cracks are likely to occur in the structure of the D/BN sintered body, while if it is too large, the adhesive strength during brazing will be low, making it unsuitable.

基板の厚みは超硬合金の場合剛性を高めるため0、5 
w以上が好ましく、金属、合金の場合は必要以上に厚く
すると剛性が低下するので0.2〜1.0瓢程度が好ま
しい。
The thickness of the substrate is 0.5 in the case of cemented carbide to increase rigidity.
The thickness is preferably 0.2 to 1.0 mm or more in the case of metals or alloys, since rigidity decreases if the thickness is made too thick.

さらにはD/BN焼結体と基板との間に薄板による中間
層を設けることも有効である。すなわち超硬合金基板の
場合には内部のコバルトがホットプレス中に少なからず
D/B N焼結体中へ拡散する傾向があり、これはD/
BN焼結体の耐熱性・耐摩耗性の劣化を招く。又金属や
合金が基板の場合でも、金属元素がD/BN焼結体中へ
拡散し、反応するので接合界面の強度を劣化させる場合
がある。これらの劣化防止の目的で、タングステン、モ
リブデン、タンタル、ニオブから選ばれる金属又はそれ
らを主成分とする合金よりなる薄板を中間に配置するこ
とができる。基板が鉄族金属の場合には、この中間層が
極めて有効である。モリブデンあるいはタングステンの
基板では、特にダイヤモンド焼結体の場合モリブデン、
タングステンの拡散が多くなるのでタンタル、ニオブを
中間に配置することが好ましい。
Furthermore, it is also effective to provide an intermediate layer made of a thin plate between the D/BN sintered body and the substrate. In other words, in the case of a cemented carbide substrate, internal cobalt tends to diffuse into the D/B N sintered body during hot pressing, and this
This causes deterioration of the heat resistance and wear resistance of the BN sintered body. Furthermore, even when the substrate is a metal or alloy, the metal elements diffuse into the D/BN sintered body and react, which may deteriorate the strength of the bonding interface. For the purpose of preventing these deteriorations, a thin plate made of a metal selected from tungsten, molybdenum, tantalum, and niobium or an alloy containing these as main components can be placed in the middle. This intermediate layer is extremely effective when the substrate is an iron group metal. For molybdenum or tungsten substrates, especially for diamond sintered bodies, molybdenum,
Since the diffusion of tungsten increases, it is preferable to arrange tantalum and niobium in the middle.

これらの中間層の厚みは0.05〜0.2■が好ましい
。0.05mm未満では拡散防止の効果が劣り、0、 
Z wmを越える場合には剛性が小さくなり好ましくな
い。
The thickness of these intermediate layers is preferably 0.05 to 0.2 cm. If it is less than 0.05 mm, the diffusion prevention effect will be poor;
If it exceeds Zwm, the rigidity will be reduced, which is not preferable.

又中間層の材質として鉄族金属やその合金も使用できる
。D/BN焼結体の原料や超硬合金に含有される鉄族金
属やその合金、又はその他1500℃以下の融点をもつ
金属や合金の量が少ない場合にはD/BN焼結体や基板
の靭性が劣り、その界面の接合強度も弱くなる。この几
めこれらの中間に鉄族金属及びその合金を配置しホット
プレス時に拡散させることによりこの欠点を改善するこ
とができる。厚さについては、O,OS〜0.2 tm
が好ましい。0.0511II未満では靭性や接合強度
に効果がなく、0.2 mを越えると剛性が小さく耐熱
性も劣ってくる。中間層を設けた場合の複合焼結体の断
面図を第3図に示す。第3図は第1図の1−1矢印の断
面図であり、D/BN焼結体1と基板2の間に中間層3
が介在している。
Furthermore, iron group metals and their alloys can also be used as the material for the intermediate layer. D/BN sintered bodies and substrates when the amount of iron group metals and their alloys contained in the raw materials of D/BN sintered bodies and cemented carbide, or other metals and alloys with a melting point of 1500°C or less is small. The toughness of the material is poor, and the bonding strength at the interface is also weak. This drawback can be improved by disposing an iron group metal or its alloy between these two layers and diffusing it during hot pressing. Regarding the thickness, O, OS ~ 0.2 tm
is preferred. If it is less than 0.0511II, there will be no effect on toughness or joint strength, and if it exceeds 0.2 m, the rigidity will be small and the heat resistance will be poor. FIG. 3 shows a cross-sectional view of the composite sintered body when an intermediate layer is provided. FIG. 3 is a sectional view taken along the arrow 1-1 in FIG.
is intervening.

以上のような3〜5層の多層複合体においては高硬度複
合焼結体の剥離や水平クラックが生じないのであるが、
その理由は次のように考えられる。
In the multilayer composite of 3 to 5 layers as described above, peeling and horizontal cracking of the high hardness composite sintered body do not occur.
The reason may be as follows.

ホットプレス後冷却された複合体には熱膨張係数の差に
起因した残留応力がある。通常、製造される高硬度複合
焼結体の熱膨張係数の値αは例示すると、 D/BN焼結体 α1 =4〜6XIO−6/l   
(800℃O平均)超硬合金  6M1=5〜7×lO
/′C(8oo℃の平均)モIJ ly”7   (1
M2==5.5XIO−’/’IC(80(F(D平均
)コバルト   6M3=16.8X10  /l  
 (750CO平均)ハステロイCαM4=14.5×
lO/c  (8oooD平均)一般にα1くαエ で
ある。このためホットプレスの冷却過程でD/B N焼
結体で圧縮応力、超硬合金で引張応力となる。超硬合金
層が貫通孔のない平板である従来の技術では第4図に示
すように外周部の界面近傍には応力が集中し、又中央部
には逆向きの引張力が働いて割裂のカを受は図示するよ
うり にクラッチ4が発生する。ところが本件発明に係る複合
焼結体では各応力は分断され、外周部への応力は集中し
にくくなる。さらにD/B N焼結体はかなシの部分で
基板内に突出しており、所謂スタッドの役割をするため
せん断力や引張力に抗する充分な接着力と保持力を有す
る。又ろう付けして刃具として使用する場合には、この
突出部によりシャンクへの熱の伝導も良くなり、切刃の
長寿命化にも役立つ。
The composite that has been cooled after hot pressing has residual stress due to the difference in thermal expansion coefficients. Usually, the value α of the thermal expansion coefficient of the high-hardness composite sintered body produced is as follows: D/BN sintered body α1 = 4 to 6XIO-6/l
(800℃O average) Cemented carbide 6M1=5~7×lO
/'C (average of 80°C) MOIJ ly"7 (1
M2==5.5XIO-'/'IC(80(F(D average) Cobalt 6M3=16.8X10/l
(750CO average) Hastelloy CαM4=14.5×
lO/c (8oooD average) is generally α1 × αe. Therefore, during the cooling process of the hot press, compressive stress occurs in the D/BN sintered body and tensile stress occurs in the cemented carbide. In the conventional technology in which the cemented carbide layer is a flat plate without through holes, stress is concentrated near the interface at the outer periphery, and an opposite tensile force acts in the center, causing splitting. The clutch 4 receives the force as shown in the figure. However, in the composite sintered body according to the present invention, each stress is divided, and stress is difficult to concentrate on the outer peripheral portion. Furthermore, the D/BN sintered body protrudes into the substrate at a solid portion, and since it functions as a so-called stud, it has sufficient adhesion and holding power to withstand shearing force and tensile force. In addition, when brazed and used as a cutting tool, this protrusion improves heat conduction to the shank and helps extend the life of the cutting edge.

〔実施例1〕 粒径4μの立方晶窒化ほう素粉末70重#チ、粒径1μ
のTic粉末20重量%、At粉末10重量%を混合し
た粉末7.0gを、内径30samの六方晶窒化ほう素
スリーブ内に、厚み1.0鵡のWC−6%C。
[Example 1] Cubic boron nitride powder with a particle size of 4μ, 70 weight #chi, particle size of 1μ
7.0 g of a mixed powder of 20% by weight of Tic powder and 10% by weight of At powder was placed in a hexagonal boron nitride sleeve with an inner diameter of 30 sam and a WC-6%C with a thickness of 1.0 mm.

超硬合金板で挾むように配置し、軽く圧縮した。They were placed between cemented carbide plates and lightly compressed.

なお超硬合金板には直径3■の貫通孔が等間隔に35個
あけである。これらをグラファイトヒーター内に組み込
んで、超高圧・高温発生装置にて55Kb、1400℃
30分間保持し焼結した。外周部を研磨して、外径29
mで、立方晶窒化ほう素焼給体の厚み2. Owm、全
厚さ4■の複合焼結体が得られた。外周部にはクラック
は見られず、反りもなかった。両側の超硬合金を研削し
て、所定の形状に切断した後シャンクにろう付けして、
第5図(a) # (b)に示すドリルを作り硬度がH
RC60の5KD−11の鋼板を穿孔してみたが、その
結果は極めて良好であった。
The cemented carbide plate has 35 through holes with a diameter of 3 cm at equal intervals. These are incorporated into a graphite heater and heated to 55Kb and 1400℃ using an ultra-high pressure/high temperature generator.
It was held for 30 minutes and sintered. Polish the outer periphery and make the outer diameter 29
m, the thickness of the cubic boron nitride heating body is 2. A composite sintered body with a total thickness of 4 cm was obtained. No cracks were observed on the outer periphery, and there was no warpage. The cemented carbide on both sides is ground, cut into the specified shape, and then brazed to the shank.
The drill shown in Figure 5 (a) # (b) was made and the hardness was H.
I tried drilling a RC60 5KD-11 steel plate, and the results were very good.

又1辺5m角に切断された高硬度複合焼結体をCo6%
の超硬合金にろう付けし第6図に示すように曲げ強度を
測定した。その結果一方のろう何面より剥離し強度は2
8kg/1lII2であった。これは潜在するクラック
がないことを示し実用上十分な強度である。
In addition, a high hardness composite sintered body cut into 5m square pieces was coated with 6% Co
The bending strength was measured as shown in FIG. 6. As a result, the peeling strength was 2 from one wax surface.
It was 8 kg/1lII2. This indicates that there are no latent cracks, and the strength is sufficient for practical use.

〔実施例2〕 粒径5〜10μのダイヤモンド90重量%とCO粉10
重量%の混合物を調製した。内径23膳の六方晶窒化ほ
う素スリーブ内において、厚さ50翔のTa箔を内側に
、外側に厚さ1.01mのWC−6%C0の超硬合金を
一組として、上下より混合粉末を挾むように配置して軽
く圧縮した。なおTa箔と超硬合金板は密着させ、直径
1.5 wmの貫通孔が等間隔に90個あけである。こ
れらをグラファイトヒーターに組込んで実施例1と同様
の装置にて、6゜Kb、1500℃、60分間保持して
複合焼結体を得た。
[Example 2] 90% by weight of diamonds with a particle size of 5 to 10μ and 10% of CO powder
A mixture of % by weight was prepared. Inside a hexagonal boron nitride sleeve with an inner diameter of 23 mm, a Ta foil with a thickness of 50 mm is placed on the inside, and a set of cemented carbide of WC-6% CO with a thickness of 1.01 m is placed on the outside, and the mixed powder is placed from above and below. It was placed between the two and compressed lightly. The Ta foil and the cemented carbide plate were brought into close contact with each other, and 90 through holes each having a diameter of 1.5 wm were equally spaced. These were assembled into a graphite heater and held at 6° Kb and 1500° C. for 60 minutes in the same apparatus as in Example 1 to obtain a composite sintered body.

ダイヤモンド焼結体の厚さは1.5 m、全厚さは3、
5 smで剥離、クラックは全く観察されなかった。
The thickness of the diamond sintered body is 1.5 m, the total thickness is 3 m,
No peeling or cracking was observed at 5 sm.

実施例1と同様のドリルを作成し10 % Stのアル
ミニウム合金板を多数穿孔したが、極めて精度よく加工
でき、刃先には何ら欠陥は生じなかった。
A drill similar to that in Example 1 was made and a large number of 10% St aluminum alloy plates were drilled, and the drilling was performed with extremely high precision, with no defects occurring at the cutting edge.

〔実施例3〕 両側の基板を厚さ3鱈のWC−15%Coの超硬合金及
び厚さ0.5 samのモリブデン板とする以外は全て
実施例1と同様にして高硬度複合焼結体を作成した。研
磨後のサンプルにはクラックは発生してなく切断片をシ
ャンクに両面ろう付けしても新たなりラックは見られず
接着力も十分であった。
[Example 3] High-hardness composite sintering was performed in the same manner as in Example 1 except that the substrates on both sides were made of WC-15% Co cemented carbide with a thickness of 3 mm and a molybdenum plate with a thickness of 0.5 sam. created a body. There were no cracks in the sample after polishing, and even when the cut pieces were brazed on both sides to the shank, no new racks were observed and the adhesive strength was sufficient.

〔実施例4〜6〕 中間層を介した場合の実施例を第1表に示す。[Examples 4 to 6] Table 1 shows examples in which the interlayer is used.

高硬度複合焼結体の作成条件は実施例4及び実施例5が
実施例1と同じであり、実施例6が実施例2と同じであ
る。尚ハステロイCの成分はNi55チ、Cr16%、
Mo17%、Fe 5%、W5%である。
The conditions for producing the high-hardness composite sintered body were the same in Examples 4 and 5 as in Example 1, and the same in Example 6 as in Example 2. The components of Hastelloy C are Ni55, Cr16%,
Mo: 17%, Fe: 5%, W: 5%.

〔比較例1〕 実施例1で用いられたWe−6%Coの超硬合金板に 
 1貫通孔を設けず平板のまま使用した以外は、全て 
 “実施例1と同様に立方晶窒化ほう素の複合焼結体を
作った。この複合焼結体は第4図に示すようなりラック
が発生しており刃具に供することはでき  ”なかりた
[Comparative Example 1] We-6% Co cemented carbide plate used in Example 1
1. All except for using the flat plate without making any through holes.
“A composite sintered body of cubic boron nitride was made in the same manner as in Example 1. This composite sintered body had racks as shown in Figure 4 and could not be used as a cutting tool. .

〔比較例2〕 内径30m+の六方晶窒化ほう素スリーブ内に、立方晶
窒化ほう素80重量%、TiN 14重量%、At6重
量%の混合粉末5.0I!を、厚さ0.5 mのモリブ
デンの平板で両側より挾み込み軽く圧縮した。
[Comparative Example 2] A mixed powder of 80% by weight of cubic boron nitride, 14% by weight of TiN, and 6% by weight of At was placed in a hexagonal boron nitride sleeve with an inner diameter of 30 m+. was sandwiched between 0.5 m thick molybdenum plates from both sides and lightly compressed.

実施例1と同様の条件で焼結をし、複合焼結体を取り出
して観察したところ、中央が若干凸状に膨んでおり、立
方晶形窒化ほう素の焼結体の中央部より大きくクラック
が入って容易に剥離してしまった。
Sintering was carried out under the same conditions as in Example 1, and when the composite sintered body was taken out and observed, the center was slightly swollen in a convex shape, and cracks were larger than in the center of the cubic boron nitride sintered body. It got in and peeled off easily.

〔実施例7〕 粒径4μの立方晶窒化ほう素粉末70重量%。[Example 7] 70% by weight of cubic boron nitride powder with a particle size of 4μ.

粒径1μのTie粉末20重量%、At粉粉末1電ヒほ
う素スリーブ内に厚み0. 5−のモリブデン板C挾む
ように配置し軽く圧縮した。なおモリブデ/板には直径
3mの貫通孔が等間隔に35個あけCある。これらをグ
ラファイトヒーター内に組みへんで超高圧・高温発生装
置にて55Kb,1400C.30分間保持し焼結した
。外周部を研磨して外径29mで立方晶窒化ほう素焼給
体の厚み約2、 0 m、全厚31alの複合焼結体が
得られた。接合部近く及び中央部にはクラックは発生し
ておらず、同面のモリブデンを研削して所定の形状に切
断しt後シャンクにろう付けして第5図(a) 、 (
b)に示すドリルを作った。接着は強固であり、HRC
60のSUJ鋼を容易に穿孔することができた。
20% by weight of Tie powder with a particle size of 1 μm, At powder powder, and 1 μm of Tie powder with a thickness of 0.5% in an electric arsenic sleeve. 5- molybdenum plates C were placed between them and lightly compressed. The molybdenum plate has 35 through holes C with a diameter of 3 m at equal intervals. These were assembled in a graphite heater and heated to 55Kb, 1400C using an ultra-high pressure/high temperature generator. It was held for 30 minutes and sintered. The outer peripheral portion was polished to obtain a composite sintered body having an outer diameter of 29 m, a cubic boron nitride firing body thickness of approximately 2.0 m, and a total thickness of 31 al. There were no cracks near the joint or in the center, and the molybdenum on the same surface was ground and cut into a predetermined shape, and then brazed to the shank as shown in Figure 5 (a).
The drill shown in b) was made. Adhesion is strong and HRC
60 SUJ steel could be easily drilled.

〔実施例8〕 粒径5〜10μのダイヤモンド90重量%とCO粉末1
0重量−の混合物を調製した。内径27g+〇六方晶窒
化ほう素スリーブ内において、内側に厚さ50μmのタ
ンタル箔を、外側に厚さ0.5aIOタンゲス≠ン板を
一組として、上下より混合粉末を挾むように配置して軽
く圧縮した。なおタンタル箔とタングステン板は直径1
.5 +mの貫通孔が等間隔に90個あけである。これ
らをグラファイトヒーターに組込んで、実施例7と間際
の装置にて、60Kb 、1500℃、60分間医押し
て高硬度複合焼結体を得た。ダイヤモンド焼結体の厚さ
は1.0鵡、全厚約2鴎の複合体でクラックは全く見ら
れなかった。切断片をシャンクにろう付けしてみたが1
強固に接着し、実用上問題なく使用できた。
[Example 8] 90% by weight of diamonds with a particle size of 5 to 10μ and CO powder 1
A mixture of 0 wt. Inside a hexagonal boron nitride sleeve with an inner diameter of 27g and a tantalum foil with a thickness of 50μm on the inside and a pair of IO tangent plates with a thickness of 0.5a on the outside, place the mixed powder from above and below so as to sandwich it lightly. Compressed. Note that tantalum foil and tungsten plate have a diameter of 1
.. There are 90 through holes of 5+m equally spaced. These were assembled into a graphite heater and pressed at 60 Kb at 1500° C. for 60 minutes using a device similar to that used in Example 7 to obtain a high hardness composite sintered body. The thickness of the diamond sintered body was 1.0 mm, and the composite had a total thickness of about 2 mm, with no cracks observed at all. I tried brazing the cut piece to the shank, but 1
It adhered strongly and could be used practically without any problems.

〔実施例9,10、比較例3,4〕 第2表に示す複合焼結体を作成し、結果を観察した。複
合焼結体の作成条件は実施例10、比較例3が実施例7
と同じであり実施例9、比較例4が実施例8と同じであ
る。
[Examples 9 and 10, Comparative Examples 3 and 4] Composite sintered bodies shown in Table 2 were produced and the results were observed. The conditions for creating the composite sintered body are Example 10, and Comparative Example 3 is Example 7.
, and Example 9 and Comparative Example 4 are the same as Example 8.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明に係る高硬度複合焼結体は (、)  任意の組成のD/BN焼結体と基板よりなる
複合焼結体がクラックを生じることなく容易に製造する
ことができる。
As described above, the high-hardness composite sintered body according to the present invention (a) can easily produce a composite sintered body consisting of a D/BN sintered body of any composition and a substrate without causing cracks. .

(b)  D/BN焼結体と基板が強固に接合される(
c)剛性が大きく、強固にろう付けできる(d)  工
具用途として優れている 等の効果がある。
(b) The D/BN sintered body and the substrate are firmly bonded (
c) It has high rigidity and can be firmly brazed. (d) It is excellent as a tool.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本件発明の1実施例を示す正面図、第2図、第
3図はそれぞれ本件発明の1実施例を示す断面図である
。第4図は従来技術による断面図で応力及びクラックを
示す。第5図は本件発明の複合焼結体を使用して作られ
たドリルを示し、(a)は側面図(b)はu −n’線
矢視図である。第6図は曲げ強度の測定方法を示す概略
図である。 l・・・D/BN焼結体、2・・・基板、2′・・・超
硬合金、3・・・中間層、4・・・クラック、5・・・
高硬度複合焼結体、6・・・シャンク、7・・・ろう材
FIG. 1 is a front view showing one embodiment of the present invention, and FIGS. 2 and 3 are sectional views each showing one embodiment of the present invention. FIG. 4 is a cross-sectional view according to the prior art, showing stress and cracks. FIG. 5 shows a drill made using the composite sintered body of the present invention, in which (a) is a side view and (b) is a view taken along the line u-n'. FIG. 6 is a schematic diagram showing a method for measuring bending strength. 1...D/BN sintered body, 2...Substrate, 2'...Cemented carbide, 3...Intermediate layer, 4...Crack, 5...
High hardness composite sintered body, 6...shank, 7...brazing metal.

Claims (1)

【特許請求の範囲】 1、ダイヤモンドおよび(または)高圧相窒化ほう素を
主体とする高硬度焼結体層の両面に貫通孔を有する金属
、合金又は超硬合金層が接合している複合焼結体であっ
て、該貫通孔には前記高硬度焼結体が充填されているこ
とを特徴とする高硬度複合焼結体。 2、高硬度焼結体層と金属、合金又は超硬合金層との間
にモリブデン、タングステン、タンタル、ニオブから選
ばれた金属又はそれらを主成分とする合金よりなる薄板
を介在させてなる特許請求の範囲第1項記載の高硬度複
合焼結体。 3、高硬度焼結体層と金属、合金又は超硬合金層との間
に鉄、コバルト、ニッケルより選ばれた金属又はそれら
を主成分とする合金よりなる薄板を介在させてなる特許
請求の範囲第1項記載の高硬度複合焼結体。 4、金属、合金又は超硬合金層を貫通する高硬度焼結体
が充填されている孔の割合が全体の面積の20〜80%
である特許請求の第1項乃至第3項記載の高硬度複合焼
結体。
[Claims] 1. A composite sintered material in which metal, alloy, or cemented carbide layers having through holes are bonded to both sides of a high-hardness sintered body layer mainly composed of diamond and/or high-pressure phase boron nitride. 1. A high-hardness composite sintered body, wherein the through-hole is filled with the high-hardness sintered body. 2. A patent in which a thin plate made of a metal selected from molybdenum, tungsten, tantalum, and niobium or an alloy containing these as main components is interposed between a high-hardness sintered body layer and a metal, alloy, or cemented carbide layer. A high-hardness composite sintered body according to claim 1. 3. A patent claim in which a thin plate made of a metal selected from iron, cobalt, and nickel or an alloy containing these as main components is interposed between the high-hardness sintered body layer and the metal, alloy, or cemented carbide layer. High hardness composite sintered body according to scope 1. 4. The percentage of holes filled with high-hardness sintered bodies penetrating the metal, alloy, or cemented carbide layer is 20 to 80% of the total area.
A high-hardness composite sintered body according to any one of claims 1 to 3.
JP62127917A 1987-05-27 1987-05-27 High hardness composite sintered body Expired - Lifetime JP2550070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62127917A JP2550070B2 (en) 1987-05-27 1987-05-27 High hardness composite sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62127917A JP2550070B2 (en) 1987-05-27 1987-05-27 High hardness composite sintered body

Publications (2)

Publication Number Publication Date
JPS63295482A true JPS63295482A (en) 1988-12-01
JP2550070B2 JP2550070B2 (en) 1996-10-30

Family

ID=14971836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62127917A Expired - Lifetime JP2550070B2 (en) 1987-05-27 1987-05-27 High hardness composite sintered body

Country Status (1)

Country Link
JP (1) JP2550070B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02142639A (en) * 1988-11-23 1990-05-31 Asahi Tec Corp Pattern device for gypsum mold
WO2016084914A1 (en) * 2014-11-27 2016-06-02 三菱マテリアル株式会社 Drill tip and drill bit
JP2016534000A (en) * 2013-07-02 2016-11-04 エレメント シックス リミテッド Ultra-hard structures, methods for making them and methods for processing them
EP3225775A4 (en) * 2014-11-27 2018-08-01 Mitsubishi Materials Corporation Drill tip and drill bit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02142639A (en) * 1988-11-23 1990-05-31 Asahi Tec Corp Pattern device for gypsum mold
JP2016534000A (en) * 2013-07-02 2016-11-04 エレメント シックス リミテッド Ultra-hard structures, methods for making them and methods for processing them
US10626056B2 (en) 2013-07-02 2020-04-21 Element Six Limited Super-hard constructions, methods for making same and method for processing same
WO2016084914A1 (en) * 2014-11-27 2016-06-02 三菱マテリアル株式会社 Drill tip and drill bit
EP3225775A4 (en) * 2014-11-27 2018-08-01 Mitsubishi Materials Corporation Drill tip and drill bit
US10352104B2 (en) 2014-11-27 2019-07-16 Mitsubishi Materials Corporation Drill bit button insert and drill bit

Also Published As

Publication number Publication date
JP2550070B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
AU2001275856C1 (en) Reducing metals as a brazing flux
US5176720A (en) Composite abrasive compacts
JP2904799B2 (en) Brazed thermostable polycrystalline diamond product and method of making same
KR920010861B1 (en) Composite sintered material having sandwich structure
CA1216158A (en) Composite compact component and a process for the production of the same
JPH0218365A (en) Abrasion resistant polycrystalline diamond heat resistor
AU2001275856A1 (en) Reducing metals as a brazing flux
JPS59134665A (en) Method of coupling cubic boron nitride compact
JP3549424B2 (en) Hard sintered body tool and manufacturing method thereof
JPS63295482A (en) High-hardness composite sintered body
US20180169796A1 (en) Brazing processes and brazed products
JPS60210382A (en) Tool made of composite sintered body and its production
JP6716408B2 (en) Laminated structure sintered superabrasive composite material and manufacturing method thereof
JPS6049589B2 (en) Composite sintered body for tools and its manufacturing method
JPS63203705A (en) Composite sintered body of cubic boron nitride and cemented carbide
JP3651285B2 (en) Cubic boron nitride-containing brazing composite material and method for producing the same
JPS63202444A (en) Sintered composite body of super hard material
JPS6363321B2 (en)
JPS6141702A (en) Composite material containing sintered hard body
JPH0436557B2 (en)
JPS6260203B2 (en)
JPH085723B2 (en) Pressure joining method for ceramic parts and Al parts
JP3651284B2 (en) Diamond-containing brazing composite material and method for producing the same
JPS614609A (en) Blank for tool and manufacture thereof
JPS6359381B2 (en)